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Abstract

The Gamma-Ensemble
Adaptive Reinforcement Learning via Modular Discounting

Reinforcement learning allows artificial agents to learn complex tasks, such as playing Go
on an expert level. Still, unlike humans, artificial agents lack the ability to adapt learned
behavior to task changes, or to new objectives, such as to capture as many opponent
pieces within a given number of moves, instead of simply winning. The Independent
Gamma-Ensemble (IGE), a new brain-inspired framework, allows such adaptations. It
is composed of several Q-learning modules, each with a different discount factor. The
off-policy nature of Q-learning allows modules to learn several policies in parallel, each
representing a different solution for the payoff between a high reward sum and the time
to gain it. The IGE adapts to new task conditions by switching between its policies
(transfer learning). It can also decode the expected reward sum and the required time for
each policy, allowing it to immediately select the most appropriate policy for a new task
objective (zero-shot learning). Additionally, this allows to optimize the average reward in
discrete MDPs where non-zero reward is only given in goal states. The convergence to the
optimal policy can be proven for such MDPs. The modular structure behind the IGE can
be combined with many reinforcement learning algorithms and applied to various tasks,
allowing to improve the adaptive abilities of artificial agents in general.
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Introduction

The development of artificial agents that adapt autonomously to new tasks and situations
is a major goal in the field of artificial intelligence. Machine learning approaches strive
to fulfill this need. They learn the solution to new tasks from observations made on-task,
allowing them to interact with a task and to collect data needed to learn a solution. Re-
inforcement learning is one of the sub-disciplines in machine learning. It studies methods
for learning optimal behaviors for problems with multiple decision steps and with possibly
delayed outcomes of the behavior, i.e. how the agent performed.

Reinforcement learning tasks consist of several states in which the agent has to decide
between several alternative actions. Each action leads the agent to the next state. For
example, in a computer game an agent has to find the exit from a maze. The agent’s
position in the maze is its state, and the directions it can walk are its actions. Depending
on the action it chooses, its position will change. For each transition, the agent might
receive a reward. Its aim is to maximize the rewards it obtains. Nonetheless, rewards
are often delayed, meaning that the current action influences which future states can be
visited and which rewards can be gained in the future. The aim of the agent in the maze
is to find the exit. Therefore, a positive reward is given to it if it reaches the exit. For all
other state transitions, a small negative is given. In such a task, the shortest path to the
goal is maximizing the reward sum the agent can gain.

The agent learns such tasks by interacting with the environment. It explores different
behaviors and observes their resulting reward. This allows the agent to learn the optimal
behavior, which results in the maximum reward for a task. In the maze, the agent has
to explore different paths to find the one that leads to the exit where it finally receives a
positive reward.

Once the optimal behavior is learned, the agent can apply it again and again to escape
the maze. However, our world is ever changing, including the tasks and the objectives
that an agent has to fulfill. In the maze game, there might be coins that the agent can
collect to get points. The agent gains 1 point for each collected coin, and 100 points
for reaching the exit. The task could change so that the agent must not only reach the
exit, but must also collect the maximum number of points. Another objective might be
that the agent should collect the maximum number of points within a given time limit,
or to collect at least a specified number of points before it can exit the maze. Classical
reinforcement learning approaches adapt to such changes by relearning the task according
to the new objectives. Relearning is often time intensive because the agent has to explore
new behaviors.

However, in many situations an agent should quickly adapt to a new task situation.
For example, a self-driving car that learned to drive on the right side in Germany should

1



2 Introduction

adapt to driving on the left side if used in England. An autonomous mining robot on a
different planet that learned the optimal path between its base station and the mining
site should cope with a change in terrain due to a landslide. A financial broker algorithm
should deal within seconds or better yet, milliseconds, to changes in the financial world.
Situations in which autonomous agents have to quickly adapt are plentiful.

Classical reinforcement learning methods have problems with such quick adaptations.
In order to adapt, they have to relearn the entire task, which is very time-consuming.
In contrast, humans and animals can perform such adaptations swiftly and seemingly
effortlessly. The human brain is evolved to cope with an ever-changing world. Not only
can we learn complex tasks, but we also have mechanisms to adapt our behavior on the
fly to new situations. Artificial intelligence strives to achieve the same adaptive abilities.
This thesis attempts to take a step toward this goal. It presents and analyzes a new
framework, the Independent γ-Ensemble, as an approach to improve the adaptive abilities
of reinforcement learning approaches. The inspiration for the framework comes from the
system it attempts to imitate, the human brain.

The Independent γ-Ensemble

The Independent γ-Ensemble (IGE) is an ensemble of modules, each representing an
independent reinforcement learning agent. The modules aim to maximize the expected
reward sum in a task. The difference between modules is their discounting of expected
future rewards. Future rewards are discounted by weighting them in the reward sum
with respect to the time delay before they can be acquired. Some modules have weak
discounting. Rewards are weighted similarly, regardless of whether they are acquired
sooner or later. Such modules learn long-term strategies that maximize the overall reward
sum even if it takes a long time to reach a large reward sum. Other modules have
stronger discounting. Proximal rewards are weighted more strongly than distant rewards.
Such modules learn behaviors that optimize the short-term reward sum. Their behaviors
usually result in quickly obtaining rewards without long delays. In the maze example,
modules that optimize long-term rewards learn to collect many coins before locating the
exit, whereas, modules that optimize short-term rewards prefer to reach the exit quickly.
Finding the exit yields a high reward of 100 points, which these modules prefer to acquire
rapidly. For them, the 100 points are strongly discounted if they must be acquired too
far in the future. The inspiration for the IGE came from research about human-decision
making. Tanaka, Doya, et al. (2004) and Tanaka, Schweighofer, et al. (2007) identified
areas in the human brain that seemingly learn behaviors based on discounted future
rewards in which each area has a different discounting strength.

As a result of having modules that discount differently, the IGE learns a repertoire
of behaviors that can be used to adapt to different situations. The learned behaviors
represent different strategies for the trade-off between the amount of reward and the time
to acquire it. In the maze game, if a lot of points should be collected, a module that
optimizes long-term reward is used, whereas, if the agent should find its way to the exit
rapidly, it uses a module that optimizes short-term rewards.

A further property of the IGE is its ability to decode information about the behaviors
it has learned. The IGE can decode their expected rewards and the time that is needed to
gain them. This is helpful in identifying the most appropriate policy for a given situation.
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Classical reinforcement learning approaches do not have this ability. Decoding of the
information about its learned behaviors allows the IGE not only to adapt to different
situations, but also to optimize the average reward an agent can acquire per time step.
This objective is important for tasks that are repeated, such as, for example, if the agent
plays the maze game in a loop. In this case, the goal would not be to get the most reward
in one game, but to get the maximum reward averaged over the time steps. Classical
reinforcement learning methods exist to optimize this objective, but the IGE provides an
interesting new way to solve such problems.

Overview of the Thesis

The thesis has the following structure. Chapter 1 introduces the background to the IGE.
It gives a short overview of reinforcement learning and introduces Q-learning, which is
used as the algorithm to implement the modules of the IGE. Moreover, related methods
from the field of transfer learning are reviewed. The aim of transfer learning is to improve
the learning performance in new tasks by using knowledge gained from previously solved
tasks. This chapter also introduces the Horde architecture that has a similar structure to
the IGE, but its objective is to make predictions rather than to learn adaptive behavior.
The chapter concludes with a discussion of the connection between reinforcement learning
and learning processes in the brain, and with an introduction to the research that inspired
the development of the IGE.

The IGE is described in detail in Chapter 2. The chapter analyses properties of the
IGE that enable it to learn a set of behaviors and to decode information about its learned
policies. It also provides insight into which modules, i.e. which discounting strategies, the
agent should use to learn beneficial behaviors.

The following three chapters introduce different application areas of the IGE. Chap-
ter 3 introduces the application of the IGE to tasks that change, depending on some
context. For example, for a maze game the context could be a countdown timer. If
the timer reaches zero, the agent gets a negative reward or the game ends. Depending
on the context, the agent should select the most appropriate behavior that was learned
by the ensemble. This chapter introduces some tasks in which such a mapping can be
analytically derived. For other tasks it explores approaches to learn the mapping.

Chapter 4 explores the ability of the IGE to adapt to changes in the objectives that
an agent has to fulfill in a given environment. In such cases, objectives are formulated in
terms of the rewards that the IGE should acquire and the time it needs to achieve them.
Because the IGE can decode this information for learned behaviors or learn a prediction
about this information, it can immediately select the most appropriate behavior for a
given objective.

The final chapter Chapter 5 analyzes the ability of the IGE to optimize average reward
and compares it to existing approaches. This chapter proves that the IGE is guaranteed to
learn the optimal behavior to optimize average reward in a subclass of tasks: deterministic,
goal-only-reward MDPs. The proof allows also to define which modules the IGE needs
to guarantee optimality. Furthermore, it shows a way to reduce the number of needed
modules, given a lower bound on the final performance.





Chapter 1

Fundamentals and Related Work

This chapter introduces the fundamentals of the IGE, related work, and the inspiration for
the framework. First, reinforcement learning will be introduced with a focus on model-
free, value-based methods, which comprise the basis for the IGE. Afterward, related
approaches from the field of transfer learning are reviewed. These approaches are designed
to adapt agents to new tasks similar to the IGE. This is followed by an introduction to the
Horde architecture, that uses the same basic framework as the IGE, but for the purpose
of prediction instead of adaptation. The final section introduces the original inspiration
for the IGE from the field of inter-temporal decision-making in humans.

1.1 Reinforcement Learning

Reinforcement learning is a subdiscipline of machine learning. It studies how solutions to
multi-step decision problems can be solved. The aim is to maximize rewards that depend
on decisions made by the agent.

Tasks with multiple decision steps are an abundant class of problems that appear in
all areas of life, business, engineering, or science. For example, cooking is a multi-step
decision problem. If we want to make a pasta sauce, we start with an empty pot. We have
to decide which ingredients to add and how to prepare them, such as adding chopped,
fried onions. After the onions are added, we have to decide upon the next ingredient
and its preparation. The goal of this multi-step process is to maximize the tastiness of
the final pasta. Every action that we take during the process has an influence on this
outcome. Reinforcement learning provides tools to learn which decisions should be made
to solve such tasks.

This chapter introduces fundamental aspects of reinforcement learning that are essen-
tial in order to understand the principles behind the IGE. Please refer to the book by
Sutton & Barto (1998) for a comprehensive overview and introduction to reinforcement
learning. The next section introduces the concept of Markov decision processes (MDPs),
that are used to formalize multi-step decision problems. It is followed by an overview
over different approaches in reinforcement learning. The final section concentrates on
Q-learning, a model-free, value-based approach, that forms the basis of the IGE.
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1.1.1 Markov Decision Processes

Reinforcement learning uses the framework of MDP’s to formalize decision problems and
tasks (Bellman 1957; Puterman 1994).

Definition 1. A Markov Decision Process (MDP) is a tupel:

MDP = (S,A, T,R) ,

where S is a finite number of states, and A a finite number of actions. T is a transition
probability function with T : S × A × S 7→ [0, 1], and R a reward function with R :
S × A× S 7→ R.

The states S = {s1, . . . , sN} are the possible situations in which an agent has to make
a decision. In the cooking example, the state describes the current content of the pot.
In the simplest form the states are discrete, i.e. they are represented by scalar natural
numbers S ∈ N. But they can also be continuous (S ∈ R) or multi-dimensional (S ∈ RM).
In a state, the agent has to choose between a set of actions A = {a1, . . . , aK}. In the
simplest form, the actions are also described by a set of natural numbers A ∈ N that are
the same for each state. Nonetheless, the actions can be also continuous (A ∈ R), or may
depend on the state (fA : S 7→ A).

Depending on the agent’s current state st at time point t and its action at, it tran-
sitions to the next state st+1. The transition function T defines these transitions using
a probability distribution over the successor states, given the current state and action:
T (st, at, st+1) = Pr(st+1|st, at). This allows MDPs to be stochastic, such that actions can
lead with different probabilities to any of several successor states. In the cooking example,
frying the onions should result in fried onions, but there is the probability of burning the
onions so that they cannot be used. In the case of a deterministic MDP, an action has
only one possible successor state. In this case, the probability for this transition is 1 and
for all other transitions 0. The time of a transition is measured in discrete steps with
t = (0, 1, . . . , T ).

For each transition, the agent gains a reward according to the reward function R.
The reward is a real-valued scalar and the general goal of the agent is to maximize the
reward sum it can achieve in an MDP. The reward function can be defined over different
elements of a transition at time point t. The reward function might depend only on the
state and action at t: rt = R(st, at), or only on the state it transitions into: rt = R(st+1),
but it can also depend on all three components: rt = R(st, at, st+1). Rewards may also
be probabilistic. In this case, the reward function is the probability distribution over the
rewards for a transition: R(st, at, st+1) = Pr(rt|st, at, st+1). In the cooking example, a
reward is given to the agent according to the taste of the final pasta sauce. Nonetheless,
intermediate rewards could be given based on testing of the sauce during its preparation.

The agent starts to interact with an MDP by initialising in a start state s0 at time
point t = 0. From there, the agent decides upon an action a0, transitions to the next state
s1, and receives a reward r0. The elements of this transition are called the observation
of time step t: (st, at, rt, st+1). The observations are the data points forming the means
by which the agent learns to maximize the reward. The sequence of observations from a
certain time point t until a certain time point T is the trajectory of the agent:

τt:T =
(
st, at, rt, st+1, at+1, rt+1, . . . , sT−1, aT−1, rT−1, sT

)
.
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One important aspect of MDPs is the Markov property, which means that the prob-
ability to enter future states depends only on the present state and not on states visited
previously:

Pr(st+1|st, at, st−1, at−1, st−2, at−2, . . .) = Pr(st+1|st, at)
This allows to solve MDPs efficiently, because the optimal decision at the current time
point depends only on information regarding the current state. In the cooking example,
the state is the ingredients that are in the pot and their condition. We only need to know
this much to determine the next step. The condition of the pasta at previous time points
and which actions were performed to arrive at the current state are not important to
finish the cooking.

Two major types of tasks are distinguished: episodic and continuous MDPs. Episodic
MDPs consist of several episodes or runs. Each episode starts in an initial state and ends
if a terminal condition is fulfilled. In many cases, a set SG ⊂ S of goals or terminal states
is defined. An episode ends if the agent enters one of them. It is also possible to define
a time limit at which an episode ends. The agent can either begin a new episode in a
fixed state that is the same for each episode or according to a probability distribution over
states. Continuous MDPs have no terminal condition. In that case, the number of steps
goes to infinity. Control problems are often formulated as continuous tasks, for example,
in the case of a pendulum swing-up task where an inverted pendulum should the balanced
at its top position. Episodic tasks are often used for decision problems, for example, to
find the optimal path to a goal state.

Decision-Tree and Grid-World MDPs

Fig. 1.1 shows examples of two MDP types that are used to evaluate the IGE. Both are
episodic and have discrete state and action spaces. The first comprises decision-tree MDPs
that are represented by directed rooted trees. Vertices are states that are identified by
an index: S = {s1, s2, . . .}. Directed edges represent the actions an agent can choose in a
given state and the next state after a transition. The agent starts each episode in the root
state s1. The leaves of the tree are goal states in which the episode ends: SG = {g1, g2, g3}.
The reward function is either defined over the state-action pairs as shown in Fig. 1.1 (a)
or by the state the agent transitions into. Transitions in decision tree MDPs can be
deterministic or stochastic. In the deterministic case, the agent transitions to the state
as shown by the directed edge in the graph. For stochastic transitions, the probability
of each possible successor state is given. The goal of the agent is to make decisions that
lead to a high reward sum.

The second MDP type are grid worlds. Their states are arranged in a two-dimensional
array. Each patch in Fig. 1.1 (b) represents a state. States are identified by an index with
S = {s1, . . . , sM}. Actions are the four possible movement directions of the agent (A =
{north, east, south,west}). Depending on the chosen direction, the agent can transition
between neighboring states. Black squares represent walls that cannot be entered. If the
agent tries to move into a wall its state does not change (st = st+1).

An episode starts in a start state and ends if one of several possible goal states are
reached. Different reward schemes are possible. The most common is to give positive
rewards for reaching a goal state. Other transitions either give no reward or a small
negative reward. The goal of the agent is to find the shortest path to a goal state. Grid
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a) Decision-Tree MDP b) Grid-World MDP

Figure 1.1: Examples for a decision-tree MDP and a grid-world MDP. In decision-tree
MDPs, states are represented as vertices and possible actions and transitions as directed
edges. The reward for a transition is shown above the edge. The black square for the action
in state s6 represents a stochastic transition that ends with Pr = 0.7 in g1 and with Pr =
0.3 in g2. The start state is s1. Goal states are colored and have a black line in their upper
right corners. In grid-world MDPs, states are represented as white patches. The action
can reach neighboring patches with four actions (A = {north, east, south,west}). The
start state is indicated with grey, while goal states are colored. Black squares represent
walls that the agent cannot access.

worlds can be deterministic or stochastic. In deterministic cases, actions lead to a state
in the desired direction. In the stochastic case, a probability η is given with which the
agent moves in a random direction instead.

Policies and Objectives

The behavior of an agent in an MDP is defined by its policy π. A policy can be either a
deterministic mapping from a state to an action: a = π(s), or a probability distribution
over the actions per state: π(a; s) = Pr(a|s). Starting in state s0, the agent chooses an
action according to its policy a0 ∼ π(a; s0), receives a reward r0, and transitions to the
next state s1. The same procedure is repeated in the next state resulting in a trajectory
τ .

The goal or objective of an agent is to find a policy that maximizes the rewards that
the agent can gather during its trajectory. Two major types of objectives exist. The first
is the maximization of the expected discounted future reward sum:

E

[
∞∑
t=0

γtrt

]
= E[r0 + γr1 + γ2r2 + γ3r3 + · · · ] , (1.1)

where γ ∈ [0, 1) is a discount factor. The objective is formulated as an expectation because
trajectories are stochastic. Trajectories are a random variable because the transition or
the reward function can be probabilistic, or the policy itself may be probabilistic. The sum
of the expected discounted future reward is mainly used as objective for episodic tasks.
The effect of the discount factor γ is to reduce the weight of temporally distant rewards
in the sum. The chapter about the IGE discusses this point in more detail (Section 2.2).
To use this objective in continuous MDPs the discount factor has to be γ < 1 so that the
reward sum is bounded and does not diverge if t goes to infinity.



1.1 Reinforcement Learning 9

The second common objective is the maximization of the expected average reward:

lim
T→∞

E

[
1

T

T−1∑
t=0

rt

]
. (1.2)

This objective is mainly used in the case of continuous tasks, because it has a stronger
bound on the sum as t goes to infinity. Which objective is used depends on the type of task.
Moreover, different algorithms exist for each objective. Although the IGE is primarily
an algorithm to optimize the discounted objective, it can also be used to optimize the
average reward under specific conditions, as discussed in Chapter 5.

1.1.2 Overview over Reinforcement Learning Algorithms

The following section gives a general overview over reinforcement learning algorithms
and their classification. The goal of all algorithms is to learn the policy that maximizes
the reward sum in an MDP, as defined by the objective. Algorithms can be categorized
according to the information they use to optimize the policy and how they represent the
policy (Table 1.1).

One major classification is the distinction between model-free and model-based ap-
proaches. Model-free approaches learn the policy based on data from observed trajectories
of the agent interacting with the MDP. Model-based methods use a model of the MDP,
where the model describes the transition probability and the reward function of the MDP.
The model can be either given, or learned from observed trajectories.

Moreover, algorithms are differentiated into value-based and policy-based approaches.
Value-based algorithms learn a value function to optimize the expected reward sum. The
value for a state represents the expected future reward sum if the agent follows a certain
policy starting from that state. This information is used to find the policy that maximizes
the value. The earliest approaches of this class were Dynamic Programming algorithms,
such as Policy and Value iteration (Bellman 1957). These are model-based approaches in
which the model of the MDP is given.

Policy-based algorithms do not learn a value function to optimize the policy. Instead
the policy is optimized directly. For this purpose, the policy π(a; s, θ) is usually parame-
terized by a vector of parameters θ ∈ Rn. The parameters determine the probabilities over

value-based policy-based

m
od

el

fr
ee

TD-Algorithms such as REINFORCE
Q-Learning or SARSA (Williams 1992)
(Sutton & Barto 1998) Natural Gradient

(Kakade 2001)

m
od

el

b
as

ed Dynamic Programming PILCO
(Bellman 1957) (Deisenroth & Rasmussen 2011)

Table 1.1: Classification of reinforcement learning methods with example algorithms.



10 Fundamentals and Related Work

the actions for each state. Many methods in this class use a gradient ascent approach by
computing the gradient of the policy parameters with respect to the objective (Deisenroth,
Neumann, & Peters 2011). Often, the average reward objective is used (Eq. 1.2). The
gradient determines how the parameters should be changed to improve the objective. It
can be computed for a point in the parameter space by sampling trajectories with policies
based on parameters around it. Parameters are then adapted according to the gradient
and the process is repeated. The process is described in more detail in Section 3.4.1 that
uses such an approach.

The idea behind the IGE, to have modules that are independent reinforcement learners,
each with its own discount factor, is very general. It is therefore compatible with any of the
introduced classes of algorithms. For the purpose of this thesis, the IGE was implemented
and analyzed in terms of a model-free, value-based approach. Model-free approaches can
be applied to any problem, even if the model is not available. For a model-based a model
has to be given or learned, which was avoided in order to analyze properties of the IGE
without the additional complexity of model learning. The IGE uses a value-based instead
of a policy-based approach, because the values can be used to decode more information
about the learned policies (Section 2.3). This information proved helpful to adapt the IGE
to different contexts and to optimize average reward. The basic concepts of model-free,
value-based algorithms and Q-learning, which form the basis of the IGE, are introduced
in the next section.

