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Almost all single neuron models currently being used and developed combine 

discretized cable models with Hodgkin-Huxley type equations1. This approach, 

employed by the popular software package NEURON2 and its competitors such as 

GENESIS3, MOOSE4, etc., is based on mathematical methods developed in the 50s 

and 60s, before supercomputers were available for scientific research. Wilfrid Rall 

introduced linear cable theory to analyze the electrical behavior of dendrites5 and was 

the first to demonstrate their importance for synaptic integration6. Later he proposed a 

computational approach, called compartmental modeling, based on a spatial 

discretization of the linear cable equation7. Although compartmental modeling allows 

simulation of the complex 3D morphology of dendrites and axons in reasonable detail, 
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the underlying equations ignore many 3D aspects by computing the changes in 

membrane potential in a branched 1D cable. Each cylindrical compartment is 

isopotential with a constant radius and uniform membrane currents. In some cases the 

use of tapering cylinders2 can provide a better approximation of the real neuronal 

shape. 

Compartmental models can easily be extended to include nonlinear conductances by 

adding Hodgkin-Huxley type equations8 to represent different types of voltage/ligand-

gated channels. This method is extensible and in principle all types of channels 

identified can be included in a model, provided the necessary kinetic data are available 

for the Hodgkin-Huxley type equations9. For most neuron types the cytoplasmic calcium 

concentrations will also need to be computed to simulate calcium-activated potassium 

channels10. A simple well-mixed solution, usually called the calcium pool, is often used 

but this is not effective to simulate the multiple time constants by which calcium 

concentrations can evolve11. More realistic models of calcium dynamics require calcium 

diffusion and here one runs into limitations of the compartmental approach. Because a 

uniform membrane current is assumed, the only gradient for calcium within each 

compartment is perpendicular to the membrane and therefore only 1D calcium diffusion 

can be simulated, usually radially if the goal is to model potassium channel activation12 

(Figure 1A, bottom). In addition, calcium gradients occur over much shorter distances 

than voltage gradients due to strong calcium buffering in most neurons and therefore a 

reasonably accurate model of longitudinal calcium gradients will require very short 
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electrical compartments13. More challenging is to model calcium influx through synaptic 

channels in a dendritic spine. A common approach is to model the spine head as a 

stack of short cylinders, attached to a similar stack of narrower cylinders representing 

the spine neck, and simulate the 1D diffusion along the longitudinal axis of this system 

(Figure 1A, top). This works fine until one tries to attach this spine to a dendrite using 

radial diffusion: the morphologies do not connect properly. It is difficult to compute the 

volumes at the connection and it requires very short dendritic compartments to 

represent the localized effects of calcium changes in spines (Figure 1A). 

In general, compartmental modeling does a poor job of simulating structures that do not 

look like cylinders, such as somas, axonal boutons or spines. It is also difficult to 

compute the effects of small changes in shape, like the enlargement of spines during 

induction of long-term potentiation14, if the morphology has been approximated. In the 

past the limitations of the cylindrical model were not a big concern because 

reconstructions of neural morphology were also imprecise. The standard manual 

approach to neural reconstruction, as exemplified by the Neurolucida software, 

describes the neuron as a branched cable with slowly changing diameters and is limited 

by the poor resolution of light microscopy below 0.5 µm15. With the increased use of 

electron microscopy16 and innovations like super resolution microscopy17 much better 

neural reconstructions are becoming available that often deviate from the cylinder 

assumption. For example, many dendrites have an elliptical cross section instead of a 

                                                
13 Anwar, H., Roome, C. J., Nedelescu, H., Chen, W., Kuhn, B., & De Schutter, E. 
(2014). Dendritic diameters affect the spatial variability of intracellular calcium dynamics 
in computer models. Frontiers in Cellular Neuroscience, 8, 168 
14 Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R., & Kasai, H. (2004). Structural 
basis of long-term potentiation in single dendritic spines. Nature, 429(6993), 761–766. 
15 Jaeger, D. (2000). Accurate reconstruction of neuronal morphology. In E. De Schutter 
(Ed.), Computational Neuroscience: Realistic modeling for experimentalists (pp. 159–
178). CRC Press. 
16 Jacobs, G. A., Claiborne, B., & Harris, K. M. (2009). Reconstruction of neuronal 
morphology. In E. De Schutter (Ed.), Computational Modeling Methods for 
Neuroscientists (pp. 187–210). MIT Press. 
17 Yamanaka, M., Smith, N. I., & Fujita, K. (2014). Introduction to super-resolution 
microscopy. Microscopy, 63(3), 177–192. 