1.1.3 Model-Free, Value-Based Algorithms

The central element of value-based algorithms is the value function. It was first introduced
to solve MDPs with the model-based dynamic programming approach (Bellman 1957).
Nonetheless, it is also the central element of many model-free algorithms. In all these
methods, values are associated with states and actions. Values describe predictions about
the future outcome of being in these states or taking these actions in terms of the agent’s
objective. Based on this notion, an agent can decide to go to states and to take actions
that maximize the objective. This section concentrates on the objective of maximizing
the discounted future reward sum (Eq. 1.1). Value-based methods for the average-reward
objective (Eq. 1.2) are discussed in Chapter 5. The next section introduces the concept of
the value function and how it is connected to identifying the optimal policy for an MDP.
Afterward, temporal difference (TD) algorithms and Q-learning that attempt to learn the
value function are introduced.

Value Functions and Policies

The value function can be formulated as a state-value function V (s) or an action-value
function Q(s, a), called a Q-function.

Definition 2. The value of a state is the expected discounted reward sum starting at
state s and using policy π in successive states:

V π(st) = Eπ

[
∞∑
k=0

γkrt+k

]
, (1.3)
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where γ ∈ [0, 1) is the discount factor. The value of a state-action pair, called a Q-value,
is the expected discounted reward sum starting from s using action a and following policy
π:

Qπ(st, at) = Eπ

[
∞∑
k=0

γkrt+k

]
.

Bellman showed that the value function can be recursively defined in terms of the
immediate reward and the value of the succeeding state:

V π(st) = Eπ

[
rt + γrt+1 + γ2rt+2 + . . .

]
= Eπ

[
rt + γV π(st+1)

]
=

∑
st+1∈S

T (st, at, st+1)

( ∑
at∈A

π(at; st)R(st, at, st+1) + γV (st+1)

)
,

where R(st, at, st+1) is the expected reward over the reward for one step. This so called
Bellman Equation can be also formulated for the Q-function:

Qπ(st, at) = Eπ

[
rt + γrt+1 + γ2rt+2 + . . .

]
= Eπ

[
rt + γQπ(st+1, π(st+1))

]
=

∑
st+1∈S

T (st, at, st+1)

(
R(st, at, st+1) + γ

∑
at+1∈A

π(at+1; st+1)Qπ(st+1, at+1)

)
.

Values depend on a policy and measure the expected discounted future reward that
the policy produces. The goal is to find the optimal policy π∗ that maximizes the value
function for each state:

∀s ∈ S, π : V π∗(s) ≥ V π(s) .

Bellman showed that the optimal value can be reached, if for each state, the action that
maximizes the immediate reward and the optimal discounted value of the successor state
is chosen:

V ∗(st) = max
at

∑
st+1∈S

T (st, at, st+1)

(
R(st, at) + γV ∗(st+1)

)
,

Q∗(st, at) =
∑
st+1∈S

T (st, at, st+1)

(
R(st, at, st+1) + γmax

at+1

Q∗(st+1, at+1)

)
.

If the optimal state-value function is given, the optimal deterministic policy can be de-
duced by:

π∗(st) = argmax
at

∑
st+1∈S

T (st, at, st+1)

(
R(st, at, st+1) + γV ∗(st+1)

)
.

The expression shows that the transition probability function T , and therefore a model
is still necessary to identify the optimal policy. This is not necessary for the optimal
Q-function where the optimal policy is given by:

π∗(st) = argmax
at

Q∗(st, at) .
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Figure 1.2: The general framework of TD agents. The agent is in state st given by the
environment. Based on its Q-function is selects its action at. The environment informs
the agent then about its next state st+1 and what reward rt it received for its action. This
observation is used to update the agents Q-function.

As a consequence, model-free methods generally use Q-functions instead of state-value
functions.

In summary, the value function represents the expected future discounted reward sum
that an agent will receive if it follows a certain policy. Given the optimal value function
the optimal policy for an MDP can be deduced. Value-based methods use this property
by learning the optimal value-function to find the optimal policy.

Q-learning

Q-learning is a temporal difference (TD) approach that constitutes the algorithmic basis
for the IGE framework (Fig. 1.2). The objective of TD methods (Sutton & Barto 1998)
is to estimate the value function for a policy π. These methods make use of the recur-
sive property of the value function, allowing them to perform online learning. In online
learning, the prediction of the value-function can be updated after each transition of the
agent. Q-learning aims to learn the value function for the optimal policy π∗. The next
section introduces the general idea behind TD methods before Q-learning is introduced.

TD learning predicts the Q-function for an agent with policy π. It starts with an
initial Q-function that can be arbitrarily initialized. The Q-function is updated after
each transition of the agent from state st with action at to state st+1. Qπ(st, at) is the
agent’s prediction of the sum of the expected reward E[rt] of this step and the expected
discounted sum over all future steps according to policy π: E

[
γQπ(st+1, at+1)

]
. After the

transition the agent observed the reward rt and the Q-value of the next state. Based on
this observation the TD error δt is computed:

δt = rt + γQπ(st+1, at+1)︸ ︷︷ ︸
observation

−Qπ(st, at)︸ ︷︷ ︸
prediction

, (1.4)

which is the difference between the prediction and the observation. The next action at+1
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follows the policy of the agent. The difference between the prediction and observation
is employed to update the prediction using the Robbins-Monro approach for stochastic
approximation (Robbins & Monro 1951):

Qπ(st, at)← Qπ(st, at) + αδt ,

where the learning rate α ∈ [0, 1] defines how strong the update is. If α is not constant, but
decays over time in an appropriate way, the algorithm will converge to the true prediction
of Qπ.

Q-learning (Watkins 1989; Watkins & Dayan 1992) is based on the TD approach,
but instead of learning values for a policy π, its purpose is to learn the values for the
optimal policy π∗. It achieves this by updating the prediction after an observation with
the Q-value for the action that maximizes the value over the next state:

Q(st, at)← Q(st, at) + α

(
rt + γmax

at+1

Q(st+1, at+1)−Q(st, at)

)
. (1.5)

Because of the max operator, Q-learning is an off-policy algorithm. It learns the value
function of the optimal policy regardless of the policy that is used to produce the observa-
tions. The optimality of Q-learning, i.e. that it will converge to the optimal Q-function as
the number of time steps goes to infinity, is guaranteed under some assumptions (Watkins
& Dayan 1992; Tsitsiklis 1994). First, the environment has to be sufficiently explored, i.e.
each state-action pair should be visited an infinite amount of time. Second, the learning
rate α must decay to zero according to some conditions.

The Q-function is learned by interacting with the environment and by exploring differ-
ent strategies, i.e. selecting different actions to explore their outcomes. Using a random
policy would guarantee that the agent explores all state-action combinations, but this
would take a long time because the exploration would be unfocused. For example, in
the grid-world MDP of Fig. 1.1, the agent might once find a path to the goal state, but
afterward it might explore again randomly, even though it would make more sense to
follow this path and to explore different actions from it that might lead to a shorter path.
Furthermore, the performance of the agent would be poor during the learning process
with a random exploration. This is problematic in situations where the agent should not
only learn, but already gather rewards during the learning.

As a result, the agent has to compensate between exploitation and exploration. Ex-
ploitation means that the agent uses the best policy it has learned until that point. This
policy is defined by:

π(s) = argmax
a

Q(s, a) ,

and is called the greedy policy. In contrast, during exploration the agent diverges from
its greedy policy to try different actions. When to exploit and when to explore is handled
by the action selection strategy. The action selection defines a probability function over
actions depending upon their Q-values. One of the major approaches is the ε-greedy action
selection. With probability 1− ε, the agent selects the best action and with probability ε
a random action. The policy is defined by:

Pr(a|s) =

{
(1− ε) + ε

|A| | if a = argmaxuQ(s, u)
ε
|A| | otherwise .
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The agent performs a random exploration with ε = 1. With ε = 0 the agent uses the
greedy policy defined by the value function without any exploration.

Another approach that is often used is the softmax action selection. The softmax
action selection prefers actions with higher Q-values:

Pr(a|s) =
exp

(
β ·Q(s, a)

)∑
u exp

(
β ·Q(s, u)

) ,
where the strength of the preference can be controlled by the parameter β ∈ R+. The
distribution is uniform for β = 0, resulting in random exploration. For β →∞, the policy
becomes greedy.

Algorithm 1.1 shows the Q-learning algorithm for episodic MDPs with discrete states
and actions. The Q-function for such MDPs can be represented by a table that has an
entry that can be looked up for each state-action pair. If the state space is continuous,
a function approximator such as a neural network would be needed to represent the Q-
function. Because of the episodic structure of the MDP, it is also observed if a transition
ends in a terminal (isTerminal = true). In this case, the final state has no successor.
Therefore, the update of the last transition ignores the Q-value of the last state. Al-
gorithms of all later chapters have the same structure, but the differentiation between
terminal and non-terminal states is excluded so as to simplify the code of the algorithms.

In summary, Q-learning is a model-free, value-based method that is based on the
TD approach. It learns the optimal Q-function, which estimates the expected future
discounted reward sum for the optimal policy. Based on the Q-values, the agent can
choose the action that maximizes the reward sum. This allows an agent to learn the
optimal policy for multi-step decision problems.

Algorithm 1.1: Q-learning for discrete, episodic MDPs
Input:

Learning rate: α ∈ [0, 1]

Discount factor: γ ∈ [0, 1)

initialize Q(s, a) arbitrarily
repeat (for each episode)

initialize state s
repeat (for each step in episode)

a← choose an action for s derived from Qγ̃(s, a) (e.g. ε-greedy)
r, s′, isTerminal← take action a, observe outcome
if isTerminal = false then

Q(s, a)← Q(s, a) + α
(
r + γmaxa′ Q(s′, a′)−Q(s, a)

)
else

Q(s, a)← Q(s, a) + α (r −Q(s, a))

end
s← s′

until s is terminal-state
until termination
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1.2 Transfer Learning

In classical reinforcement learning, the agent learns the optimal policy to solve a specific
MDP for a specific objective. The advantage of the IGE compared to classical methods
is its adaptive capacity, in cases in which the MDP or the objective changes. It learns a
set of behaviors for an environment that allows it to switch between them, if there are
changes in the task. The field of transfer learning comprises similar approaches.

Transfer learning methods transfer knowledge from source tasks to target tasks (Tay-
lor & Stone 2009; Lazaric 2012). The goal is to improve learning performance on the
target task. This enhancement can improve the learning speed, resulting in a higher ini-
tial performance, or a higher final performance after learning. The type of transferred
knowledge can be of different forms. For example, sampled data from source tasks, such
as trajectories, can be used (Lazaric, Restelli, & Bonarini 2008). Another possibility is
the representations used to describe a task or features thereof (Ferguson & Mahadevan
2006). It is also possible to transfer values, partial policies, or complete policies between
tasks.

Two major settings for transfer methods can be distinguished. In the first setting,
knowledge is transferred between tasks that have the same state and action space (S×A).
In the second setting, the source and target tasks have different state and action spaces.
For the second setting, a mapping between the state and action spaces of the task is
usually necessary and must be either given or learned. Moreover, for both settings the
existence of one or multiple source tasks can be distinguished. In the case of several
sources, not only the transfer itself has to be regarded, but also the choice of the sources
from which knowledge should be transferred.

The IGE is part of the first setting, in which the source and target task share a
common state and action space. Policies of the IGE can be continuously learned over
several source tasks in a lifelong learning approach. The next section reviews approaches
that also transfer knowledge between tasks with a common state and action space. The
review concentrates on approaches that share policies or partial policies between tasks,
which is similar to the strategy of the IGE.

1.2.1 Transfer of Policies

Several approaches exist that transfer full policies from source to target tasks. One of the
simplest methods is to use the learned policy from a target task as an initial policy in the
source task. However, one problem is that this simple method often fails if the reward
or transition function between both tasks is not similar enough. A theoretical analysis
of the bound on the performance of a transferred policy can be found in (Phillips 2006),
which is based on metrics introduced by Ferns, Panangaden, & Precup (2004).

The approach by Bernstein (1999) constructs an average policy over all optimal policies
of several source tasks. The agent can use this average policy similarly to an action by
using it for a specified number of steps.

Other approaches build a policy library and use a specific policy from a source task,
instead of an average over them. The library by Mehta et al. (2008) uses a subset of the
optimal policies from source tasks. Given a new target task one of the policies is selected
as the initial policy for the task. The tasks differ only in their reward functions, which
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are based on feature vectors. Instead of a reward that is given per transition, a feature
vector is given. This feature-vector function is the same for all tasks. Each task has
a reward-weight vector holding a weight for each feature. The final reward is the sum
over the weighted features. This approach is value-based and the value function learns
the expected future reward feature vector for the optimal policy per task. Given a new
task, the performance of policies in the library can be evaluated by weighting their value
functions based on the task’s reward weights. This allows to identify the policy with the
best performance and to use it as the initial policy. After the policy is adapted to the
target tasks, it is added to the library if its performance differs strongly enough from the
other policies.

The approach by Fernández & Veloso (2006) and Fernández, García, & Veloso (2010)
also builds a policy library from previously solved tasks. For each episode, one of the
polices from the library is used to bias exploration of the agent in the new task, using
its actions with some probability at each step. The policy that is used is stochastically
selected at the beginning of each episode. The selection is based upon performance in
the new task, computed by an off-policy approach. Also in this approach, the new policy
from the new task is added to the policy library if its performance is sufficiently better
than those of existing policies.

Mahmud et al. (2013) use a clustering approach to select source tasks from policies.
Tasks are clustered according to how well their optimal policies perform in one another.
Tasks for which optimal policies perform similarly in one another are clustered together.
For each cluster, the policy that performed best is then used for the set of policies that
guides the search in a new task.

The IGE learns a set of policies, as in most of the approaches that transfer complete
policies. The difference between the IGE and existing approaches is that the existing ap-
proaches learn a set of policies that represent optimal solutions for previously encountered
tasks. In contrast, the IGE learns different policies for the same environment, but which
represent different solutions for a trade-off between reward amount and time to reach the
reward. The agent can then select the most appropriate solution, depending on changes
in the environment or its objective. The IGE learns a set of policies that may be helpful
in future tasks, rather than a set of policies that have been successful in past tasks.

1.2.2 Transfer of Skills and Options

Another approach to transfer knowledge is to de-construct tasks into sub-tasks, and to
transfer the solutions for such sub-tasks. Consider, for example, a grid world with two
rooms (A and B) that are separated by a wall in which there is a doorway (Fig. 1.3).
The goal is to find a path from a start state in room A to a goal state in room B. Tasks
differ in the location of the goal state in room B. The task can be de-constructed into
sub-tasks. The first sub-task is to reach the doorway from the start state to enter room
B. The second is to reach the goal-state in room B. The sub-task of reaching room B is
common to all tasks in this environment and can be transferred between them to increase
learning speed.

The architecture by Singh (1992) used a separate module for each possible sub-task.
As with the IGE, each module is a Q-learning agent learning its own value function. Each
module has an individual reward function that defines the sub-goal, for example to reach
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a) Source Task b) Target Task

Figure 1.3: Path-finding problem with two tasks. The goal is to find the shortest path
from the start state s0 to the goal state. Both tasks have the same environment consisting
of two rooms that are connected by a doorway. The agent starts in room A and has to
find the shortest path to the goal state in room B. The position of the goal state differs
between the source and target task. Nonetheless, the agent has to find in both tasks first
the optimal path to enter room B through the doorway which could be used as a skill
that can be transferred from the source to the target task.

the doorway to room B. Because the sub-modules use off-policy Q-learning, they can learn
their value functions in parallel from the same observations. The agent learns then how
to sequentially combine the sub-tasks to solve the overall task.

The concept of solving a task by decomposing it into sub-tasks was further developed
in the options framework (Sutton, Precup, & Singh 1999). Options o ∈ O are temporally
abstract actions representing a chain of actions that are combined to create a macro-action
or a skill. Each option is defined by a triplet with:

(Io, πo, βo) ,

where Io ⊆ S is a set of initial states in which the option can be started. πo = Pr(a|s)
is the intra-option policy that defines the actions of the agent while the option is active.
βo : S 7→ [0, 1] is a termination function that defines when an option finishes, based on
the state of the agent or the duration the option was used.

Given a set of options, the agent can learn a policy π(o|s) over options. In state s,
the agent selects one of the possible options, i.e. an option with s ∈ Io. From this point,
the policy πo of the selected option is used until its termination condition βo(st+k) is
fulfilled. The problem of choosing the optimal option in a state is formalized by a semi-
MDP (SMDP) in which actions can take different amounts of time (Puterman 1994).
An optimal state-observation value function can be learned with a similar approach as
Q-learning:

Q(st, o)← Q(st, ot) + α

(
Rk + γk max

ot+k
Q(st+k, ot+k)−Q(st, ot)

)
,

where k is the number of steps that elapsed between st and its successor after option ot
terminated. Rk =

∑k−1
i=0 γ

krt+i is the discounted reward sum during this time.
Options learned in source tasks can then be reused in target tasks (Perkins & Precup

1999). This is similar to the IGE, which also learns a set of skills that can be reused
after a task change. Several approaches have been proposed to identify and learn useful
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options for transfer learning. The following review distinguishes approaches based on
their methods to discover options.

Sub-Goal Options

One of the most studied approaches for option discovery is to identify sub-goals that may
be important, i.e. states or state regions in an environment. Sub-goals represent states
that should be reached to solve the overall problem, such as a doorway between two rooms.
For each sub-goal, an option is created with a policy that leads the agent to the associated
states. The policy can be learned by having for each option a Q-function, similar to the
modular architecture of the IGE. The values of an option are learned based on a pseudo-
reward function that gives positive rewards if the sub-goal’s states are reached.

Different approaches exist with respect to the questions of what constitutes a good sub-
goal and how it can be identified. One of the salient concepts is the notion of bottleneck
states that an agent tends to visit frequently on successful trajectories. In the room
example, this would be the doorway between the two rooms that must be transited in
any successful trajectory. One simple identification criterion is to measure the visiting
frequency of states during the learning in a source task and to select states with a high
frequency as sub-goals. The frequency can either be collected for a single task (Digney
1998) or determined over several subtasks (Stolle & Precup 2002). McGovern & Barto
(2001) use the concept of diverse density to identify states that are frequently visited in
successful trajectories, i.e. trajectories that reach the overall goal state of the source task,
but not in unsuccessful ones. Asadi & Huber (2007) introduce a criterion based on a
relative local increase in the visitation frequency for a state to detect states that are local
attractors for trajectories.

Further approaches use methods from graph theory to identify bottlenecks and other
sub-goals. They are based on the state transition graph. The graph has a vertex for each
state and the edges represents possible transitions between them. The edges are usually
weighted based on the observed transition frequency. Graph partitioning algorithms are
then used to identify bottleneck states that have to be traversed to reach separate regions
in the graph, such as a doorway. The approach by Menache, Mannor, Shimkin, et al.
(2002) uses the Max-Flow/Min-Cut algorithm and operates on the whole state space.
The L-Cut approach by Şimşek, Wolfe, & Barto (2005) operates on a local level, using
graphs that include only recent state transition information. Şimşek & Barto (2009) use
the concept of betweenness to measure the centrality of a certain state, i.e. how important
it is so that different state regions can reach each other by the shortest paths. Clustering
approaches separate the state space into regions that represent stronger spacially con-
nected regions, such as the individual rooms in the room example (Mannor et al. 2004;
Lakshminarayanan et al. 2016). Options are then learned to reach neighboring state re-
gions from a region. The approach by Machado, Bellemare, & Bowling (2017) is based on
the concept of Proto-Value-Functions (Mahadevan 2005; Mahadevan & Maggioni 2007).
It identifies sub-goals based on the Laplacian matrix of a state transition graph that can
be used to describe diffusion models in graphs.

Concepts from the developmental psychology of humans have also been utilized to
to identify sub-goal states. Şimşek & Barto (2004) use the concept of relative novelty,
in which a state becomes the sub-goal, if it leads after being visited to states that are
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novel, i.e. that have not been visited often. The approach of Bonarini, Lazaric, & Restelli
(2006) identifies states that are difficult to reach during random exploration, but that can
reach other states easily. A different notion is the concept of saliency, in which states
that produce significant changes, such as a strong change in a light level when a light
switch is triggered, are used as sub-goals (Barto, Singh, & Chentanez 2004; Singh, Barto,
& Chentanez 2005). Digney (1998) used a similar method by creating sub-goals for states
that produced unexpected reward.

Other approaches identify sub-goals by analyzing the structure between state dimen-
sions in multi-dimensional MDPs. For example, in the room example, the state space
could comprise the local position in a room, and a different dimension could encode the
room number. State variables have a certain structure that describes how they depend on
each other, for example, being at the doorway in a room can change the room number in
the next step. The HexQ approach (Hengst 2002; Hengst 2003) identifies states in which
a lower dimension, for example the position in a room, changes an upper dimension, such
as the room number. Such access states to other higher states become sub-goals. Which
dimensions are upper or lower are determined by how often they change during a random
exploration. In the room example, the position in a room changes more than the room
number. VISA (Jonsson & Barto 2006) extends this approach by constructing a causal
Bayesian network that represents how state variables influence each other to detect access
states.

Sub-goals are also discovered by analyzing and de-constructing successful trajectories
(Konidaris & Barto 2009; Konidaris, Kuindersma, et al. 2010). Sub-goals are created
starting from the final goal state in a task. An option is created that reaches this state
from predecessor states that are used as the initiation set of the option. Then the initiation
states of this option become the sub-goal for the next option. This process is repeated
until options exists that cover the trajectory from the start to the goal state.

Reusage of Sub-Policies

Another class of algorithms identifies sub-policies, i.e. policies in sub-regions of the state
space, which can be reused for other tasks. The approach by Thrun & Schwartz (1995)
predates the options framework. It identifies policies for sub-regions that provide a high
performance over several tasks. Because the performance is optimal if individual sub-
policies are created for every task, this approach introduces a description length measure
that should be minimized. The description length quantifies the amount of memory
needed to encode the policy of the skills, i.e. how many states the policy covers. Having
individual skills for each task requires a lot of memory, whereas if skills are useful for
several tasks, these can be reused to decrease the required memory.

PolicyBlocks (Pickett & Barto 2002) is a similar method for the options framework.
Hawasly & Ramamoorthy (2013) identified continuous sub-regions in the state space that
had similar policies for successful trajectories in several tasks with help of a Gaussian
mixture model. Policies in these regions are then used as options. The approach by
Brunskill & Li (2014) identifies options from policies of previous tasks based on a measure
of sample efficiency, i.e. how many update steps the learning algorithm needs to find good
solutions with a certain performance bound.
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Parameterized Options and Composition Methods

Other approaches are more general and do not employ specific metrics that define what
constitutes a good sub-goal. Instead these approaches separate a task into a given number
of options so that the task can best be solved by them. The properties of an option, i.e. its
initiation set, policy, and termination condition, are learned based on its performance in
solving a task. The approach by Daniel et al. (2016) uses a probabilistic option framework
that represents all option components as parameterized distributions. Given the desired
number of options, the parameters of the distributions are optimized with an expectation
maximization approach. Bacon, Harb, & Precup (2017) use also options with parame-
terized policies and termination conditions. A policy gradient approach is used to learn
parameters of a given number of options so that the given task can be solved. Mankowitz,
Mann, & Mannor (2016) use a similar approach to learn options that are responsible for
separate regions in the state space.

Options can also be created by combining existing options or basic actions together.
The following methods achieve this by using option models that define the outcome of an
option in terms of expected reward and the expected state. Based on this information, the
approaches can sequentially combine options in the best way to solve a task. This allows
the identification of new high-level options as a combination of several low-level options.
As for previous methods, options are created that help to solve certain tasks. Silver &
Ciosek (2012) introduce such an approach for discrete state spaces. Sorg & Singh (2010)
use a linear representation of options and models based on state features that can operate
in continuous states spaces. The approach of Yao et al. (2014) learns reward-independent
option-models using linear function approximation. This allows the model to evaluate
options under different reward models, which could differ between tasks.

Conclusion

Options represent reusable skills that can be combined to solve tasks and that can be
shared between tasks. The IGE shares features with many of the reviewed approaches.
Options are usually represented as modules that have their own policies, like the modules
of the IGE. Many approaches that identify sub-goals also hold a separate value functions
that learn to reach its sub-goal. In contrast, the IGE does not de-construct a task into
sequential sub-tasks. Instead the policies learned by different modules represent different
solutions to the whole task in terms of trade-offs for reward amount and timing. Moreover,
most existing approaches discover options based on the structure of the state space, for
instance, by identifying bottlenecks, or they analyze which parts of previous optimal poli-
cies could be reused. The IGE discovers reuseable policies based on different discountings
of reward, something that has not been explored in the existing literature.

1.3 The Horde Architecture

Although the idea of a modular framework with different discounting factors has not been
explored for transfer learning, it has already been introduced by the Horde architecture
(Sutton, Modayil, et al. 2011). The goal of the architecture is to allow a robot to perform
nexting, which is a psychological concept describing the ability of humans and animals
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Figure 1.4: The Horde architecture consists of several control and prediction demons.
Each demon has its own state-dependent discount-factor function γ(s) ∈ [0, 1] and pseudo-
reward function R(s) ∈ R. Each prediction demon learns its Q-values for the policy of
a certain control demon c, for example, to predict in how many steps the agent would
bump into a wall using this policy.

to continually predict what will happen next in the near future. Horde consists of many
independent modules called demons (Fig. 1.4). Each demon is an approximate value
function with its own policy and pseudo-reward function. They can learn in parallel to
predict different sensory events for a robot that interacts with its environment. Such
events include, for example, whether the robot will bump into a wall, or the change of
the light intensity around it. In extensions of the architecture, demons also have different
discount factors to predict such sensory events on different time scales (White, Modayil,
& Sutton 2012; Modayil, White, & Sutton 2014).

The Horde architecture distinguishes between control and prediction demons. Control
demons learn policies that the robot should follow, for example, to seek some light source.
Prediction demons predict outcomes of the policies that their associated control demons
learn, for various sensory channels and events. Prediction demons have pseudo-reward
functions that encode the measurement that should be predicted. For example, reward
could be coupled to light intensity measured by a light sensor. The value function of
the prediction demon would then learn the expected future discounted sum over this
measurement, i.e. how much light can be expected if a certain policy is followed. The
prediction is performed over different time scales by having demons with different discount
factors. Smaller γ’s would only predict the light intensity in the near future, whereas larger
γ’s would predict the light intensity further into the future.
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Additionally, prediction demons can also have state-dependent discount factors γ(s).
These can be used to detect events and how far away they are. For example, the discount
factor could be set to γ = 1 as long as the robot does not touch a wall, but after bumping
into one it is set to γ = 0. If the pseudo-reward function gives a reward of 1 for every
step, then the demon predicts in how many steps the robot will bump into a wall.

The main contribution of the work has been to show that a robot can learn thousands of
such demons in real time with little computational effort. Value functions were represented
by linear function approximators based on tile codings. As learning algorithm was a TD(λ)
approach for function approximators used (Maei & Sutton 2010).

Similar to Horde, the IGE also has a modular architecture with value functions based
on different discount parameters. The Horde architecture expands the IGE in some re-
spects, such as having state-dependent discount factors. Nonetheless, the goal of the IGE
is different from that of Horde. The goal of Horde is to predict future outcomes, not to
control a robot or to select meaningful behavior. In contrast, the IGE was developed and
analyzed with the intent of optimizing a reward function and learn behaviors that help
the agent to adapt to different situations.

1.4 Inspiration from Neuroscience

Although the IGE uses an idea similar to the Horde architecture, its original inspiration
comes from a hypothesis about decision-making and learning processes in the human
brain. The study of decision-making and learning in humans and animals is closely linked
with the field of reinforcement learning. Theories and ideas from both fields inspired
each other (Sutton & Barto 1998; Niv 2009). The psychological theories of Pavlovian
conditioning (Pavlov 1927) and instrumental conditioning (Thorndike 1911; Skinner 1935)
formulated how animals predict events, including rewarding stimuli and how they select
actions to maximize reward. Reinforcement learning provides an engineering approach to
the same questions by asking how long-term future reward can be predicted and optimized.
Connections between both fields span several areas.

For example, the Rescorla-Wagner model (Rescorla, Wagner, et al. 1972) and its exten-
sion, the temporal difference model (Sutton & Barto 1990) describe formally how animals
and humans could predict stimuli or reward from preceding stimuli as described by Pavlo-
vian conditioning. The models are rooted in the concept of the TD error (Eq. 1.4) and
the value function as used in model-free reinforcement learning. Model-based reinforce-
ment learning mechanisms are connected to the concept of cognitive maps (Tolman 1948).
Cognitive maps are learned representations of the environment used to plan the best be-
havior to achieve a certain goal. The distinction between model-free and model-based
processes is also used to differentiate between habitual and goal-oriented behaviors (Daw,
Niv, & Dayan 2005). Habitual behavior is automatically triggered by specific stimuli. It
is explained by a value function that provides a value that was learned over many tri-
als for each action. Being in a certain state, animals are simply using the action with
the highest value; thus, the action is triggered by the current state in a habitual sense.
Goal-oriented behavior is more flexible and depends on the goal that an animal wants to
achieve. Model-based processes have this property, using their environmental model to
identify the best strategy to reach a goal.



1.4 Inspiration from Neuroscience 23

Reinforcement learning mechanisms are not only linked to psychological models of
decision-making and learning. In certain cases, they also inspire theories about brain
processes and functions connected to decision-making (Doya 1999). The next section
introduces evidence for model-free processes in the brain, which comprise a class of algo-
rithms to which the IGE belongs. This is followed by a description of the brain research
that inspired the IGE and an existing model in the field of human decision-making that
is similar to it.

1.4.1 Model-Free Reinforcement Learning in the Brain

Model-free, value-based reinforcement learning mechanisms have been linked to brain
processes involved in learning behavior. Neural correlates have been identified for two
components of these processes: TD error computations and the existence of value func-
tions.

The evidence for TD error computations in the brain comes from findings that activity
of dopamine neurons in the substantia nigra (SN) and the ventral tegmental area (VTA)
follow TD error characteristics (Schultz, Dayan, & Montague 1997). These neurons in-
crease activity in response to unexpected rewards and show a reduction in activity at
time points when rewards are expected, but are not received. Furthermore, fMRI stud-
ies show that activity in the projection areas of these neurons in the striatum and the
frontal cortex is also correlated with reward prediction error computations (Pagnoni et al.
2002; Pessiglione et al. 2006). These neurons release the neurotransmitter dopamine when
activated. Dopamine is therefore regarded as a TD error-learning signal that reinforces
actions or states experienced prior to its release. Experiments that stimulate dopamine
neurons using intracranial methods such as optogenetics, support this hypothesis. Rats
prefer a lever that stimulates dopamine neurons over one that does not (Adamantidis et al.
2011) and they prefer locations where dopamine responses are elicited (Tsai et al. 2009).
Moreover, human fMRI studies show that reward prediction error-related activity can be
measured in participants that learn a task in contrast to non-learning participants (Schön-
berg et al. 2007). That dopamine is important for learning is also supported by findings
that it modulates plasticity in the striatum (Reynolds & Wickens 2002). In summary,
these findings suggest that dopamine neurons in the SN and VTA encode the TD error,
which is projected into the striatum and the prefrontal cortex, via the neurotransmitter
dopamine.

Another component of model-free, value-based algorithms is their use of a value func-
tion. Correlations between the firing pattern of striatal neurons and values of TD models
have been identified in electrophysiological experiments in monkeys and rats (Samejima
et al. 2005; Ito & Doya 2009). Animals performed decision-learning tasks and their be-
havioral choices were modeled with TD algorithms to compute the value function that
animals seem to use. Electrical recordings of neurons showed a correlation between their
activity and values computed by TD algorithms, providing evidence that animals may
encode value functions in the striatum. This is further supported by human fMRI experi-
ments, which also found a correlation of activity in the striatum and the prefrontal cortex
with values based on TD computations (Kable & Glimcher 2007; Gläscher et al. 2010). In
conclusion, the evidence for a neural representation of values and TD error supports the
theory that the brain uses model-free, value-based mechanisms similar to TD methods.
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1.4.2 Modular Discounting Structure in the Brain

Although the hypothesis for model-free, value-based brain processes has a strong exper-
imental foundation, many questions remain. These include how parameters such as the
learning rate α, or the temporal discount factor γ are controlled and what their neurobi-
ological substrates are (Doya 2002). Tanaka, Doya, et al. (2004), Tanaka, Schweighofer,
et al. (2007), and Schweighofer et al. (2008) investigated these questions in regard to the
discount factor. Results of their experiments suggest a modular structure in the striatum,
where each module learns values based on a different discount factor. Which modules
influence behavior seems to be controlled by the neurotransmitter serotonin.

In their fMRI experiments participants had to choose between long-delay, high-reward
versus short-delay, low-reward choices (Tanaka, Schweighofer, et al. 2007). Activity in the
striatum was correlated with values computed for each choice and for different discount
factors. The temporal discount factor γ defines how strongly the value of a choice gets
discounted if it is delayed. A small γ setting prefers short-delay, low-reward choices,
whereas a high γ prefers choices with a long-delays, but higher rewards. The experiment
demonstrated that the dorsal part of the striatum correlates to values learned with high
γ’s, whereas, more ventral parts correlate with small γ’s.

The experiments also showed that the serotonin level of participants influenced which
of the areas are stronger correlated during decision-making. In participants with low
serotonin levels, induced by a low tryptophan diet, a correlation between brain activity
and values could only be found for ventral areas, i.e. the areas connected to low discount
factors. Whereas, in participants with high serotonin levels, a correlation existed only
for dorsal areas linked to large discount factors. Schweighofer et al. (2008) showed that
serotonin level not only has an effect on brain activity, but also on the choice behavior of
participants. Those with low serotonin levels preferred short-term choices, showing that
they discounted future rewards more strongly, whereas, participants with higher serotonin
levels preferred long-term choices.

The foregoing research suggests the potential existence of sub-modules in the brain for
different γ settings, where each module learns its own value function. The IGE is based
on this hypothesis. It consists of several modules each learning a value function with a
different discount parameter. Similar to the effect of serotonin, one of the modules can
be selected to use its policy to define the behavior of the agent.

1.4.3 The Dependent γ-Ensemble

Kurth-Nelson & Redish (2009) proposed a cognitive model based on the finding about
the potential modular structure in the striatum. The model accounts for the discounting
behavior observed in humans in temporal decision-making tasks. In such tasks, several al-
ternatives are offered, among which a participant must choose, similar to the experiments
by Tanaka, Schweighofer, et al. (2007). Each choice c = (r, t) gives a certain reward r,
such as money that is given after a certain amount of time t. Human choice behavior can
be modeled using a discounted value approach (Frederick, Loewenstein, & O’Donoghue
2002). A value is computed for each choice based on a discount factor d(t) that involves
the time:

V (c) = d(t) · r ,
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and the choice with the highest value is selected. This is analogous to the value function
in reinforcement learning that also discounts future expected reward. The correct form
of the discount factor is sill an open question. One of the popular models is hyperbolic
discounting:

d(t)hyperbolic =
1

κt+ 1
, (1.6)

where κ ∈ R+ controls the strength of discounting. In contrast, the discounting used in
reinforcement learning, as used for the value function (Eq. 1.3), is exponential:

d(t)exponential = γt ,

with γ ∈ R+ as the temporal discount factor. The hyperbolic discounting model fits
often better the choice behavior observed in humans compared to exponential discounting
(Frederick, Loewenstein, & O’Donoghue 2002). This observation stands in contrast to the
hypothesis that the brain uses model-free, value-based reinforcement learning processes
which are based on exponential discounting for such decision making processes.

The multi-micro-agent TD model of Kurth-Nelson & Redish (2009) provides a possible
solution of this problem. It uses an ensemble of exponentially discounting reinforcement
learning modules to model hyperbolic discounting. In the context of this thesis, the
model is called the Dependent γ-Ensemble (DGE). The DGE’s capacity for hyperbolic
discounting is only part of the multi-micro-agent TD model that also has a state-belief
approach in which each module has its own belief about its current state.

The DGE is composed of several modules (Fig. 1.5). Each module learns a state-action
value function with an individual discount factor γ:

Qγ(st, at) = E

[
rt + γQγ(st+1, argmax

at+1

QE(st+1, at+1))

]
.

Figure 1.5: The Dependent γ-Ensemble framework.
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The Q-function is similar to the definition of Q-Learning (Eq. 1.5). In contrast to Q-
learning, it does not use the Q-value of the next state’s (st+1) action that maximize its
own value Qγ. Instead, it uses the action that optimizes the Q-value defined over the
ensemble of Q-functions QE. The ensemble’s Q-value is defined as the integral over the
Q-values of all modules:

QE(s, a) =

∫ 1

0

Qγ(s, a) dγ . (1.7)

Solving the integral yields the definition of the expected future reward sum maximized
by the DGE:

QE(s, a) =
∫ 1

0
Qγ(s, a) dγ

= E
[∫ 1

0
(r0 + γ1r1 + γ2r2 + · · ·+ γnrn) dγ

]
= E

[
r0 + 1

2
r1 + 1

3
r2 + · · ·+ 1

n+1
rn
]
.

This shows that the discount factor for each reward is:

d(t)DGE =
1

t+ 1
,

which is equal to the hyperbolic discounting factor with κ = 1 (Eq. 1.6).
Kurth-Nelson & Redish (2009) showed further that different discounting strategies are

possible by introducing a weight ω(γ) ∈ R for the Q-value of each module in the integral
over the ensemble:

QE(s, a) =

∫ 1

0

ω(γ) Qγ(s, a) dγ .

Extending this ideas shows that true hyperbolic discounting is possible with the weight:

ω(γ) =
1

κ
γ( 1

κ
−1)

where κ ∈ R+ is a free parameter and not restricted to κ = 1 as for Eq. 1.7. Using this
weight results in an ensemble Q-value that replicates hyperbolic discounting:

QE(s, a) =
∫ 1

0
1
κ
γ( 1

κ
−1)Qγ(s, a) dγ

= E
[∫ 1

0
1
κ
γ( 1

κ
−1) (r0 + γ1r1 + γ2r2 + · · ·+ γnrn) dγ

]
= E

[
r0 + 1

κ+1
r1 + 1

2κ+1
r2 + · · ·+ 1

nκ+1
rn
]
.

The DGE allows implementation of hyperbolic discounting based on an ensemble of
exponentially discounting modules. The model can explain decision-making behavior
observed in humans based on the hypothesis that the striatum has a modular structure
(Tanaka, Schweighofer, et al. 2007). The model explains how model-free, value-based
processes in the brain could give rise to the hyperbolic discounting observed in humans.
The model can also be used to show pre-commitment behavior (Kurth-Nelson & Redish
2010). Furthermore, a connection between average reward and hyperbolic discounting
makes it possible to maximize average reward under the condition that the tasks have a
structure similar to that of multi-armed bandits (Reinke, Uchibe, & Doya 2015).



1.5 Conclusion 27

1.5 Conclusion
The IGE is a reinforcement learning method to solve multi-step decision-making problems
where the problems are formalized as MDPs. The idea behind the IGE is very general, i.e.
to learn several policies based on independent modules, each representing a reinforcement
learner that optimizes the expected discounted reward sum with a different discount factor.
It can therefore be implemented by model-free or model-based algorithms, and value-based
or policy-based algorithms. The work in this thesis is based on Q-learning, which is a
model-free, value-based TD approach. It allows the IGE to be used in tasks for which no
model is given and to avoid the complication of a model-learning step. Furthermore, the
value function can be used to deduct further information about the learned policies, and
Q-learning’s off-policy ability allows the modules to learn in parallel.

The IGE is part of the field of transfer learning, which uses knowledge gained from
source tasks to improve learning in a target task. In contrast to existing methods, the IGE
is the first algorithm that uses different discounting schemes to identify policies applicable
to different task conditions or objectives.

Although the idea behind the IGE is new in the field of transfer learning, it was al-
ready introduced by Horde architecture. Horde uses different discounting modules purely
for predictions on different timescales, whereas, the IGE uses them to identify different
behaviors for the agent that help it to adapt to different situations.

The original inspiration for the IGE came from neuroscientific findings suggesting that
the brain has a modular structure with different discounting modules. These findings also
inspired a similar model, the DGE, which has been proposed as a model for the hyperbolic
discounting behavior of humans in inter-temporal decision-making tasks. Unlike the IGE,
modules of the DGE depend on each other. They can only learn a single behavior and
not several, as the modules of the IGE.





Chapter 2

The Independent γ-Ensemble

The Independent γ-Ensemble (IGE) is a modular reinforcement learning framework. Each
module has a state-action value function with a different discount factor γ. The values
are learned via Q-learning. The IGE has two properties making it a suitable framework
for adaptation to different task conditions and problems.

First, it learns different policies for a single environment, because of the different
discount factors for each module. The policies differ in their preferences for the amount of
reward and the time needed to gain rewards. This provides the agent with a set of policies
that it can use to adapt its behavior to different task conditions. The second property of
the IGE is its ability to decode information about the expected reward trajectory of its
policies. It can identify how much reward can be expected from a policy and how much
time is needed to obtain it. This allows the agent to select the most appropriate learned
policy under a certain task condition.

The next section introduces the IGE framework (Section 2.1), followed by sections
that discuss the two properties of the IGE (Sections 2.2 and 2.3). Two further sections
discuss how discount parameters for the modules should be chosen (Section 2.4), and the
effect of the IGE on the exploration behavior (Section 2.5).

2.1 The IGE Framework

The Independent γ-Ensemble (IGE) (Fig. 2.1) is composed of several independent γ-
modules. The modules are Q-functions with different discount factors γ ∈ (0, 1):

Qγ(st, at) = E
[
rt + γrt+1 + γ2rt+2 + · · ·

]
= E

[
rt + γmaxat+1 Qγ(st+1, at+1)

]
.

(2.1)

The state values are defined by:

Vγ(s) = max
a
Qγ(s, a) .

Each module has its independent policy, called a γ-policy, that is defined based on its
values:

πγ(a; s) ∼ Qγ(s, a) .

29
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Figure 2.1: The Independent γ-Ensemble framework.

Probabilities for actions depend on the used action selection strategy, such as softmax or
ε-greedy. The number of modules M and their discount parameters Γ = (γ1, . . . , γM) are
meta-parameters of the algorithm.