 

  

circular one18. High resolution reconstruction data is typically described by a surface 

mesh (Figure 1B), which provides much more detail than a traditional reconstruction, as 

found on neuromorpho.org19. 

Linear cable theory and compartmental modeling assume that the resistance of the 

external medium is uniform and usually ignore it (re = 0)5. This assumption does not 

matter much for membrane potential calculations but limits the validity of models of the 

extracellular local field potential (LFP). Recent studies show a strong interest in 

modeling approaches to understand the source of the LFP and to interpret the 

increasing number of experiments where LFP is recorded at multiple sites20. Such 

simulations are typically based on networks of compartmental models of neurons of 

varying morphological detail21. Because the physical mechanisms causing the LFP are 

a topic of active discussion22 it is at present difficult to predict the major sources of error 

in this modeling approach. Nevertheless, it is clear that the use of uniform membrane 

currents on cylinders and the assumption of a homogeneous extracellular medium are 

gross simplifications, especially in the presence of tightly packed neurons. 

Considering the many limitations of compartmental modeling mentioned, the lack of 

development of alternative methods to simulate morphologically detailed neurons is 
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surprising. A promising effort was the NeuroDune project23, which used finite volume 

approaches to accurately model the 3D placement of synapses with the neuron model 

still based on cable theory. Unfortunately this project seems no longer active and its 

website is defunct. Our group has been developing a software package STEPS for the 

stochastic simulation of reaction-diffusion systems in neurons24. STEPS uses 

tetrahedral volume meshes to represent the full 3D morphology with an accuracy of 0.1 

µm and below (Figure 1B). Like several other software packages used to model 

molecular events in synapses25, STEPS was originally designed to simulate only small 

parts of neurons, such as spines26 or partial dendrites27. Thanks to a recent MPI-based 

parallel version with supralinear scaling on computing clusters28, simulation of complete 

neurons in 3D is now practical with STEPS. This allows for detailed comparison with 

compartmental models13 but also, and more interestingly, it makes molecular level 

simulation at the full neuronal scale possible. An example is simulation of the effect of 

different clustering schemes for calcium and calcium-activated potassium channels at 

the sub-µm scale act on the generation of dendritic calcium spikes27. Nevertheless this 

is not a complete solution: not every problem requires computationally intensive 
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stochastic simulation and at present STEPS does not support network simulation or 

computation of the LFP. 

The number of scientific questions at the molecular, structural and network levels that 

cannot be properly simulated with a 1D approach is expected to increase. With easier 

access to large computing power provided by university clusters and cloud computing, 

there is no longer a need for the numerical efficiency of cable theory to model a single 

neuron. Mesh-based simulators that fully represent the shape of neurons at high 

resolution and compute electrical events in 3D can run on such computing platforms at 

good speeds. This approach may not be practical yet for large neural network 

simulations29, but it would serve the computational neuroscience community well to 

recognize the limitations of cable theory and foster the development of several new 

software platforms to simulate neuronal physiology in 3D. 
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Figures 

 

Figure 1: A. 1D calcium diffusion in compartmental models of a spine (top) and of an 

unbranched dendrite (bottom). In each green section the calcium concentration is well-

mixed. Red arrows show direction of calcium diffusion, brown membrane represents the 

site of homogenous calcium influx. Notice that the spine does not ‘fit’ onto the dendrite 

because of their different shapes. Also, the calcium concentration gradients in the 

dendritic compartment ignores the position of the spine if the two systems were to be 

connected. B. Tetrahedral mesh of part of a spiny dendrite CA1 pyramidal neuron30. In 

this representation calcium diffusion and electrical events can be simulated in 3D at the 

resolution of the mesh elements. 
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