The values of each module are learned with a Q-learning approach (Algorithm 2.1).
After an observation of (st, at, rt, st+1) the values of all modules in Γ are updated by:

Qγ(st, at)← Qγ(st, at) + α

(
rt + γmax

at+1

Qγ(st+1, at+1)−Qγ(st, at)

)
with the learning rate α ∈ [0, 1]. Although modules might have different policies, all
modules can be updated by the same observations, because Q-learning is an off-policy
algorithm that does not depend on the policy that produced the observation. Given
enough exploration and a decaying learning rate α, γ-modules are guaranteed to converge
to their optimal policies because they are Q-learning processes (Tsitsiklis 1994; Watkins
& Dayan 1992).

The policy of the IGE agent is defined by the policy of one of its modules:

π(a|s) = πγ̃(a|s) .

The active module γ̃ is either selected at the beginning of an episode or at each step.
Which module is active and how the module selection works depends on the task that
should be accomplished. Different selection methods and their application scenarios are
discussed in later chapters.

2.2 Learning a Set of Policies
The independent modules of the IGE allow it to learn different policies, because the
optimal policy π∗γ of a module depends on its discount factor γ. Having a set of policies
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Algorithm 2.1: Independent γ-Ensemble
Input:

Learning rate: α ∈ [0, 1]

Sorted list of discount factors: Γ = (γ1, . . . , γm) with γi ∈ (0, 1)

initialize Qγ(s, a) to zero
repeat (for each episode)

initialize state s
repeat (for each step in episode)

// selection of the active module
γ̃ ← γ-module selection

a← choose an action for s according to πγ̃(a|s) (e.g. ε-greedy)
r, s′ ← take action a, observe outcome

// value update of all modules based on the observation
forall the γ ∈ Γ do

Qγ(s, a)← Qγ(s, a) + α (r + γmaxa′ Qγ(s
′, a′)−Qγ(s, a))

end
s← s′

until s is terminal-state
until termination

provides an agent with a behavioral repertoire for an environment to adapt to different
situations and contexts. This section analyzes which policies can be learned by an IGE,
and if a mapping from the discount factors to the type of policies exists. The policies that
the IGE learns are called γ-policies.

The important aspect of the policies and the way in which they are analyzed is by
the trajectories they produce. A trajectory τπ is the states, actions, and rewards that are
observed during a trial starting from state s0 and following policy π:

τπ =
(
(s0, a0, r0), (s1, a1, r1), . . . , (sT−1, aT−1, rT−1), sT

)
.

The trajectories of a policy depend on the structure of the MDP, i.e. its transition proba-
bilities and the reward function. The important property, that determines if the policies
that produce the trajectories can be learned by the IGE, is the trajectories rewards, be-
cause the general objective of each γ-module is to maximize them. In each episode a
policy can result in a different trajectory if the policy, the transitions, or the rewards in
an MDP are probabilistic. To analyze which policies are learnable the expected reward
per time step over all possible trajectories of a policy is used:

hπ(s0) =
(
E[r0],E[r1], . . . ,E[rT−1]

)
,

because it is the basis for calculating the Q-values (Eq. 2.1). For each state s in an MDP,
a set of potential expected reward trajectories H(s) exists for every possible policy π:
hπ(s) ∈ H(s).
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The value of a state s for policy π is the sum over the discounted expected reward
trajectory that the policy produces:

V π
γ (s) = Vγ

(
hπ(s)

)
= γ0E[r0] + γ1E[r1] + . . .+ γT−1E[rT−1] . (2.2)

The optimal policy for a module is the one that produces the trajectory that maximizes
the module’s value function for all states:

∀s ∈ S : π∗γ(s) = argmax
π

Vγ
(
hπ(s)

)
.

In conclusion, analyzing which policies are learned by an IGE is connected to the analysis
of the trajectories they produce.

The main questions in this section are, what reward trajectories an IGE learns, and
whether a mapping from discount factors to the type of trajectories they learn can be
defined. The next part analyzes these questions based purely on the theoretical set of
possible expected reward trajectories, independent of MDPs in which they would be
possible. Afterward, the relationship between the structure of MDPs and the reward
trajectories that are learned for them is discussed. The last part describes this relationship
in more detail for MDPs with several goal states which are the main application scenarios
for the IGE explored in this thesis.

2.2.1 Type of Learned Reward Trajectories

This section analyzes the expected reward trajectories that an IGE learns, independently
of the MDPs in which such trajectories could be possible. The analysis concentrates only
on the types of trajectories that would be learned and their mapping to certain discount
factors, given a theoretical set of expected reward trajectories H.

An expected reward trajectory is a solution for the IGE, if at least one γ ∈ [0, 1] exists
for which it has the maximum value:

∃γ : ∀h′ 6= h ∈ H : Vγ(h) > Vγ(h
′) . (2.3)

A simple observation from this formulation is that the set of trajectories that can be
learned by an IGE is based on their comparison with all possible trajectories. Thus, a
certain discount factor does not guarantee learning of trajectories with criteria on spe-
cific expected reward values, such as having a certain reward sum. Instead, it learns a
trajectory if it differs in a certain way from other trajectories in H.

The question becomes under what circumstances is a trajectory optimal for one module
but not for another. This depends on the influence of the discount factor on the value for
a trajectory, because the value defines whether it is learned by a module (Eq. 2.3). The
discount parameter γ defines how strongly the expected reward for each future time step
t is weighted in the sum of the value. Its influence can be represented as a weight ωt:

Vγ
(
hπ(s)

)
= ω0E[r0] + ω1E[r1] + ω2E[r2] + . . .+ ωT−1E[rT−1] , with ωt = γt .

For γ < 1 the weights diminish exponentially to 0 over the future steps t:

∀γ ∈ [0, 1) : lim
t→∞

γt = 0 .
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Figure 2.2: The discount parameter γ defines the weighting of the expected reward for
each future step in the value sum. Small γ’s reduce the weight for the expected reward
of distant time steps. Large γ’s do not reduce the weight of distant time steps as much.

The weights diminish faster to 0 the smaller γ is (Fig. 2.2). The result of the different
weighting for different γ’s is that large γ’s take distant expected rewards into account more
strongly. Thus, such modules maximize the long-term sum over the expected reward,
whereas, for values based on small γ’s, distant rewards have small weights and do not
influence the sum as much. Their modules optimize the sum over expected rewards on a
short-term scale.

A stronger criterion for the structure of the learnable set of expected reward trajec-
tories, i.e. the height of their expected rewards and their distribution of the rewards over
future time points, is difficult to formalize for MDPs in general. The value of a trajectory
(Eq. 2.2) includes all expected rewards of all future time steps. Therefore, any difference
in their height can influence whether one trajectory has a higher value than another.
Nonetheless, it is possible to define a set of dominated trajectories that are not learnable
by the IGE (Theorem 1).

Theorem 1. An expected reward trajectory ha dominates another trajectory hb (ha � hb)
if:

∀T ∈ N+ :
T−1∑
t=0

ra,t >

T−1∑
t=0

rb,t .

Dominated trajectories cannot be learned by an IGE.

For example, the trajectory ha = (0, 2, 0) is dominating hb = (0, 0, 1) (ha � hb),
because hb results in a smaller reward and needs more steps. Trajectory hb is therefore
not learned by the IGE (∀γ ∈ [0, 1] : Vγ(ha) > Vγ(hb)). Theorem 1 is only a sufficient
condition and not necessary. Not all non-dominated trajectories are necessarily solutions
for the IGE. For example, the two trajectories ha = (1, 0, 5) and hb = (0, 2, 0) do not
dominate each other, but hb is not a solution for the IGE (∀γ ∈ [0, 1] : Vγ(ha) > Vγ(hb)).

In summary, the IGE learns policies that maximize the expected reward trajectories
under different weightings of nearby and distant rewards. Strict restrictions on the form
of learnable trajectories are difficult to formalize for general MDPs. In general, small
discount factors learn trajectories that maximize short-term expected rewards, whereas
large discount factors maximize long-term expected rewards.
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2.2.2 Type of Learned Policies in General MDPs

The previous section discussed policies that an IGE learns in terms of their expected
reward trajectories. This part discusses the influence of the structure in MDPs, i.e. their
transition probabilities and rewards, on the set of possible trajectories that the IGE learns.

The policy that a module learns depends on the expected rewards that it produces
and their time points: hπ(s) = (E[r0],E[r1], . . . ,E[rn]). The expected reward for a time
step t depends on the expected reward for the states that can be reached by this time
point:

E [rt] =

∫
S

Pr(st|s, π)E[R(st, at)]dst ,

where E[R(st, at)] is the expected reward for action at in state st, and Pr(st|s, π) is the
probability of reaching state st at time point t if starting in state s and following policy
π. It is defined by:

Pr(st|s, π) =
t∏

k=1

Pr(sk|sk−1, ak−1) ,

where Pr(sk|sk−1, ak−1) is the transition probability function of the MDP. For simplicity,
a greedy policy is assumed with at = π(st). In summary, the expected reward trajectories
depend on the transition probability function and the reward function of an MDP. Both
are the factors that define which policies can be learned by the IGE.

Fig. 2.3 shows two MDPs that exemplify how certain transition and reward functions
allow the learning of different policies and what they represent. In both MDPs, two

MDP with difference in rewards per policy
(a) Example MDP (b) γ-Curve

MDP with difference in transition probabilities per policy
(a) Example MDP (b) γ-Curve

Figure 2.3: Two example MDPs that show how rewards and transition probabilities
result in policies that can be learned by different γ-Modules.
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policies are possible. Either the agent follows the upper route (πa) or the lower route
(πb).

The first MDP is deterministic. The upper route results in an expected reward tra-
jectory of hπa(s0) = (1, 0, 5), and the lower route in hπb(s0) = (0, 5, 0). The values of the
two policies for different discount factors for state s0 show that the IGE is learning both
policies (Fig. 2.3, b). Modules with 0 < γ < 0.28 learn πa, because the trajectory of
this policy has a higher immediate expected reward of r0 = 1, compared to r0 = 0 of πb.
For intermediate discount factors with 0.28 < γ < 0.72, policy πb is learned. The larger
discount factors give more weight to intermediate rewards of r1 = 5 for πb compared to
r1 = 0 of πa. For large γ’s with 0.72 < γ < 1, policy πa is again the solution because over
all time steps it has a higher expected reward sum. The policies that the IGE learns in
this MDP represent different solutions to the trade-off between the reward sum that can
be achieved in a certain number of steps and the amount of steps needed.

The second MDP shows how transition probabilities can induce the learning of different
policies by an IGE. In this MDP, only the last state transition gives a reward of 5, all
others give 0. The upper (πa) and lower route (πb) differ in their transition probabilities.
The upper route is stochastic and reaches the goal state in 30% of all trials with 2 steps and
in 70% of all trials with 4 steps. Its expected reward trajectory is hπa(s0) = (0, 1.5, 0, 3.5).
The lower route is deterministic. It needs 3 steps to reach the goal, resulting in a reward
trajectory of hπa(s0) = (0, 0, 5). Because hπa(s0) has a higher immediate expected reward
for t = 1, it is the solution for smaller discount factors with 0 < γ < 0.43. For larger
γ’s πb is the solution because of its higher intermediate expected reward at t = 2. The
policies that the IGE learns in this MDP represent different risk levels to reach the goal
state within the shortest number of steps. The expected number of steps of πa (Eπa [N ] =
0.3 · 2 + 0.7 · 4 = 3.4) is higher than that of πb (Eπb [N ] = 3), but it has the probability of
being shorter in 30% of the cases.

Both MDPs show that the IGE learns policies that represent different strategies. In
the first MDP, the different strategies represent solutions for the trade-off between reach-
ing a high reward sum and the number of steps needed. Smaller γ’s provide solutions
with fewer steps and larger γ’s with greater rewards. In the second MPD, different strate-
gies represent solutions for reaching the goal within the least number of steps that have
different risk levels. Smaller γ’s learn solutions that have a chance for using fewer steps,
but also with the risk of having more.

2.2.3 Type of Learned Policies in MDPs with several Goal States

The next part concentrates on the analysis of policies and their trajectories in a class
of MDPs that are used as the main application scenario for the IGE. These are episodic
MDPs with several goal states. Depending on the distance of goal states and rewards
that can be obtained for reaching them, the IGE learns policies to reach different goals.
The policies represent solutions to the trade-off between the amount of reward an agent
can gain and the number of steps required. The next part introduces an example of such
an MDP. Afterward, the types of trajectories that can be learned in such MDPs and the
relationship between γ and their learned trajectories is analyzed. The analysis is based
on deterministic, goal-only-reward MDPs which allow a stronger theoretical analysis.
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(a) Example MDP (b) Choices (c) γ-Curve

Figure 2.4: (a) A grid-world MDP with 6 goal states and one start state (s0). (b) Each
goal gives a different amount of reward and is a certain number of steps away from the
initial state. (c) The values for the optimal trajectories to reach each goal state show that
the IGE learns the policies to reach 4 of the goals.

Grid World Example

A grid-world example of an MDP with several goal states is shown in Fig. 2.4. It consists
of 5×5 states and has 6 goal states. The agent starts in state s0. It only receives a reward
if it enters one of the goal states. Each goal gives a different amount of reward and can
be reached with a certain minimal number of steps if the agent starts in s0 (Fig. 2.4, b).

The γ-Curve shows the values of all γ-modules for each optimal trajectory to a
goal state (Fig. 2.4, c). The maximum value shows which trajectory is optimal (h∗π∗ =
argmaxhπ Vγ(hπ)). The IGE learns the policies to reach 4 of the 6 goals (Fig. 2.5). Reach-
ing g4 and g5 are not in the set of learned solutions. Learned policies represent different
solutions for the trade-off between the amount of rewards and the number of steps that
are needed to achieve them. Modules with small γ’s learn policies to reach goal states
that are close to the start state, whereas modules with larger γ’s learn policies to reach
more distant goal states that provide greater rewards.

Deterministic, Goal-Only-Reward MDPs

The relationship between the discount factors and the trajectories they learn can be
further analyzed for the class of deterministic, goal-only-reward MDPs. The value formu-
lation for these MDPs can be simplified, because non-zero rewards are only given if a goal
state is reached. This allows to formalize stronger restrictions on the possible γ-policies.
First the MDPs are defined and the concept of a choice is introduced that is used to
describe the optimal trajectories in such MDPs.

Definition 3. A deterministic, goal-only-reward MDP is an episodic MDP with a deter-
ministic transition function:

T : S × A× S 7→ {0, 1} , and ∀st, at :
∑
st+1∈S

T (st, at, st+1) = 1 ,
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γ = 0.1 γ = 0.4 γ = 0.7 γ = 0.9

Figure 2.5: The γ-modules have different optimal Q-functions and therefore different
policies for MDPs with several goal states, such as for the example in Fig. 2.4. The Q-
values for each state and movement direction are shown as red coloration. The dots mark
the optimal actions per state.

and where non-zero rewards are only given for transitions into goal states:

∀st+1 /∈ SG : R(st, at, st+1) = 0,

where SG ⊂ S is the set of goal states.

The goal states in such MDPs represent choices between which the agent can choose.
Each choice describes the optimal trajectory to reach a certain goal state, i.e. the trajec-
tory with smallest number of steps.

Definition 4. A choice for a goal state g is a tupel (r, n) with the expected reward
r = E[R(g)] and the minimum number of steps n to reach g from the current state s. The
set of all possible choices C(s) holds a choice for each reachable goal-state from state s.
Goal states with the same reward r and number of steps n are combined into one choice.

Goal states with the same expected reward and steps are combined to simplify the
proofs that build upon the concept of choices. If a γ-module learns the optimal policy
to reach the goals of such a combined choice, it learns to go with equal probabilities to
each goal state because their values are equal. In each episode the agent might take a
different trajectory over states, but the expected reward trajectory h is the same. Because
the expected reward trajectory is the important element of the analysis for policies that
modules learn, the goal states can be combined into one choice without loss of generality.

In deterministic, goal-only-reward MDP’s the possible set of trajectories H(s) that
the IGE could learn starting in state s is given by its choices C(s). The set of choices
can be ordered (c1 < . . . < cK), based on their number of steps from the shortest to the
longest ni < ni+1. This also results in an ordering of their reward values: ri < ri+1.

The advantage of these types of MDPs is that the value formulation for the choices
can be simplified, making it possible to analyze in more detail which choices the IGE can
learn.

Theorem 2. The value of a choice c = (r, n) is given by:

Vγ(c) = γn−1r . (2.4)
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Proof. The value of a choice is the value for the optimal trajectory to the goal state:

Vγ(c) = E[r0 + γr1 + . . .+ γn−1rn−1] .

In deterministic, goal-only-reward MDPs the length of the trajectory is fixed to n and all
rewards before t = n − 1 are zero. Therefore, they can be excluded from the expression
resulting in Eq. 2.4.

The region of discount factors that would learn a certain choice can be defined (The-
orem 3). This definition is the basis for analyzing the set of choices that the IGE learns
and the mapping of the discount factors to the choices they learn.

Theorem 3. The γ-region for which a choice c is the outcome in a deterministic, goal-
only-reward MDP is defined by:

max
∀ci<c

γE(ci, c) < γ < min
∀cj>c

γE(c, cj) , (2.5)

where ci are all choices that are smaller, and cj are all choices that are larger than c.
γE(ca, cb) is the discount factor for which two choices (ca < cb) result in the same value
(VγE(ca) = VγE(cb)). It is defined by:

γE(ca, cb) =

(
ra
rb

) 1
nb−na

, (2.6)

where ca = (ra, na), and cb = (rb, nb). For discount factors 0 < γa < γE the values for
choice ca are larger than for cb. For γE < γb ≤ 1 the values of cb are larger.

Proof. First, Eq. 2.6 is proven before Eq. 2.5 is shown. Given two non-dominated choices
with ca < cb, it can be defined for which discount factor region one has the maximum
value. γE (Eq. 2.6) is the boundary between both regions for which both choices have the
same value:

VγE(ca) = VγE(cb) ⇔ γna−1
E ra = γnb−1

E rb ⇔ γnb−naE =
ra
rb
⇔ γE =

(
ra
rb

) 1
nb−na

,

showing Eq. 2.6. Following the same steps to determine the inequality between the two
values shows that ca is the outcome (Vγ(ca) > Vγ(cb)) for 0 < γa < γE. Whereas, for
γE < γb ≤ 1 the outcome (Vγ(ca) < Vγ(cb)) is cb.

This can be used to define the γ-region for which a choice is the outcome of γ-modules
(Eq. 2.5). A choice is the outcome for a γ-module if its value is the maximum over all
choices: argmaxc∈C Vγ(c). The γ-region for which choice c has a higher value than any
smaller choice ci and any larger choice cj is given by Eq. 2.5.

Based on the definition of which γ-region has a certain choice as its outcome (Theo-
rem 3), it is possible to define the set of choices that an IGE can learn in a deterministic,
goal-only-reward MDP. The set is called the IGE choice set CIGE and it is defined as the
unique set of all choices that are the outcome of all possible γ-modules:

CIGE =

{
argmax

c
Vγ(c)

}
∀γ∈[0,1]

.
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A choice is part of the IGE choice set if an existing γ-region, defined by Eq. 2.5,
encodes it. This depends on the other choices in the MDP. It is therefore only possible
to determine whether a choice is part of the IGE choice set by comparing it to the other
choices in the MDP.

A choice is not part of the set if it is dominated by another choice (Theorem 4). The
notion of domination follows that used in Theorem 1 for MDPs in general.

Theorem 4. A choice cb is dominated by another choice ca (ca � cb) if it is longer
nb ≥ na and it has less reward rb ≤ ra. A dominated choice is not part of the IGE choice
set (cb /∈ CIGE).

Proof. The value of the dominated choice is smaller than the dominating choice’s value
for all discount factors with γ ∈ (0, 1). If na ≤ nb and ra ≥ rb, then:

γna−1 ≥ γnb−1 ⇔ γna−1ra ≥ γnb−1rb ⇔ Vγ(ca) ≥ Vγ(cb) .

Therefore, dominated choices are never outcomes of γ-modules.

To analyze which choices are part of an IGE choice set, only non-dominated choices
need to be considered. Based on the list of non-dominated choices (c1 < . . . < cK), the
smallest and the largest choice, i.e. the choice with the smallest and largest number of
steps, are part of the IGE choice set. They are the outcomes for discount factors near 0
and 1 (Theorems 5 and 6).

Theorem 5. The non-dominated choice c1 with the fewest steps is part of the IGE choice
set (c1 ∈ CIGE).

Proof. The non-dominated choice with the least number of steps is the outcome for mod-
ules with:

0 < γ < min
∀ci>c1

γE(c1, ci) .

To prove its existence, it is enough to show the general case of:

∀ci > c1 : γE(c1, ci) > 0 ⇔
(
r1

ri

) 1
ni−n1

> 0 ,

which is true because xy > 0 for x > 0.

Theorem 6. The non-dominated choice cK with the most steps is part of the IGE choice
set (cK ∈ CIGE).

Proof. The last non-dominated choice cK is the outcome of modules with:

max
∀ci<cK

γE(ci, cK) < γ < 1 .

To prove its existence, it is enough to show the general case of:

∀ci < cK : γE(ci, cK) < 1 ⇔
(
ri
rK

) 1
nK−ni

< 1 ,

which is true because rK > ri ⇔ ri
rK
< 1 and 0 < xy < 1 for 0 < x < 1 and y > 0.
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Figure 2.6: The reward boundary (Theorem 7) between all choice combinations shows
which choices are part of the IGE choice set for the example MDP of Fig. 2.4. Choices
c1 and c5 are in the set because they are the shortest and longest non-dominated choice
(Theorems 5 and 6). Choices c2 and c3 fulfill the IGE choice set boundary. Choice c4

is not the in the IGE choice set because it is below the boundary spanned by c3 and c5.
Choice c6 is excluded because it is dominated by c3, c4 and c5.

Any other non-dominated choice between the smallest and largest choice (c2 < . . . <
cK−1) has to fulfill a reward criterion that depends on the number of steps for that choice
and the other non-dominated choices (Theorem 7). The criterion is an exponential bound-
ary between each possible choice pair combination (Fig. 2.6).

Theorem 7. Any non-dominated choice c = (r, n) between the smallest and largest choice
c1 < c < cK that fulfills the following reward criterion is part of the IGE choice set
(c ∈ CIGE):

r > max
∀ca<c,∀cb>c

exp

(
log(ra)(n− nb) + log(rb)(na − n)

na − nb

)
, (2.7)

where ca = (ra, na) are all smaller non-dominated choices, and cb = (rb, nb) are all larger
non-dominated choices.

Proof. The criterion is defined by the maximum over the criterion of each possible pair
(ca, cb) of non-dominated choices, where ca is smaller and cb is larger than c. If only such
a pair of choices exists, then choice c is in the IGE choice set if a γ-region exists such that
has it as outcome:

γE(ca, c) < γc < γE(c, cb) .

Thus, the choice c needs to fulfill:

γE(ca, c) < γE(c, cb) ⇔
(ra
r

) 1
n−na

<

(
r

rb

) 1
nb−n

⇔ r
1

nb−n
+ 1
n−na > r

1
n−na
a r

1
nb−n
b

⇔ r
nb−na

(nb−n)(n−na) > r
1

n−na
a r

1
nb−n
b ⇔ r > r

(nb−n)(n−na)

(nb−na)(n−na)
a r

(nb−n)(n−na)

(nb−na)(nb−n)

b

⇔ log r >
(nb − n) log ra + (n− na) log rb

nb − na

⇔ r > exp

(
(nb − n) log ra + (n− na) log rb

nb − na

)
.
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This needs to be guaranteed for all possible choice pairs (ca, cb) in the MDP which results
in Eq. 2.7 and finishes the proof of Theorem 7.

In summary, the IGE choice set is the subset of choices that an IGE is able to learn.
It consists of the choices with the fewest steps, the non-dominated choice with the most
steps, and choices with a reward that is larger than the exponential reward bound defined
by the other choices in the set.

The definition of the γ-region for which modules learn a certain choice (Theorem 3)
also provides insight into the mapping of the choices that are learned by a certain γ-
module. A direct mapping from a given γ to the choice that it learns, i.e. its number
of steps n and reward r, is not possible. Instead, it can only guarantee that the choice
associated with a γ-module has a certain reward and number of steps in comparison to
the other choices in the MDP.

Theorem 3 shows that the choice c = (r, n) that is learned by a module γ fulfills the
following criteria in relation to smaller and larger choices:

γE(ci, c) < γ < γE(c, cj) ⇔
(ri
r

) 1
n−ni < γ <

(
r

rj

) 1
nj−n

,

where ci = (ri, ni) is the smaller and cj = (rj, nj) is the larger choice. The upper and
lower criteria depend both on the quotient between the reward of choice c and the other
choices ( ri

r
, r
rj
) and the difference between their steps (n−ni, nj −n). Reformulating the

lower criterion shows that the reward quotient depends on the step difference between
choices: (ri

r

) 1
n−ni < γ ⇔ ri

r
< γn−ni .

This means that choice c is guaranteed to be the outcome of γ if its reward quotient with
all smaller choices is smaller than a certain value defined by the difference between the
steps of the choices and γ. The criterion with choices larger than c is:

γ <

(
r

rj

) 1
nj−n

⇔ r

rj
> γnj−n .

In summary, the policy that a certain γ-module learns depends on other choices in the
MDP. The important factors are the quotient between the rewards of the choices and the
difference between their steps.

The IGE’s ability to learn different policies in one framework for a single environment
is the main difference between the IGE and classical methods such as Q-learning. Learned
policies depend on the transition probabilities and rewards of an MDP. In MDP’s with
several goal states, the main application area of the IGE, the IGE learns policies to reach
different goal states that have different distances and rewards. The policies represent
solutions for the trade-off between amount of reward and the time to gain it. Modules
with smaller discount factors learn policies to reach nearby goals, whereas policies of larger
discount factors can reach distant goals that offer greater reward.
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2.3 Decoding Information about Policies

The IGE learns different policies. This can be used to select the most appropriate policy
for a given situation, such as to use a policy that results in fewer steps to reach reward,
if the time to reach reward is important. To select the most appropriate policy, it would
be helpful to know the outcome of it, i.e. what is its expected reward trajectory. The
previous section showed that only a coarse mapping can be drawn from the discount factors
to the expected trajectories that are their outcomes. In MDPs with several goal-states,
smaller γ’s result in gaining more rapid reward than larger γ’s, which usually obtain more
reward. But the discount factor does not give direct information about the length of a
trajectory or its expected reward sum. Nonetheless, the IGE provides a way to decode
such information from its values learned from several modules. At first, this possibility is
discussed in the context of general MDPs. Although, it is theoretically possible to decode
the full expected reward trajectory for policies that the IGE learns, such an approach
has practical problems. For deterministic, goal-only-reward MDPs, these problems can
be overcome, as discussed in the final part of this section.

2.3.1 General MDPs

The values of modules with similar discount factors are also similar (γa ≈ γb → Vγa(s) ≈
Vγb(s)). Therefore, their policies are similar (πγa ≈ πγb) and they often result in the same
or similar expected reward trajectories (hπγa ≈ hπγb ). In deterministic environments, their
trajectories are often the same (hπγa = hπγb ). For example, in the MDP of Fig. 2.4 all
modules with 0.57 < γ < 0.84 learn the policy to reach goal state g3 from s0. All of them
have the same expected reward trajectory.

Values of modules that have the same expected reward as outcomes can be defined by
a matrix multiplication with:

V = G× h,

where V =

Vγ1(s)
...

VγT (s)

 , G =

1 γ1 γ2
0 · · · γn−1

0
...

...
... . . . ...

1 γT γ2
T · · · γn−1

T

 , and h =

E [r0]
...

E [rn]

 .
Based on this formulation, it is theoretically possible to decode the expected reward
trajectory from the learned values with:

h = G−1 × V , (2.8)

where G−1 is the inverse of the γ-matrix. G is a Vandermonde matrix. The inverses of
Vandermonde matrices are guaranteed to exist and they can be calculated by an explicit
formula (Macon & Spitzbart 1958; Turner 1966). Therefore, given enough modules that
learn policies for the same expected trajectory, the expected rewards of this trajectory
could be decoded.

Unfortunately, this method has practical limitations making it difficult to apply to
general MDPs. First, only in deterministic MDPs is the expected trajectory of modules
with similar discount factors the same for two γ-modules (hπγa = hπγb ). In stochastic
MDPs, the trajectories are usually similar (hπγa ≈ hπγb ), but not identical because of the
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stochastic transitions. Nonetheless, this approach might still provide an approximation
of the expected trajectory for each module.

Second, the approach would first need to identify which modules have the same tra-
jectories. This is a non-trivial problem, because only the values of each module, i.e.
the γ-Curve as depicted for the example in Fig. 2.4 (c), are given. The curvature of
the γ-Curve could provide a possible way to identify the regions that learned the same
trajectory, but currently there is no practical method to do this.

Third, the method would require many modules, because it needs n modules to decode
the expected reward trajectory for n steps into the future. The γ-regions that encode a
certain policy are not known and they could have a small range. Therefore, many modules
would be necessary to guarantee that enough modules learn the same policy and can be
used to decode it.

The final problem is that the inverse G−1 of the γ-matrix is ill-conditioned for larger
T (Gautschi 1990; Press et al. 2007). This means that small changes in the values V can
result in big differences in the decoded trajectory h for Eq. 2.8. As a consequence, the
approach becomes unstable to numerical errors such as rounding errors for small values.
This effect is shown on trajectories with lengths of T = (10, 20, 30). Only the last four

E
[r
]

E
[r
]

E
[r
]

Figure 2.7: The difference between the true expected reward trajectory and the decoded
trajectory with help of the inverse G−1 is large in cases where less modules are used than
required (first column), and if the trajectory becomes too long (last row). The cases
differ in the length of true trajectory T , and the number of modules used to decode the
trajectory M .
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time steps of each trajectory have non-zero expected rewards: h = (r0 = 0, . . . , rT−4 =
1, rT−3 = 0, rT−2 = 3, rT−1 = 2). For each trajectory, values are calculated for γ-modules
with discount factors that are linearly spaced between 0 and 1. The number of modules
M is either five less than the length of the trajectory T , the same number, or five more
modules. For each combination of the trajectory length and the number of modules the
trajectory is decoded by Eq. 2.8 and compared to the original trajectory (Fig. 2.7). The
results show that the decoding has large errors in two cases. If fewer modules are used
than the number of steps of the original trajectory, and for the decoding of long reward
trajectories (T = 30).

In summary, values of several modules of the IGE that learn to follow the same tra-
jectory can be theoretically used to decode the expected reward trajectory. Nonetheless,
the approach has practical limitations. It would require many modules to decode long
trajectories, and it would first need to identify which modules follow the same trajectory.
Moreover, the problem becomes ill-conditioned for long trajectories, introducing large
errors in the decoded trajectory.

2.3.2 Deterministic, Goal-Only-Reward MDPs

Although, the approach for decoding the expected reward trajectory is limited to gen-
eral MDPs, decoding can be done for deterministic, goal-only-reward MDPs, as shown in
Fig. 2.4. In such MDPs, only the last step of a trajectory has a non-zero reward. Trajec-
tories can therefore be represented as choices c = (r, n) where r is the expected reward
for entering the goal state after n steps. The values of two modules (γa, γb) that learn
the trajectory to the same goal state can be used to decode r and ns (Theorem 8).

Theorem 8. If in deterministic, goal-only-reward MDPs, two modules (γa, γb) have the
same choice c = (r, ns) as an outcome for state s, then the number of steps ns can be
decoded from their values by:

ns(γa, γb) =
log
(
Vγa(s)

)
− log

(
Vγb(s)

)
log(γa)− log(γb)

+ 1 , (2.9)

and the expected reward r by:

r(γa, γb) =
Vγa(s)

γans(γa,γb)−1
, or r(γa, γb) =

Vγb(s)

γbns(γa,γb)−1
. (2.10)

Proof. The value of a module in a deterministic, goal-only reward environment is given
by Vγ(s) = γns−1r. With values from two modules based on the same expected reward
trajectory, the number of steps ns to reach their goal state (Eq. 2.9) can be derived by:

Vγa(s) = γa
ns−1r

Vγb(s) = γb
ns−1r

⇔
r = Vγa (s)

γans−1

r =
Vγb (s)

γbns−1

⇔ Vγa(s)

γans−1
=
Vγb(s)

γbns−1
⇔

(
γa
γb

)ns−1

=
Vγa(s)

Vγb(s)

⇔ ns − 1 = log( γa
γb

) Vγa(s)
Vγb(s)

⇔ ns =
log
(
Vγa(s)

)
− log

(
Vγb(s)

)
log(γa)− log(γb)

+ 1 .
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(a) Choices (b) Decoded properties of neighboring γ-module pairs

Figure 2.8: The reward and the number of steps can be correctly decoded for each
learned choice in the MDP from Fig. 2.4. The modules that encode c1, c2, c3, and c6

can clearly be identified using the decoded information. Each choice is represented by a
region where the number of steps ns and the reward r are constant.

The number of steps ns can be used with the value of one of the modules to compute r
(Eq. 2.10) either by:

Vγa(s) = γa
ns−1r ⇔ r =

Vγa(s)

γans−1
, or Vγb(s) = γb

ns−1r ⇔ r =
Vγb(s)

γbns−1
.

Theorem 8 can be used to decode the expected reward r and number of steps ns of
two modules that have the same choice as outcomes. It can also be used to identify
modules that have the same choices. In deterministic, goal-only-reward MDPs, a choice
is guaranteed to be learned within a certain γ-region (γL < γ < γU) that has a lower
and an upper bound (Theorem 3). Having a set of γ-modules Γ = (γ1, . . . , γM) with
γi < γi+1 the modules that have the same choice can be detected, by decoding ns from
each neighboring pair: ns(γi, γi+1) (Fig. 2.8). If at least three neighboring modules exist
in a γ-region for a choice c: γL(c) < γa < γb < γc < γU(c), then the number of steps
has to be equal for their neighboring pairs: ns(γa, γb) = ns(γb, γc). The modules of all
neighboring pairs with the same number of steps learn the same choice, because two
choices cannot have the same number of steps. Otherwise, one would dominate the other
(Theorem 4). The pair of modules on the border of the γ-regions, where the modules learn
different choices can be detected. If γa and γb learn one choice and γc and γd another,
then ns(γa, γb) 6= ns(γb, γc) 6= ns(γc, γd).

In summary, although decoding of the expected reward trajectory has practical limi-
tations for general MDPs, it is possible in deterministic, goal-only-reward MDPs. Theo-
rem 8 allows to identify γ-modules that learned the same trajectory and to decode their
expected reward and number of steps. This information can help the agent to select the
most appropriate policy for the task it wants solve in an environment.

2.4 Optimal Distribution of γ-Modules
The number of modules that an IGE can use is finite. This raises the question as to which
discount factors should be used for the modules, i.e. how the discount factors should be
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distributed. In many cases the goal is to learn a set of policies that differ in order to
provide a diverse behavioral repertoire for the agent. The mapping from discount factors
to the policies they learn depends strongly on the structure of target MDPs, i.e. their
transition probability functions and reward functions. Thus, an optimal distribution of
discount factors cannot be given for MDPs in general. As a general rule, discount factors
should be spread out between 0 and 1 with enough space between them, because similar
discount factors have similar values and often similar policies.

This section analyzes the distribution of discount factors for episodic MDPs with
several goal states, the main application scenario for the IGE. The class of deterministic,
goal-only-reward MDPs is used to analyze these cases (Definition 3). Their restrictions on
the MDP structure allow to analyze the optimal distribution of discount factors. These
MDPs have a set of choices that represent the optimal trajectories to each possible goal
state. The question is how the γ-modules should be distributed to allow that all possible
choices can be learned.

The analysis is accomplished by assuming a set of choices and then by identifying
which discount factors would be necessary to learn all of these choices. A choice set
consists of all choices cj = (rj, nj) starting at a certain number of steps m, where for each
subsequent step j a choice exists: nj = m + j. The rewards for each choice depend on
its position in the set rj = f(j). Fig. 2.9 (a) shows an example where rewards depend
linearly on the steps. The goal is to detect the γ-regions that are required to learn each
choice. Having a module with a discount factor within each of the regions guarantees that

Figure 2.9: The mapping of γ-modules to choices is invariant to scaling in rewards and
translation in steps of choice sets. (left) Three different choice sets, each with 6 choices.
The rewards of Set 1 are double than Set 2 (rSet1 = 2 · rSet2). The steps of Set 3 are
increased by two from Set 2 (nSet3 = 2+nSet2). (right) Nonetheless, the mapping between
γ-modules and their preferred choice is the same for each choice set.
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all choices will be learned.
The γ-regions depend on the relationship between reward and position rj = f(j).

Theorem 9 determines the regions in the case of an exponential and linear relationship
with rj = b · ja, where b is a scaling factor and a determines the exponential influence.
The relation is linear for a = 1.

Theorem 9. For any deterministic, goal-only-reward MDP with choices that are defined
by:

r(j) = b · ja , n(j) = m+ j ,

where m ∈ N, b ∈ R+, and a ∈ R+, is the γ-region Γj for which all its discount factors
γj encode the j’th choice cj = (r(j), n(j)) defined by:

Γj =

{
γL(j) =

(
j − 1

j

)a
< γj < γU(j) =

(
j

j + 1

)a}
, (2.11)

where γL(j) and γU(j) are the lower and upper border of the region.

Proof. The γ region for which choice cj is the outcome is defined by Theorem 3:

γL(j) = max
∀ci<cj

γE(ci, cj) < γj < γU(j) = min
∀ck>cj

γE(cj, ck) .

The lower border γL(j) can be shown to be equal to
(
j−1
j

)a
, starting with:

γL(j) = max∀ci<cj γE(ci, cj)

= maxi

(
r(i)
r(j)

) 1
n(j)−n(i)

= maxi

(
b·ia
b·ja

) 1
(m+j)−(m+i)

= maxi

(
i
j

) a
j−i s.t. 0 < i < j .

The maximum value of this term is given by Lemma 9.1.

Lemma 9.1. It holds that

max
i

(
i

j

) a
j−i

=

(
j − 1

j

)a
, (2.12)

for a ∈ R+, i ∈ N+, j ∈ N+, and i < j.

Proof. The maximum of Eq. 2.12 is at i = j − 1, because the derivative of
(
i
j

) a
j−i is

positive for all i > 0 and it is the largest possible i. Using it for Eq. 2.12 results in:(
j − 1

j

) a
j−(j−1)

=

(
j − 1

j

)a
,

proving Lemma 9.1. The proof depends on the assumption that the derivative of Eq. 2.12
is positive for 0 < i < j:

∂

∂i

(
i

j

) a
j−i

= a

(
i

j

) a
j−i

i log
(
i
j

)
+ j − i

i(j − i)2

 . (2.13)
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The derivative (Eq. 2.13) is positive if:

i log

(
i

j

)
+ j − i > 0 s.t. i < j . (2.14)

This can be shown using the derivative of this term with respect to i:

∂

∂i
i log

(
i

j

)
+ j − i = log

(
i

j

)
.

This term is negative for all 0 < i < j. Moreover, Eq. 2.14 is 0 for the point i = j:

j log

(
j

j

)
+ j − j = 0 .

Thus, Eq. 2.14 has to be positive for all 0 < i < j, showing that the derivative Eq. 2.13
is positive for 0 < i < j. This ends the proof of Lemma 9.1.

The proof of the upper border γU(j) follows similar steps:

γU(j) = min∀ck>ci γE(cj, ck)

= mink

(
r(j)
r(k)

) 1
n(k)−n(j)

= mink
(
b·ja
b·ka
) 1

(m+k)−(m+j)

= mink
(
j
k

) a
k−j s.t. 0 < j < k .

The minimum of this term is given by Lemma 9.2 which finishes the proof of the upper
border.

Lemma 9.2. It holds that

min
k

(
j

k

) a
k−j

=

(
j

j + 1

)a
, (2.15)

for a ∈ R+, j ∈ N+, k ∈ N+, and j < k.

Proof. The minimum of Eq. 2.15 is at k = j + 1, because the the derivative of
(
j
k

) a
k−j is

positive for all k > j and it is the smallest possible k. Using it for Eq. 2.15 results in:(
j

j + 1

) a
(j+1)−j

=

(
j

j + 1

)a
,

proving Lemma 9.2. The proof depends on the assumption that the derivative of Eq. 2.15
is positive for k > j:

∂

∂k

(
j

k

) a
k−j

= −a
(
j

k

) a
k−j
(
k log

(
j
k

)
+ k − j

k(k − j)2

)
. (2.16)

The derivative (Eq. 2.16) is positive if:

k log

(
j

k

)
+ k − j < 0 s.t. j < k . (2.17)
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This can be shown using the derivative of this term with respect to k:

∂

∂k
k log

(
j

k

)
+ k − j = log

(
j

k

)
.

This term is negative for all 0 < j < k. Moreover, Eq. 2.17 is 0 for the point k = j:

j log

(
j

j

)
+ j − j = 0 .

Thus, Eq. 2.17 has to be negative for all k > j, showing that the derivative Eq. 2.16 is
positive for k > j. This ends the proof of Lemma 9.2.

Having verified the lower and upper border ends the proof of Theorem 9.

The γ-regions are independent of scaling in the reward function by the coefficient b
and translations of the number of steps by m (Fig. 2.9). The regions only depend on the
position of a choice in the set.

A similar relationship can also be shown for choice sets that follow a log distribution
with:

r(j) = b · log(a) , n(j) = m+ j .

In this case the upper and lower border of the j’th choice are given by:

Γj =

{
log(j − 1)

log(j)
< γj <

log(j)

log(j + 1)

}
. (2.18)

For both cases, the exponential choice sets (Eq. 2.11) and the logarithmic choice sets
(Eq. 2.18), is the upper γ-border for one choice the lower γ-border for the next:

γU(j) = γL(j + 1) = γE(cj, cj+1) .

This means that for a set of N choices, N distinct γ-regions exist. To guarantee that
every choice in a set can be learned, it is necessary that at least one module exists for
each region.

The exact locations of the borders between regions are different for each choice set, but
choices with more steps are learned by larger discount factors (Fig. 2.10). Furthermore,
the size of the γ-region decreases with the number of steps (γU(j)− γL(j) > γU(j + 1)−
γL(j + 1)). As a consequence, modules need to be more densely distributed for larger γ’s
close to 1.

In summary, the choice of discount factors of IGE modules, depends on the type of
MDP and the types of policies that should be learned. The analysis of MDPs with several
goal states shows that the distribution of discount factors should not be uniform. Instead,
modules should be more densely distributed for larger discount factors, thereby allowing
the IGE to learn policies that also reach goal states that need more steps to be reached.
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Figure 2.10: The boundaries γE(cj, cj+1) between the γ-regions of choices for different
sets. Each set has a different relationship between the rewards r and the position of the
choice j in the set. Each set has 15 choices: C = (c1, . . . , c15). The boundaries show that
modules should be denser distributed for larger γ’s near 1 to cover each region with a
module.

2.5 Effect of the Discount Factor on the Exploration

The discount factor of the active module γ̃ that the IGE uses can influence the exploration
behavior of the agent. Usually, an agent explores the environment by using a suboptimal
action for some transitions (at 6= argmaxaQγ(st, a)). The exploration strategy, i.e. the
probability of different actions in a state, depends upon the values of the actions. Because
discount factors have a strong influence on values, they can also influence exploration
behavior.

The example MDP in Fig. 2.11 illustrates the influence of discount factors on explo-
ration. The MDP has three different paths that can be reached from the initial state s0.
Each path is the optimal solution for a different γ-region (Fig. 2.11, b). Depending on
the action selection strategy used, such as softmax or ε-greedy, the exploration behavior
is influenced differently by the discount factor.

For the softmax action selection, the dependency between action probabilities and γ
is more complex (Fig. 2.11, c). For γ-regions where a certain path is optimal, the action
to reach it is the highest (for β > 0). Nonetheless, the probabilities between different
actions change, depending on the γ in the γ-region. For example, the second path to g2

is optimal for 0.34 < γ < 0.76. The highest probability to choose action a2 for this path
is for γ = 0.63. Toward the upper and lower bounds of the γ-region, the probability of
its use is reduced.

A second effect of the softmax action selection is that for larger discount factors, choices
with more steps, but also higher rewards have a higher probability of being explored than
shorter choices with smaller rewards. In the example for γ = 0.9, the probabilities are
a1 = 0.01, a2 = 0.19, and a3 = 0.8, showing that the shortest path (a1) has a very low
probability of being explored. This effect could be used to focus exploration on longer or
shorter solutions in an MDP.

Moreover, the difference between probabilities for choosing each path is reduced for
smaller γ’s. For γ = 0.1, the probabilities are a1 = 0.39, a2 = 0.32, and a3 = 0.29, showing
that all paths have a high probability of being explored. The probability differences are
stronger for larger γ’s. Therefore, with a constant exploration factor β, exploration is
stronger for small γ’s than for larger ones. To allow weaker exploration for smaller γ’s,
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(a) Example MDP (b) γ-Curve

(c) Softmax action selection (β = 3) (d) ε-greedy action selection (ε = 0.2)

Figure 2.11: The example MDP shows the effect of the discount factor on the exploration
of the agent. (a) The MDP has 3 different paths. (b) Each path is the optimal policy for
a different region of discount factors. (c) The exploration behavior of the softmax action
selection depends on the discount factor, whereas (d) for the ε-greedy action selection it
only depends on the policy that is optimal in each γ-region.

the exploration factor β must be increased. As a result, the exploration factor should
depend upon the discount factor: β(γ).

The influence of the discount factor on exploration can be eliminated with an ε-greedy
action selection. ε-greedy selects a random action with probability ε at each transition;
otherwise it selects the action with the maximum value. Probabilities are therefore in-
dependent of individual value differences between actions. Only which action is optimal
influences the probabilities (Fig. 2.11, d).

In summary, depending on the used approach, the choice of the discount factor has
strong implications for the exploration behavior. For softmax, the exploration rate is
strongly dependent upon the active γ-module. In contrast, the ε-greedy action selection
has no such dependence. ε-greedy is therefore used for all application scenarios of the IGE
in later chapters to avoid complications resulting from the choice of the active module
and the agent’s exploration behavior.

2.6 Conclusion

The IGE framework consists of independent modules, each learning a Q-function with
a different discount factor. This allows the framework to learn a set of policies. The
policies differ in their temporal preferences for expected future reward. Modules with
small γ factors optimize rewards on a short-term time scale, whereas modules with larger
γ’s also consider the reward sum in the long-term. Depending on the structure of the
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MDP, the policies represent different behaviors and possible strategies that an agent can
use in the MDP. One type of environment where this ability is useful, is for MDPs with
several goal states. The IGE learns policies in these environments to reach different goal
states. Small γ’s prefer proximal goals, whereas large γ’s prefer more distant goals with
greater rewards.

The IGE also allows to decode information about its learned policies. In theory, it can
decode the full expected reward trajectory for policies that are learned by several modules.
Unfortunately, this approach has practical limitations. Nonetheless, it is applicable for
deterministic, goal-only-reward MDPs. This ability can be used to identify the most
appropriate policy for a certain task the agent has to fulfill in an environment.

The study of deterministic, goal-only-reward MDPs also offers insight into the question
of which discount factor parameters should be used for the modules. In MDPs with
several goal states, it is beneficial to have modules more densely distributed for larger
discount factors, because the γ-regions that learn policies to reach distant goals are denser
distributed as γ approaches 1.

The IGE also affects the exploration behavior of the agent. Depending on the action
selection method, exploration can vary greatly within a γ-region, even if the optimal
policy for this region is the same. The ε-greedy action selection strategy is recommended
in order to avoid this effect.

The following chapters introduce some application scenarios for the IGE and compare
them to classical non-modular methods. Chapter 3 addresses tasks that change contex-
tually. In such cases, the IGE provides a set of policies that can be used by the agent
to adapt to the different contexts. In the Chapter 4, the agent has to adapt to different
objectives. The agent can immediately adapt to a changed objective using one of the poli-
cies learned by the IGE. Moreover, the decoding ability of the IGE allows it to identify
the most appropriate policy for a goal. Finally, Chapter 5 demonstrates the ability of the
IGE to optimize average reward. In this case it can be shown that the IGE is guaranteed
to learn and identify the optimal average reward policy in deterministic, goal-only-reward
MDPs.



Chapter 3

Adaptation to Contextually Changing
Tasks

The IGE has the ability to learn a set of behaviors for a task (Section 2.2). This can be
an advantage for tasks that change depending on some context. The IGE can choose the
most appropriate behavior for a given task context from its behavioral set, allowing the
IGE to quickly adapt. In contrast, classical methods need to independently learn for each
task context the appropriate behavior.

For example, in an energy foraging task an agent has to collect energy from different
sources. Each source provides a different amount of energy and requires a different number
of steps to reach. Sources that are far away provide more energy than nearby sources.
The agent has an energy store and some backup energy. For each step that the agent
performs its energy store reduces by a small amount. The goal of the agent is to collect
the energy source that gives the highest energy payoff. The payoff is the gained energy
from a source minus the energy it used to get there. Furthermore, the agent should
avoid to deplete its energy store. If it reaches an energy level of zero, it can still move
because of its backup energy, but the agent should learn to avoid this situation. The
optimal energy source depends on the agent’s energy level, which is the context of the
energy foraging task. Having enough energy, the agent can reach distant energy sources
that give a high payoff without reaching an energy level of zero. Whereas, if its energy
level is low, going to a distant source can deplete its energy level and it would need to
use backup energy which should be avoided. Thus, under low energy levels nearby energy
sources are optimal. The task can be formalized as an MDP (Fig. 3.1). The agent receives
positive rewards for reaching an energy source which are the goal states in the MDP. The
strength of the rewards signal how much energy it collected from a source. For each action
the agent receives a negative reward representing the energy that the action cost. If the
energy level of the agent’s energy store is 0, the agent receives for any further action a
high negative reward.

The IGE can learn for the energy foraging task policies to reach different energy
sources (Fig. 3.1, b). γ-Modules with high discount factors γ learn to reach distant
sources, because they provide a high payoff. Modules with low γ’s will prefer nearby
sources, because they require fewer steps to be reached. Depending on the context, i.e.
the agent’s energy level, the IGE can select the most appropriate policy from its modules.
The selection is done by a γ-map that defines which γ-module to use under which context.

53
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(a) Energy Foraging Task (b) γ-Curve

𝟓

Figure 3.1: (a) An energy foraging task with 4 energy sources. The agent has an energy
level of 5. For each step the agent loses energy. It gains energy for reaching a source. If
the energy level reaches 0 the agent will receive a large negative reward per action. (b)
The γ-Curve for the start state s0 and each possible policy shows that the IGE can learn
3 (reaching g1, g2 or g4) of the 4 possible strategies.

For the foraging task, the agent should use modules with large γ’s to go to distant sources,
if it has a high energy level. For low energy levels, it should use modules with small γ’s to
go to nearby sources. The IGE can outperform classical methods in such tasks, because it
learns the different behaviors in parallel. This allows the IGE to choose quickly between
the behaviors under different contexts. Classical methods need to independently learn
the optimal behavior for each context.

This chapter provides several variants of tasks with varying contexts and variants
of the IGE algorithm to solve them. Before the different scenarios and algorithms are
introduced, the concept of a Context Adaptive MDP (CMDP) is given. CMDPs are used
to define all tasks throughout this chapter. The general framework of IGE agents to
solve CMDPs is introduced in Section 3.2. Afterward, the first application scenarios are
discussed in Section 3.3. These are specific tasks for which a γ-mapping from context
to the optimal γ-module can be theoretically derived. In Section 3.4, this is followed
by a discussion about the application of the IGE to the general CMDPs for which the
γ-mapping needs to be learned.

3.1 Context Adaptive Markov Decision Processes
The context of a task can be understood as a task modifier. It modifies the task and
makes it necessary for an agent to adapt its behavior to solve the task optimally. For the
purpose of the tasks and algorithms in this chapter, the context is known by the agent.
A task with contexts is modeled by a regular MDP in which the context is represented as
an extra state dimension.

Definition 5. A Context Adaptive Markov Decision Process (CMDP) is an MDP where
the state space S is composed of environment states SE and context states SC :

CMDP
(
A, S =

(
SE × SC

)
, T, R

)
,
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where A is a finite set of actions, T : S×A×S 7→ [0, 1] is a transition probability function
and R : S × A× S 7→ R is a reward function.

In a CMDP the task space is defined by the environmental states SE. The task changes
between the contexts sC ∈ SC . The goal is to maximize the total expected reward sum
per episode:

max
π

Eπ,s0

[
T−1∑
t=0

R
( (
sEt , s

C
t

)
, at,

(
sEt+1, s

C
t+1

) )]
. (3.1)

Combining the environment and the context space of a task into the state space of an
MDP allows the context to alter a task in three ways. Either the reward function changes
between contexts (Fig. 3.2, top), or the transition function changes (Fig. 3.2, bottom), or
through a combination of both. The definition of a CMDP allows drastic changes of a task
between contexts. In particular, changes in the transition probabilities can change a task
so that it is hard to perceive a CMDP as one task under different contexts. For example,
for a CMDP with two context states, the transition probability between the contexts can
change in such a manner that under one context only a subset of environmental states can
be reached. Whereas, under the other task context a non-overlapping, different subset
of environmental states can only be reached. Thus, each context has a non-overlapping
subset of states. In this case, policies learned under one context cannot be used for the
other. In order to allow a transfer of knowledge between the contexts of a CMDP, the
reward function and transition probabilities should be similar between contexts. For the
CMDPs that are discussed as application scenarios for the IGE, the changes of the reward
function and the transition probabilities between contexts are restricted in ways to allow
the IGE to exploit their similarities.

The concept of context in reinforcement learning has been explored in the past. In
the field of Multi-Armed Bandits (Sutton & Barto 1998) exists the concept of Contextual

a) Task changes in the reward function

b) Task changes in transition probabilities

Figure 3.2: Tasks can change between different contexts (sC1 and sC2 ) in a CMDP due
to changes in a) the reward function R or b) transition probabilities T . Task changes can
alter the optimal policy between contexts, such as from taking the long choice under sC1
to the short choice under sC2 .
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Multi-Armed Bandits (CMABs) (Langford & Zhang 2008; Zhou 2015). CMABs have
one state and several arms or actions. Each action has a stochastic reward function. The
context of a bandit influences the reward distributions of the arms. This notion of context
is similar between CMABs and the CMDP in this work. The difference is that bandits
are not multi-step decision problems. Actions have no influence on the context state of
a bandit in the next episode. Whereas, in CMDPs the task itself is a multi-step decision
problem and actions can have an influence on the context state.

In the area of multi-step decision making a Contextual Markov Decision Process (Con-
textual MDP) exists (Hallak, Di Castro, & Mannor 2015). The Contextual MDP is defined
as a set of separate MDPs. All of them have the same action and state space, but differ-
ent transition dynamics and reward functions. A context state, which is usually hidden,
defines in which MDPs the agent is for an episode. The main goal for Contextual MDPs
is to identify the latent context state from interactions with the environment, so that the
correct policy for the MDP can be applied. The CMDP differs in two ways to the Con-
textual MDP. First, the context is given to the agent. The goal is not to identify in which
context the agent is, but to adapt quickly to a new context and to transfer knowledge
between contexts. Second, the context is a state dimension and might change during an
episode. In Contextual MDPs, the context does not change during an episode. In this
regard, Contextual MDPs are a generalization of the CMABs (Langford & Zhang 2008;
Zhou 2015).

The term context is also used to define Contextual Decision Processes (CDPs) (Jiang,
Krishnamurthy, et al. 2017), but it is used in a very different manner compared to CMDPs.
CDPs use the notion of contexts to describe an abstraction of the state space. The
abstraction allows the description of regular MDPs and POMDPs under one framework.
A context is either a normal state space in the case of MDPs or complete histories over
observations in POMDPs.

3.2 The Context Adaptive Independent γ-Ensemble

Classical reinforcement learning approaches, such as Q-learning, can solve CMDPS, be-
cause CMDPs are just regular MDPs with an extra context dimension. The disadvantage
of classical methods is that they need to learn over the full state space (SE × SC) to
identify the correct policy for each context. Q-learning, for example, needs to learn values
for all combinations of environment, and context states, and actions:

Q : SE × SC × A 7→ R .

This results in a high demand for observations to learn the Q-function. The problem
becomes especially apparent for problems with large task and context state spaces.

The next section introduces a variant of the IGE, the Context Adaptive Independent
γ-Ensemble (CA-IGE), that can be used to overcome this problem by reducing the com-
plexity of the learning problem. Afterward, the conditions that a task should fulfill, so
that the CA-IGE can be successfully applied, are discussed in Section 3.2.2.
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Figure 3.3: The general framework of the Context Adaptive IGE (CA-IGE). The Q-
values of the γ-modules are only learned for environmental states SE. Contexts sC or
environment-context state pairs (sE, sC) are used to select which module is active and
used for the action selection.

3.2.1 The CA-IGE Framework

The CA-IGE (Fig. 3.3) learns different policies by its γ-modules only over the environ-
mental state space SE:

Qγ : SE × A 7→ R ,

and uses the most appropriate policy for a certain context. Not having to learn the Q-
values over the context dimensions reduces the complexity of the learning problem for
the modules. A γ-map G provides a mapping from contexts or environment-context state
pairs to the most appropriate module for a context:

G : SC 7→ Γ or G : SE × SC 7→ Γ ,

where Γ is the set of discount factors for which the CA-IGE has γ-modules. The CA-
IGE selects an active module γ̃ either for each transition or only at the beginning of an
episode. The Q-function of the selected module γ̃ is used for the action selection. For
certain CMDPs the γ-map can be theoretically derived (Section 3.3), so that it guarantees
to choose the optimal γ-module for any given context. For general CMDPs the map has
to be learned (Section 3.4).

For most CMDPs in this chapter, the γ-Modules do not learn their values based on
the reward function R of the CMDP. Instead, a separate reward function RM is used. It
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is either defined over environment states or environment-context state pairs:

RM : SE 7→ R or RM : SE × SC 7→ R .

The differentiation between the reward function R and the γ-module reward function
RM is necessary for many CMDPs, to allow the modules to learn a consistent set of
policies over all contexts. CMDPs allow drastic changes in their reward function between
contexts. In such cases, if modules learn their Q-functions based on this reward function,
their optimal values Q∗γ and policies change between contexts. This leads to an unlearning,
and relearning of values if a context changes. To avoid this problem, the reward function
RM should be chosen to be consistent over contexts. How to chooseRM is further discussed
in Section 3.2.2.

An advantage of the CA-IGE to classical reinforcement learning algorithms is its re-
duction of the complexity of the learning problem. It allows a faster learning with fewer
observations. For CMDPs where the γ-map is theoretically derived, the reduction of the
learning complexity is most apparent. The CA-IGE learns the Q-functions for its mod-
ules only over the environmental state space SE. In contrast, classical methods such as
Q-learning have to learn the Q-function over the full state space SE × SC .

The task complexity can also be reduced for CMDPs where the γ-map is learned.
The γ-modules learn different policies, i.e. the behavior of the agent in each environ-
mental state sE, for the task. To learn the γ-map not every individual action for each
environment-context state pair needs to be learned. Instead, only which policy should be
used. The reduction of the learning complexity by a CA-IGE can increase the learning
speed significantly compared to classical methods, especially in tasks that have large state
spaces.

The idea behind the CA-IGE is similar to the concept of transfer learning (Section 1.2).
The source task is a certain context under which the agent is learning different policies.
These policies are then transferred as knowledge to improve the learning in the target, a
different task context.

3.2.2 Application Scenarios and Optimality

A disadvantage of the CA-IGE is that for many CMDPs its convergence towards the
optimal policy cannot be guaranteed. Classical algorithms, such as Q-learning, can guar-
antee to converge to the optimal policy, because CMDPs are regular MDPs. Q-learning
is proven to converge to optimal policy for MDPs (Watkins & Dayan 1992; Tsitsiklis
1994). Nonetheless, the reduction of the learning complexity can make the CA-IGE more
efficient compared to classical algorithms. This section discusses the properties that a
CMDPs should have so that the CA-IGE can be successfully applied. First, the condi-
tions under which a CA-IGE can guarantee to optimally solve a CMPD are discussed. For
some CMDPs these condition can be fulfilled, but not for all. Nonetheless, the conditions
provide some insight into the properties of tasks that do not fulfill the conditions but for
which the CA-IGE can be successfully applied.

The optimal policy for a CMDP in state (sE, sC) is defined as π∗sC (sE). The CA-IGE
learns the Q-functions of its modules over the task space SE. The optimal policy that a
γ-modules learns for a certain task state sE is defined as π∗γ(sE). To choose an action for
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a certain state (sE, sC), the CA-IGE selects a module according to the map γ̃ = G(sC)
or γ̃ = G(sE, sC). The action is then chosen according to the Q-function of the selected
module. To guarantee that the CA-IGE can choose the optimal policy π∗sC (sE) for all
states, one of the γ-modules must have the same optimal policy:

∀sE ∈ SE, sC ∈ SC , ∃γ ∈ Γ : π∗sC (sE) = π∗γ(s
E) . (3.2)

If this is the case, an optimal γ-mapping G∗ can be either derived or learned.
The optimality criteria (Eq. 3.2) gives two conditions which should be fulfilled. First,

the modules should converge to an optimal policy π∗γ(s
E). Second, for each optimal

policy in the CMDP, a γ-module should exist that has the same policy. Based on these
conditions, the properties of CMDPs to which the CA-IGE can be successfully applied
can be defined.

Task Conditions allowing the Learning of Consistent Policies

Considering the first condition, i.e. that the modules converge to their optimal policy,
the reward function used for the modules and the transition probabilities over the task
space SE should be invariant to context changes. For the γ-modules, the context space
SC is a hidden dimension. If the γ-modules learn their values from observation of the
reward function R and the transitions function T of the CMDP, their optimal values and
associated policies are defined as the expectation over the context states:

Q∗γ(s
E, a) = EsC

[
R
(
sE, sC , a

)
+ γmax

a′
Q∗γ

(
sE
′
, sC

′
, a′
)]

.

Unfortunately, learning the optimal values is difficult and often not possible for general
CMDPs. For general CMDPs, the transition probabilities T and the reward functionR can
change drastically between contexts (Fig. 3.2). As a result, the observations (sEt , rMt , sEt+1),
used to learn the Q-values of γ-modules, have a high variance over the contexts. The high
variance makes it difficult for the γ-modules to converge to their optimal values. As a
consequence, the transition probabilities of a CMDP between task states sE should not
vary between contexts. Moreover, the CMDP should allow to define a reward function
RM used by the γ-modules, that is also invariant to context changes. This excludes the
variance of the observations over contexts for the γ-modules, and makes it possible for
the modules to converge to their optimal policies.

One way to achieve that transition probabilities over task states sE are equal between
contexts is to separated the transition probability function T in two components:

TE : SE × A× SE 7→ [0, 1] , and TC : (SE × SC)× A× SC 7→ [0, 1] .

The component TE only defines the transition probabilities between task states SE. The
transitions are not influenced by context. The component TC defines the transition prob-
abilities between contexts. The transitions can still depend on the task states SE. The
foraging task (Fig. 3.1) includes such a separation. The agent can perform each transi-
tion in the task space SE regardless of the context, its energy level. Nonetheless, other
methods exist besides the separation of the transition function to ensure that the tran-
sition probabilities of the task space SE are equal under each context. For example, in



60 Adaptation to Contextually Changing Tasks

interruption risk tasks (Section 3.3.1), the learning algorithm of the modules is altered in
such a way that the transition probabilities only seem to be equal under all contexts for
the γ-modules.

Besides the transition probabilities, the reward function RM , used for the learning of
the γ-modules, should not vary between contexts. One solution is to learn the values of
modules only under the reward function R for a subset of contexts Φ ⊂ SC :

RM(sE, a) = R(sE, φ ∈ Φ, a) ,

where the reward function over all contexts in Φ is equal:

∀φi, φj ∈ Φ : R(sE, φi, a) = R(sE, φj, a) .

Observations from other contexts sC /∈ Φ are ignored by the modules. For the energy
foraging task (Fig. 3.1) the reward function RM can be defined as the reward function R
while the agent has energy (∀sC > 0 : RM(sE, a) = R(sE, sC , a)). The reward function
R does not vary for positive energy levels. It only changes when the agent depleted its
energy (sC = 0). Then a strong punishment is added for each further action.

Having a reward function RM that does not vary allows for the values of the γ-modules
to converge. Additionally, it guarantees that the optimal policy π∗sC for the contexts Φ will
be learned by modules with γ ≈ 1. A γ-mapping with ∀φ ∈ Φ : G(φ) ≈ 1 guarantees that
the optimal policy is then used for the contexts Φ. For other contexts, optimality cannot
be guaranteed. However, if the correct contexts Φ are chosen, the IGE can outperform
classical methods through an increased learning speed.

A drawback of learning the γ-modules only under certain contexts Φ is that observa-
tions under other contexts (sC /∈ Φ) are not used to learn the modules Q-values. The agent
will need more time to learn, reducing its performance. Nonetheless, the CA-IGE variants
that use this approach can still outperform classical algorithms (Section 3.4.3). Moreover,
for some tasks it is possible to reformulate the learning algorithm (Section 3.3.1), or the
reward function (Sections 3.3.2, 3.3.3 and 3.4.3) to allow observations under all contexts
to be used to update the γ-modules.

Task Conditions allowing the Learning of Helpful Policies

The second condition of the optimality criteria for the CA-IGE (Eq. 3.2) is that for each
optimal policy in the CMDP, a γ-module should exist that learns this optimal policy. For
a subset of CMDPs it is possible to guarantee this condition (Section 3.3), but for most
CMDPs, the CA-IGE cannot learn the optimal policy for each context. The CA-IGE can
only use policies that are learned by the γ-modules. Some optimal policies for certain
contexts of a CMDP are not learned, because they are not optimal for any γ-module. For
example, the energy foraging task (Fig. 3.1) has four possible energy sources the agent can
reach. Each is optimal for a certain energy level. Nonetheless, the γ-Modules learn only
three of the four options (Fig. 3.1, b). As a result, the agent cannot choose the optimal
policy for each energy level. Classical algorithms such as Q-learning are guaranteed to
converge to the optimal policy. However, if the CA-IGE learns a relatively good set of
policies, then its advantage of reducing the learning complexity of a tasks can result in
an advantage over classical algorithms. At the moment, the theoretical conditions for
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CMDPs so that the CA-IGE can have such an advantage are missing. Some informal
constraints can be given by analyzing the properties of the IGE.

The γ-modules of the IGE learn different policies based on their difference in the
discounting of reward over time. Modules with large γ’s prefer larger rewards, which might
take longer to reach. Modules with smaller γ’s prefer less distant rewards, but which are
smaller. Thus, the CA-IGE should be used in tasks where a trade-off between the reward
strength and the time to reach rewards exist. Depending on the context, either longer
strategies or shorter strategies should be optimal. The energy foraging task (Fig. 3.1)
is an example for such tasks. It has four strategies with different time requirements to
reach reward. Strategies that need longer provide more reward. This results in a trade-off
between reward strength and the time to reach it. If the agent has enough energy, the
longest strategy gives the highest payoff. For lower energy levels, shorter strategies are
optimal. In such environments, the CA-IGE can learn the different strategies by different
γ-modules and it can then use them under different contexts.

That the CA-IGE is most helpful for tasks with a trade-off between reward strength
and required time gives also some insight into the choice of the reward function RM for
the γ-modules. Usually, a reward function is chosen which uses the rewards of certain
contexts Φ ⊂ SC . A context should be chosen that allows the CA-IGE to learn many
different strategies considering the trade-off between reward and time. Given a certain
context, the IGE will not only learn the strategy with the highest payoff, but also other
strategies that give less reward in less time. Therefore, the modules should learn under
a context that has longer strategies as optimal solutions. For the foraging task, these are
the contexts under which the agent has energy. If the agent has energy, it can reach every
possible reward without receiving any punishment. As a result, it can learn not only the
longest strategy with the highest payoff, but also other strategies which are helpful under
reduced energy levels.

Conclusion

In summary, the CA-IGE can provide advantages over classical algorithms in CMDPs
which allow the γ-modules to learn a set of policies that are helpful under different con-
texts. To allow the modules to learn a consistent set of polices over all contexts, the
transition probabilities between task states SE should not depend on the context. More-
over, the reward function RM used for the modules should also not vary between contexts.
In order for the CA-IGE to learn policies that are helpful, the task should have a trade-off
between the reward value of different strategies and the time needed to reach the reward.
In such tasks, the γ-modules can learn different policies which represent the solution to
different trade-offs between reward and time.

The next two sections introduce different CMDPs and variants of the CA-IGE algo-
rithm to solve them. First, CMDPs for which the optimal γ-map can be theoretically
derived are discussed in Section 3.3. Afterward, CMDPs for which a γ-map needs to be
learned are introduced in Section 3.3.
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3.3 Derivation of γ-Mappings

For some types of CMDPs a direct mapping from context to the optimal γ-module can
be theoretically derived. This section introduces three types of CMDPs with direct γ-
mappings. The first type are Interruption Risk MDPs. They have at each step a risk that
the task gets interrupted. The context determines the probability of these interruptions.
The second type, Reward Risk MDPs, are similar. For them exists a risk that all future
reward becomes zero. In the third class of environments, Constant Punishment MDPs,
a constant punishment per step is given. In this case, the context is the strength of the
punishment.

3.3.1 Interruption Risk Tasks

During interruption risk tasks a constant risk at each time point exists that the task will
be interrupted and ends (Fig. 3.4). The interruption risk is constant per episode, but it
can change between episodes. The probability of an interruption is the context of the task.
The agent has to adapt to different risk probabilities. An optimal γ-map from context to
the module with the optimal policy for it can be derived for such tasks.

For example, an agent might perform a base task, such as cleaning for a house keeping
robot or collecting energy for a space exploration probe. It has to abort this task if another
task is given to it. For the base task, different possible strategies might exist that the
agent can learn. Some strategies have a low time effort, but also give only a low payoff.
Whereas, other strategies need a lot of time before a high payoff can be achieved. Every
time the agent receives a task, it has to end its base task and perform the assigned task.
Depending on factors, such as the time of the day, the probability that a task gets assigned
might differ. If there is a high risk of a task assignment, the agent should prefer strategies
for its base task that have a low time effort to reduce the risk of being interrupted before
finishing. Whereas, if there is a low risk of a task assignment, the agent can perform a
long term strategy which gives a high payoff. The risk of a task assignment is the context
under which the agent performs its base task. It could be either given to the agent or
learned, for example by observing how often a task gets assigned during certain hours of
the day.

This section first introduces the concept of Interruption Risk MDPs (IR-MDP) which
are used to formalize interruption risk tasks. Next, the Interruption Adaptive IGE (IR-

Figure 3.4: Illustration of an interruption risk MDP with 2 choices (g1, g2). At each
step a risk with the probability η exists that the agent is interrupted and ends in the
terminal state sI .
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IGE) is introduced which is a CA-IGE variant to solve IR-MDPs. For the IR-IGE a direct
mapping from the interruption risk to the optimal γ-module, which should be used for
this risk, can be constructed. The IR-IGE is guaranteed to solve IR-MDPs optimally.
Afterward, the IR-IGE is compared to classical Q-learning in a IR-MDP which shows
that it can outperform Q-learning.

Interruption Risk MDPs and the Interruption Risk IGE

Definition 6. An Interruption Risk MDP (IR-MDP) is a CMDP(A, SE ×SC , T, R) that
has an interruption state sI ∈ SE as part of its environmental state space. At each
state transition a probability of η ∈ [0, 1] exists that the agent will be interrupted and
transitions into the interruption state sI :

∀s ∈ S, a ∈ A : T (s, a, sI) = η ,

where η is constant during an episode. The context during each episode is the interruption
risk:

sC = η .

IR-MDPs can be optimally solved with an Interruption Risk IGE (IR-IGE) (Algo-
rithm 3.1). The γ-modules of the IR-IGE learn their values based on the reward function
of the IR-MDP:

RM(s, a, s′) = R(s, a, s′) .

The learning algorithm for each module is modified compared to the standard Q-learning
update. After transitions in which the agent gets interrupted and enters the interruption
state sI , the Q-value for the state from which the agent came is not updated. Thus, the
agent learns the Q-functions as if there is no interruption risk, i.e. with risk η = 0. Using
the mapping γ = 1 − η from context η to γ-modules with such Q-functions guarantees
that the agent selects for each context the optimal policy (Theorem 10).

Theorem 10. An IR-IGE with a γ-map of

G∗(η) = 1− η ,

has the optimal policy π∗sC (sE) for all states (sC , sE) ∈ S of an IR-MPD, under the
assumption that the γ-modules converged to their optimal Q-functions Q∗γ and use their
greedy policy.

Proof. The goal of the IR-IGE is to optimize the expected reward sum per episode starting
in a state s0 and following the optimal policy π∗:

Eπ∗,s0

[
T−1∑
t=0

rt

]
= Eπ∗,s0 [r0] + Eπ∗,s0 [r1] + Eπ∗,s0 [r2] + · · ·+ Eπ∗,s0 [rT−1] (3.3)

The expected reward for a time step t, in the case that no interruption risk exists (η = 0),
is defined as Eη=0

π∗,s0 [rt]. The expected reward at t under a certain risk η is either 0 if the
agent was interrupted, or it is the expected reward if there is no interruption Eη=0

π∗,s0 [rt]:

Eπ,s0 [rt] = Pr(st = sI |t) · 0 + Pr(st 6= sI |t) · Eη=0
π∗,s0 [rt]

= Pr(st 6= sI |t) · Eη=0
π∗,s0 [rt]

= (1− η)t · Eη=0
π∗,s0 [rt] ,
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Algorithm 3.1: Interruption Risk IGE
Input:

Learning rate: α ∈ [0, 1]

Sorted list of discount factors: Γ = (γ1, . . . , γm) with γi ∈ (0, 1)

initialize Qγ(s, a) to zero
repeat (for each episode)

initialize state s, context η

// map context to the active module γ∗

γ∗ ← 1− η

repeat (for each step in episode)
choose an action a for s derived from Qγ∗ (e.g. ε-greedy)
take action a, observe r, s′

// only update Q-values if the algorithm does not end in the
interruption state

if s′ 6= sI then
forall the γ ∈ Γ do

Qγ(s, a)← Qγ(s, a) + α (R(s, a) + γmaxa′ Qγ(s
′, a′)−Qγ(s, a))

end
end
s← s′

until s is terminal-state
until termination

where the probability of not being interrupted is Pr(st 6= sI |t) = (1− η)t (See Fig. 3.4).
Therefore, the expected reward sum (Eq. 3.3) of the optimal policy φ∗ for each context η
can be reformulated to:

Eπ∗,s0

[
T−1∑
t=0

rt

]
=

T−1∑
t=0

(1− η)t · Eη=0
π∗,s0 [rt] . (3.4)

Because the modules of an IR-IGE learn their Q-functions as if no interruption risk exist,
there optimal Q-values are:

Q∗γ(s0, a) =
T−1∑
t=0

γt · Eη=0
π∗,s0 [rt] , (3.5)

Using a mapping of γ = 1 − η, the optimal Q-values (Eq. 3.5) and the expected reward
sum of the optimal policies for each context (Eq. 3.4) are equal. Therefore, after the Q-
functions converged to their optimal values, using a module with γ = 1− η under context
η will result in the optimal policy for the IR-IGE. This proves that the IR-IGE is optimal
for all interruption risks η using the γ-map G∗(η) = 1− η.
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Experiments

The IR-IGE was compared to a standard Q-learning algorithm in a grid world variant of
an IR-MDP (Fig. 3.5, a). The grid world has five goal states which provide a different
amount of reward (Fig. 3.5, b). At each time step a risk of η exists that the task is
interrupted and the agent transitions into the interruption state sI . The expected reward
for reaching each goal state with an optimal policy depends on η (Fig. 3.5, c). For different
risks η are different goal states optimal. The environmental states SE of the IR-MDP are
the positions in the grid world. The context states SC are the risk levels η.

Each experimental run consisted of four phases with 5000 episodes per phase. The
phases differed in their risk level η. Phase 1 had a small risk (η = 0.03), followed by Phase
2 that had a medium risk (η = 0.15). Phase 3 had no risk (η = 0) and Phase 4 had an high
risk (η = 0.3). Fig. 3.5 (c) shows that the optimal choice changed between each phase
with c5 for Phase 1, c2 for Phase 2, c5 for Phase 3 and c4 for Phase 4. The experiment
tested if and how fast the IR-IGE could adapt to changes in a risk level compared to
traditional Q-learning.

Both algorithms used a learning rate of α = 0.1 and an exponentially decaying ε-
greedy action selection with εinit = 50, d = 0.998 and εmin = 0. For the IR-IGE, ε stayed
at zero after the first phase. For Q-learning, ε was reset after each phase to allow it to
explore and update its Q-values to the new risk level. The IR-IGE did not need to update
its Q-values after phase transitions, because it can generalize policies learned under the
first risk context for all other contexts.

The results of Phase 1 show that the IR-IGE and Q-learning behaved similar (Fig. 3.6).
Both learned the optimal choice with the same number of episodes. In the successive
phases, the IR-IGE outperformed Q-learning. The IR-IGE could immediately adapt to
a new risk level by using the policy of a different module learned during the first phase.

(a) Interruption Risk MDP (b) Choices (c) Expected Reward per η

Figure 3.5: (a) The Interruption Risk MDP used for the experiments consisted of one
start state s0 and 5 terminal states (g1, . . . , g5). (b) Each terminal state represents a
different choice with different rewards and a number of minimum steps to reach them.
(c) The expected reward of a choice depends on the risk η that the task gets interrupted.
Choice c2 has the highest expected reward for a high risk. For intermediate and low risks,
choices c4 and c5 are optimal. The black points and dashed lines show the risk levels for
the different experimental phases.
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Q-learning needed to learn a new policy for each phase.
The IR-MDP used for the experiments (Fig. 3.5) is deterministic in its state transitions

over the grid world positions. The only stochastic element is the interruption risk. Thus,
for the γ-modules of the IR-IGE, the task is deterministic, because Q-values are only
updated if there is no interruption. As a result, the learning rate of the IR-IGE can be
set to α = 1.0 and the exploration time can be reduced to d = 0.985.

The learning rate in MDPs with a deterministic transition probability and reward
function can be set to α = 1, because no variance over the observation of state transitions
and rewards exists. The Q-values are the expectation over the future reward sum. In
stochastic environments the value has to be updated in small increments over several
steps with α < 1 to allow the value to converge over iterations to the true expectation. In
deterministic environments, the value can be immediately updated with α = 1, because
their exists no variance and the observed rewards and state transitions in each step are
equal to the expectation.

The higher learning rate and reduced exploration allowed the IR-IGE to learn the task
faster (Fig. 3.6). Q-learning could benefit from the higher α and lower exploration only

Results with learning rate α = 0.1 and exploration decay d = 0.998

Results with learning rate α = 1 and exploration decay d = 0.985

Figure 3.6: In contrast to Q-learning, the IR-IGE adapted immediately to changing
risk levels in Interruption Risk MDPs. The algorithms were compared on the IR-MDP
from Fig. 3.5 with four different risk levels (η). IR-IGE could immediately adapt to the
optimal policy for each risk level after Phase 1 as shown by the reward sum per episode.
The reward sum is the mean over 100 agents per algorithm. The optimal reward per
phase is indicated by the gray line. Q-learning needed to adapt to each risk level.
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in Phase 3 which had no risk. In phases which included risk, Q-learning could not learn
the optimal policy, because its values could not converge under the high α setting.

The IR-IGE outperformed classical Q-learning in the experiments. IR-IGE immedi-
ately adapted to different interruption risks. Moreover, it allowed to increase the learning
rate and to reduce exploration, because it did not suffer from the increased stochasticity
that the interruption risk adds to a task.

Discussion

The IR-IGE is guaranteed to be optimal for tasks with an interruption risk for each
time step. For the theoretical analysis and the experiments the interruption risk η is
given as context to the agent. For many tasks, this interruption risk may not be known.
Nonetheless, it can be learned. For example, in tasks where the risk depends on the hour
of the day h, the interruption risk η(h) for each hour can be learned. Only the frequency
of interruptions per time step needs to be observed:

η(h) =
number of interruptions during hour h

number of state transition during hour h
.

This makes the application of the IR-IGE to many scenarios with interruption risk pos-
sible.

One scenario is tasks where the agent has to control machines which have different
failure rates because of their different age. If a machine fails, the task the agent performs
is interrupted. The IR-IGE can adapt immediately between different machines. Another
scenario is where the agent has to interrupt its task due to an incoming requests to
perform a different task as described in the introduction to this section. Depending on
external factors this interruption risk can vary. In summary, the IR-IGE can be applied
to a multitude of task scenarios in which an agent needs to adapt its strategy to perform
a task because the task might get interrupted.

It should be noted that IR-MDPs can also be solved by another modular Q-learning
approach. Similar to the IR-IGE, it has an η-module for each potential interruption
risk η. All modules learn from the observations (st, at, rt, st+1) during an episode. Each
module’s discount factor is near one (γ ≈ 1). Each module samples at each transition if
an interruption will take place according to its associated risk η. If it sampled that an
interruption will happen, the module pretends that the episode ended in the interruption
state and updates the last Q-value with a reward of 0: Q(st, at) ← Q(st, at) + α(0 −
Q(st, at)). If the observation from the environment ends in the interruption state, then,
like the IR-IGE, the Q-values of the last previous state are not updated. By this method,
each η-module learns its Q-values as if under a interruption risk of η. Depending on
the current interruption risk of the task, the associated module’s Q-function is used to
define the policy of the agent. Although, this framework can solve IR-MDPs, it has a
disadvantage to the IR-IGE. For all η-modules with η > 0 the task has an increased
stochasticity due to their interruption risk. As a result, the learning rate α should be low
enough to allow the convergence of the Q-values. This is not the case for the IR-IGE.
For the modules of the IR-IGE, the interruption risk does not increase the stochasticity
over the observation from which they learn. Thus, a larger learning rate α can be used
improving the learning speed. This gives the IR-IGE an advantage over the the η-module
approach.



68 Adaptation to Contextually Changing Tasks

3.3.2 Reward Risk Tasks

Reward risk tasks are another task variant for which an optimal mapping from context
to the optimal γ-module can be derived. These tasks are similar to the interruption risk
tasks (Section 3.3.1). Instead of a risk for task interruption, reward risk tasks have a risk
that all future reward becomes zero without the knowledge of the agent (Fig. 3.7). More
formally, for each time step t exists a risk of η that the reward for all future time steps is
zero. Similar to the interruption risk tasks, the risk probability is the context of the task.
The tasks are formulated by Reward Risk MDPs (RR-MDPs) which have an observable
state space and a hidden state space. The observable space is the task without any risk
that future reward becomes zero. Any MDP can be used for it. The hidden state space
is used to define if the current and all future reward is zero.

A variant of the CA-IGE, the Reward Risk Adaptive IGE (RR-IGE), solves RR-MDPs
optimally for different risk levels. The important property of the RR-IGE is that even
in the case that all future reward became zero, it still learns as if it would still receive
rewards. This can be understood as if the agent knows what reward it would have received.
This allows the γ-modules to learn a consistent set of policies over all risk levels and that
an optimal map from the reward risk η to the optimal γ-module can be constructed with
γ = 1− η.

For example, in a foraging task the agent learns to find the way to different food sites.
The food sites have different distances and reward values. Distant sites offer more food.
Furthermore, the agent has to compete with other agents that it cannot observe. Other
agents could get to a food site and eat everything before the agent can reach the site. If the
agent reaches a food source that has already been taken it gets no reward. Nonetheless,
the agent could still get information about the potential reward it could have received
if another agent hadn’t reached the site first. Remains of the food such as peels could
provide such information. From this information the agent can still learn that this food
site has a high payoff, as long as no other agent reaches it first. This risk that a food site
has already been taken by another agent can be modeled as a probability per time step.
This probability could depend, for example, on the number of agents in the environment.
If there are more agents, then there is a higher risk that another agent already reached

Figure 3.7: Illustration of a Reward Risk MDP with 2 choices (g1, g2). The states are
separated in two spaces. The observable state space can be any MDP. The hidden state
space SH consists of 2 states which determine if the agent receives reward (sR) or not
(sN). For each step a risk with the probability η exists that the hidden state changes
from sR to sN and that the agent will not receive further rewards.
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a food site. Depending on this risk level, the agent has to adjust its choice which food
source it wants to reach.

The next part defines the RR-MDPs used to formalize reward risk tasks and the RR-
IGE to solve them. It also provides the proof that the RR-IGE is optimal for RR-MDPs.
The RR-IGE is then compared to classical Q-learning in a grid world RR-MDP, showing
that the RR-IGE outperforms classical Q-learning.

Reward Risk MDPs and the Reward Risk IGE

Definition 7. A Reward Risk MDP RR-MDP(A, SE × SC , T, SH , TH , R) is a partially
observable variant of a CMDP. It has an observable environmental and context state space
SE × SC with a transition probability function T : SE × A × SE. The hidden part of
the RR-MDP consists of two states SH = (sR, sN) and a transition probability function
TH : SH ×A× SH between them. At the beginning of an episode the agent starts in the
hidden state sR. At each transition a risk of η exists with which the hidden state changes
to sN :

∀a ∈ A : TH(sR, a, sN) = η ,

with η being constant during an episode. The hidden state sN is absorbing. The reward
function R depends on the hidden state in which an agent ends after a transition:

R
(
(sEt , s

H
t ), at, (s

E
t=1, s

H
t+1)
)

=

{
RO(sEt , at, s

E
t=1) | sHt = sR

0 | sHt = sN
,

where RO : SE × A × SE 7→ R is a reward function over the observable environmental
state space SE. The context during each episode is defined by the risk probability:

sC = η .

RR-MDPs can be optimally solved by a Reward Risk Adaptive IGEs (RR-IGE) (Al-
gorithm 3.2). The RR-IGE is a variant of the CA-IGE. Its γ-modules learn the reward
function based on the observable reward function RO:

RM(sEt , at, s
E
t+1) = RO(sEt , at, s

E
t+1) . (3.6)

This allows the modules to learn their values as if no risk η = 0 exists in the RR-MDP.
It can be proven that this allows the RR-IGE to learn the optimal policy by using the
mapping γ = 1− η from context η to γ-modules.

Theorem 11. An RR-IGE with a γ-map of

G∗(η) = 1− η ,

has the optimal policy π∗sC (sE) for all states (sC , sE) ∈ S of an RR-MPD, under the
assumption that the γ-modules converged to their optimal Q-functions Q∗γ and use their
greedy policy.
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Proof. The goal of the IR-IGE is to optimize the expected reward sum per episode if
starting in a state s0 and following the optimal policy π∗:

Eπ∗,s0

[
T−1∑
t=0

rt

]
= Eπ∗,s0 [r0] + Eπ∗,s0 [r1] + Eπ∗,s0 [r2] + . . .+ Eπ∗,s0 [rT−1]

The expected reward for a time step t, in the case that no reward risk exists (η = 0), is
defined as Eη=0

π∗,s0 [rt]. The expected reward at t under a certain risk η is either 0 if the
hidden state sN is reached, or it is the expected reward as if there is no risk Eη=0

π∗,s0 [rt]:

Eπ,s0 [rt] = Pr(st = sI |t) · 0 + Pr(st 6= sI |t) · Eη=0
π∗,s0 [rt]

= Pr(st 6= sI |t) · Eη=0
π∗,s0 [rt]

= (1− η)t · Eη=0
π∗,s0 [rt] ,

where the probability of not reaching the hidden state sI is Pr(st 6= sI |t) = (1− η)t (See
Fig. 3.7). Therefore, the expected reward sum (Eq. 3.6) of the optimal policy φ∗ for each
context η can be reformulated to:

Eπ∗,s0

[
T−1∑
t=0

rt

]
=

T−1∑
t=0

(1− η)t · Eη=0
π∗,s0 [rt] . (3.7)

Algorithm 3.2: Reward Risk IGE
Input:

Learning rate: α ∈ [0, 1]

Sorted list of discount factors: Γ = (γ1, . . . , γm) with γi ∈ (0, 1)

initialize Qγ(s, a) to zero
repeat (for each episode)

initialize state s, context η

// map context to the active module γ∗

γ∗ ← 1− η

repeat (for each step in episode)
choose an action a for s derived from Qγ∗ (e.g. ε-greedy)
take action a, observe rM , s′

forall the γ ∈ Γ do

// learn values based on reward function RM

Qγ(s, a)← Qγ(s, a) + α
(
rM(s, a) + γmaxa′ Qγ(s

′, a′)−Qγ(s, a)
)

end
s← s′

until s is terminal-state
until termination
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Because the modules of an IR-IGE learn their Q-functions from reward function RO as if
no reward risk exist, their optimal Q-values are:

Q∗γ(s0, a) =
T−1∑
t=0

γt · Eη=0
π∗,s0 [rt] , (3.8)

Using a mapping of γ = 1 − η, the optimal Q-values (Eq. 3.8) and the expected reward
sum of the optimal policies for each context (Eq. 3.7) are equal. Therefore, after the
Q-functions have converged to their optimal values, using a module with γ = 1− η under
context η will result in the optimal policy for the RR-IGE. This proves that the RR-IGE
is optimal for all interruption risks η using the γ-map G∗(η) = 1− η.

Experiments

The RR-IGE was compared to Q-learning in a grid world variant of an RR-MDP (Fig. 3.8).
The grid world has the same layout as the grid world of the interruption risk experiments
(Fig. 3.5). For each step a risk of η exists that future reward becomes zero. Each experi-
mental run was divided in four phases with different risk levels (Phase 1: η = 0.03, Phase
2: η = 0.15, Phase 3: η = 0, Phase 4: η = 0.3). Each phase consisted of 5000 episodes.

The RR-IGE has been compared to two Q-learning approaches. The Q-learners differ
in their state space information. The state space of the first approach consists of the
position p of the agent in the grid world and the reward risk (s = (p, η)). The second
approach has a step counter t as state information (s = (t, p, η)) as well. The counter
t holds the number of steps that the agent performed since the start of the episode.
This allows the Q-learner to incorporate information about the changed expectation of
the future reward if it visits the same state at different time points. This is important

(a) Reward Risk MDP (b) Choices (c) Expected Reward per η
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Figure 3.8: (a) The reward risk MDP used for the experiments consisted of one start
state s0 and 5 terminal states (g1, . . . , g5). (b) Each terminal state represents a different
choice with different rewards and a number of minimum steps to reach them. (c) The
expected reward of a choice depends on the risk (1 − η) at each step that future reward
becomes zero. For a high risk (low η) choice c2 gives the highest expected reward. Whereas
for intermediate and low risk choices c4 and c5 are optimal. The black points and dashed
lines show the risk levels of the different experimental phases.
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because the probability that the agent gets no more reward, i.e. that hidden state sN was
entered, is higher when the agent visits the same state at a later time point again. For
example, the agent starts in state s0 in Fig. 3.8. In the first run, the agent goes to goal
state g1 by the trajectory (up, up). In the next run, the agent goes also to goal state g1,
but by the trajectory (left, up, right, up). Both trajectories have the state north of s0

as last state before entering the goal state g1. Nonetheless, the number of steps before
entering this state differ between these two trajectories and therefore the risk that the
reward for entering the terminal state is zero is different. As a result, information about
the time is needed to differentiate the two situations.

For the RR-IGE, the position in the grid world is used as the environmental states SE
for the γ-modules. The reward risk level η is used as context information SC .

All agents used a learning rate of α = 0.1 and an exponentially decaying ε-greedy
action selection with εinit = 50, d = 0.998 and εmin = 0. For the RR-IGE ε stayed at zero
after the first phase. For both Q-learners ε was reset after each phase to allow them to
explore and update their Q-values to the new risk level.

The results show that the RR-IGE outperformed both Q-learning approaches in all

(a) Results with learning rate α = 0.1 and exploration decay d = 0.998

(b) Results with learning rate α = 1 and exploration decay d = 0.985

Figure 3.9: In contrast to Q-learning without and with time step information, the RR-
IGE adapts immediately to changing risk levels in RR-MDPs and can utilize a higher
learn rate of α = 1. The algorithms were compared in a grid world task (Fig. 3.8) with
four different risk levels (η). The mean over 100 runs per algorithm are shown. The
optimal reward per phase is indicated by the gray region.
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phases (Fig. 3.9). After Phase 1, the RR-IGE could immediately adapt to different risk
levels. Both Q-learning approaches needed to learn a new Q-function for each risk level.
The Q-learner without information about the current time step could not find the optimal
policy for any phase with risk (Phase 1, 2, and 4). The agent could learn the optimal
policy only in Phase 3 that has no risk. Q-learning with step information can learn the
optimal policy for all phases. Nonetheless, in Phase 1 and 3 which have the farthest
goal state g5 as optimal solution, the agent could not learn the optimal policy to reach
it for each of the 100 experimental runs. The problem is its increased state space as a
result of using the time step information. The increased state space would require more
exploration to consistently find the optimal policy.

For the γ-modules of the RR-IGE the task is deterministic because the rewards given
to them do not include the risk. As a result, the learning rate of the RR-IGE can be set
to α = 1.0 and the exploration time can be reduced be setting the exploration decay to
d = 0.985. This allowed the RR-IGE to learn the optimal policy for each of its modules
faster (Fig. 3.9, b, Phase 1). Both Q-learning methods had a decreased performance in
phases with risk (Phases 1,2 and 4) for these learning parameters. The task is stochastic
for them under risk and it would require a smaller α to learn it. Only in Phase 3, that has
no risk, could the Q-learning approaches improve their performance. Nonetheless, they
are still outperformed by the RR-IGE, because it could immediately adapt its policy in
this phase.

In summary, the RR-IGE outperformed the classical Q-learning methods, because of
three reasons. First, the RR-IGE can utilize its knowledge learned under one context in
other contexts. Whereas, Q-learning needed to relearn its optimal policy for each context.
Second, Q-learning needs to incorporate the time step information into its state space to
find the optimal policy. This increases the complexity of the task and the need for more
exploration. Finally, for the modules of the RR-IGE the task is deterministic. Thus, a
higher learning rate (α = 1) can be used, increasing the learning speed.

Discussion

The RR-IGE can directly adapt to different risk levels η in reward risk tasks. It learns
different policies by its γ-modules as if there is no risk in the environment. Given some
reward risk, the RR-IGE can directly map the risk to the γ-module with the optimal
policy by γ = 1 − η. Given that the modules learned their optimal Q-functions, the
mapping is guaranteed to result in the optimal policy.

As for interruption risk tasks, the risk η is given to the agents as task context, but it
can also be learned by observing the task. However, compared to interruption risk tasks,
the calculation of the risk can be more complicated. It depends on the reward function
of the task. If the reward function cannot be 0 (RO ∈ R \ 0) unless the hidden state sN
is reached, the calculation is simple. In such tasks, it can be clearly detected when all
future reward becomes zero, i.e. when hidden state sN is reached, because at this time
point the reward is 0 (rt = 0). This allows to calculate the probability by observing how
often this happens, for example during a certain time of the day with:

η =
N r→0

N r 6=0
,
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where N r→0 is number of episodes in which the reward went to zero (rt = 0), and N r 6=0

the sum over the number of steps in all episodes until the reward went to zero.
For tasks that allow rewards to be zero, even if the state sN is not reached, the

calculation is more complicated, because it cannot be observed when the hidden state
changes to sN . One possible solution for such situations is to use a maximum likelihood
estimation (Bishop 2006) for η:

argmax
η
L(η;D) , with L(η;D) = Pr(D|η) ,

where D is observed data from the task. The goal is to find the risk probability η that
has the highest probability of explaining the collected experimental data. For example,
in tasks such as those used for the experiments (Fig. 3.9), where reward is only given
at the end of an episode, the likelihood can be computed by the following method. For
each observed episode, the final reward r and the number of steps n are collected as data
Di = (ri, ni). The probability for receiving reward (r 6= 0) after an episode of n steps is:

Pr(r 6= 0|n) = (1− η)n ,

which can be derived from the transition probabilities TH of the hidden state space SH
(Fig. 3.7). The probability for not receiving reward (r = 0) is

Pr(r = 0|n) = 1− Pr(r 6= 0|n)
= 1− (1− η)n .

Based on these probabilities the likelihood of a risk level η for data D can be calculated
by:

L(η;D) =
∏|D|

i=1 I(ri = 0)Pr(ri 6= 0|ni) + I(ri 6= 0)Pr(ri = 0|ni)
=

∏|D|
i=1 I(ri = 0)(1− η)ni + I(ri 6= 0) (1− (1− η)ni)

,

where I is the indicator function. The reward risk η which maximizes this likelihood
should be used as context for the RR-IGE to select the most appropriate γ-module.

Another assumption that is not fulfilled for many potential tasks is that the reward
function RO is given to the agent. As a solution the agent could learn a model R̂O of the
reward function RO based on the observations (st, at, rt, st+1), but ignoring the observation
with zero reward (rt = 0). The model of the reward function could be for example learned
by a Robbins-Monro approximation algorithm:

R̂O
init(S,A) = 0 ,

R̂O
t+1(st, at) =

{
R̂O
t (st, at) | rt = 0

R̂O
t (st, at) + αR̂

(
rt − R̂O

t (st, at)
)
| rt 6= 0

,

where αR̂ is the learning rate. By ignoring zero rewards (rt = 0) the update for R̂O
k+1 will

ignore observations if the hidden state sN is reached. One problem with this method is that
the learned reward function R̂ will have a bias if the function RO(s, a) is a distribution over
rewards with a non-zero probability for zero as outcome, because these will be ignored.

Similar to the interruption risk tasks, a different modular Q-learning algorithm can
be also constructed to solve RR-MDPs. The algorithm has for each potential risk level η
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an associated η-module. Each module learns from the observations (st, at, rt, st+1) during
an episode. The modules sample at each transition if the current reward and all future
rewards will be zero, i.e. if hidden state sN is reached, according to their associated risk η.
If this is the case, then the module will pretend that all future reward during the episode is
zero. By this, each η-module learns the optimal policy for its risk level. Depending on the
reward risk for the current episode, the associated module’s Q-function is used to define
the policy of the agent. Nonetheless, similar to the alternative modular framework for
IR-MDPs, for this framework the stochasticiy for η-modules with η > 0 is also increased.
A lower learning rate α is required to learn the correct values compared to the RR-IGE.
This decreases its learning speed. Therefore, the RR-IGE will have a better performance
compared to the alternative modular approach.

3.3.3 Constant Punishment Tasks

The third variant of tasks for which an optimal mapping from context to γ-modules can
be derived are constant punishment tasks. In these tasks, for each time step a punishment
p is given to the agent that is constant during an episode (Fig. 3.10). The strength of the
punishment is the task context. It can change between episodes. Constant punishment
tasks are deterministic, goal-only-reward MDPs (Definition 3).

An example for a constant punishment task is an agent that has to collect energy
from different possible sources with different payouts. For each action the agent looses
some energy. The energy p ∈ R− that the agent losses is fixed for an episode, but it
depends on some factors such as the weight of the agent which changes depending on
its load. The total energy that the agent gains in an episode is t · p + R, where t is the
number of time steps to reach the source and R is the energy that the agent gains from
it. Depending on the punishment strength p, a different energy source might be optimal.
If the punishment is high, then the agent should prefer nearby sources which do not need
a lot of steps. Whereas, for a low punishment, more distant energy sources which have
more energy provide a higher payoff.

Constant punishment tasks can be solved with a Constant Punishment IGE (CP-IGE).
The CP-IGE can outperform classical Q-learning. Nonetheless, a different modular Q-
learning framework, which is introduced in the discussion section, can be constructed that
has the same advantages as the CP-IGE. Additionally, this framework is more general,
because it can solve stochastic tasks. Therefore, the CP-IGE does not provide a practical
algorithm for solving constant punishment tasks. However, it provides an interesting
theoretical case for the ability of the IGE to handle different problem settings.

Figure 3.10: A Constant Punishment MDP with two goal states (g1, g2). For each step
the agent receives a punishment p until it reaches a goal state.
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The next section defines Constant Punishment MDPs (CP-MDPs) used to formulate
constant punishment tasks. The CP-IGE is introduced and its optimality for solving CP-
MDPs is proven. Following this, the experimental results from applying the CP-IGE to
a CP-MDP are discussed, showing that it outperforms classical Q-learning.

Constant Punishment MDPs and the Constant Punishment Adaptive IGE

Definition 8. A Constant Punishment MDP CP-MDP(A, SE×SC , T, R) is a determinis-
tic variant of a CMDP. Its transition probability function is defined over the environmental
state space SE and it is deterministic:

∀sEi , a ∃sEj : T (sEi , a, s
E
j ) = 1 , and

∑
sEk ∈SE

T (sEi , a, s
E
k ) = 1 .

The reward function is defined over the environmental state space SE. It gives for each
transition a punishment p, unless a goal state SG is reached:

R
(
sEi , a, s

E
j

)
=

{
p | sEj /∈ SG

RG(sEj ) | sEj ∈ SG
,

where the punishment is p ∈ R− is constant during an episode and the rewards for the
goal states are RG : S 7→ R+. The context is the punishment p of an episode:

sC = p .

The Constant Punishment Adaptive IGE (CP-IGE) can be used to solve CP-MDPs
(Algorithm 3.3). The γ-modules of the CP-IGE learn the Q-values based on a modified
reward function RM :

RM
(
sEt , a, s

E
t+1

)
=

{
0 | sEt+1 /∈ SG

exp
(
E
[
RG
(
sEt+1

)])
| sEt+1 ∈ SG

. (3.9)

An important point is that in the case of reaching a goal state the expectation over the
reward for entering the state is used. If the reward function for goals is deterministic, then
it can be directly applied. For stochastic rewards, an approximation of their expectation
has to be learned which will be further discussed in the discussion section. An optimal
mapping from the punishment context p to the appropriate γ-module with γ = exp(p)
can be derived based on the reward function RM .

Theorem 12. An CP-IGE with a γ-map of

G∗(η) = exp(p) ,

has the optimal policy π∗sC (sE) for all states (sC , sE) ∈ S of an CP-MPD, under the
assumption that the γ-modules converged to their optimal Q-functions Q∗γ and use their
greedy policy.
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Proof. Because CP-MDPs are deterministic and for each step a constant punishment is
given until a goal state is reached, the expected reward sum for a policy π starting in
state s0 can be expressed as:

Epi,s

[
T−1∑
t=0

rt

]
= (n(s, sG)− 1) · p+ E [rsG ] , (3.10)

where n(s, sG) is the number of steps to reach goal state sG starting from state s and rsG
is the reward for reaching the goal state.

The CP-IGE learns the values of its γ-modules based on the modified reward function
RM (Eq. 3.9). The function gives a reward of 0 for all steps and the exponential over
the expectation of the reward for reaching a goal state. Using the reward function RM

simplifies the definition of the Q-values to

Qγ(s, a) = E [r0] + γE [r1] + γ2E [r2] + · · ·+ γTE [rT−1]

= 0 + γ0 + γ20 + · · ·+ γn(s,sG)−1 exp (E [rsG ])

= γn(s,sG)−1 exp (E [rsG ]) .

The log transformation of the Q-values:

log (Qγ(s, a)) = log(γn(s,sG)−1 exp(E [rsG ]))
= (n(s, sG)− 1) · log(γ) + E [rsG ] ,

(3.11)

Algorithm 3.3: Constant Punishment IGE
Input:

Learning rate: α ∈ [0, 1]

Sorted list of discount factors: Γ = (γ1, . . . , γm) with γi ∈ (0, 1)

initialize Qγ(S
E, A) to zero

repeat (for each episode)
initialize state sE, context p

// map context to the active module γ̃

γ̃ ← exp(p)

repeat (for each step in episode)
a← choose an action for sE derived from log(Qγ̃) (e.g. ε-greedy)
rM , sE′ ← take action a, observe outcome
forall the γ ∈ Γ do

// learn values based on the exponential of the reward
function R

Qγ(s
E, a)← Qγ(s

E, a) + α
(
rM + γmaxa′ Qγ(s

E′ , a′)−Qγ(s
E, a)

)
end
sE ← sE

′

until sE is terminal-state
until termination
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and the expected reward sum (Eq. 3.10) are equal for γ = exp(p). The logarithm is
a monotonically increasing function. Thus, the actions that maximize the Q-function
also maximize their log transformation (argmaxaQ(s, a) = argmaxa′ log(Q(s, a′))). As a
result, the module with γ = exp(p) also optimizes the reward sum (Eq. 3.10). This proves
that the γ-map G∗(p) = exp(p) will choose the module with the optimal greedy policy for
each punishment context p.

Because the logarithm of the Q-values (Eq. 3.11) results in the expected reward sum
that should be optimized, the CP-IGE uses the log of the Q-functions for the action
selection (Algorithm 3.3). Nonetheless, also the direct Q-values could be used, because
the logarithm is a monotonic increasing function, meaning that the action with the highest
value has also the highest value after the log transformation.

Experiments

The CP-IGE was compared to a standard Q-learning algorithm in a grid world variant
of a CP-MDP with five goal states (Fig. 3.11, a). Reaching a goal state gives a positive
reward (Fig. 3.11, b). Otherwise, for each step a punishment p is given. Therefore, the
expected reward and the optimal goal state depends on p (Fig. 3.11, c).

Each experimental run consisted of four phases with 1200 episodes per phase. The
phases differed in their punishment p. Phase 1 had a small punishment (p = −0.2),
followed by Phase 2 that had an intermediate punishment (p = −0.75). Phase 3 had no
punishment (p = 0) and Phase 4 had a high punishment (p = −1.3). Fig. 3.11 (c) shows
that the optimal choice changed between each phase with c5 for Phase 1, c4 for Phase 2,
c5 for Phase 3 and c2 for Phase 4. The experiment tested if, and how fast, the CP-IGE
can adapt to changes in punishment compared to traditional Q-learning.

(a) CP-MDP (b) Choices (c) Expected reward per goal
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Figure 3.11: (a) The Constant Punishment MDP used for the experiments consisted of
one start state s0 and 5 goal states (g1, . . . , g5). (b) Each goal state represents a different
choice with different rewards and a number of minimum steps to reach them. (c) The
expected reward of a choice depends on the punishment p for each step. For a high
punishment choice c2 has the highest expected reward. Whereas, choices c4 and c5 are
optimal for intermediate and low punishment. The black points and dashed lines show
the punishment levels of the experimental phases.
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Figure 3.12: The CP-IGE adapts immediately to changing punishments. Q-learning
has to learn the optimal policy for each phase independently.

The CP-IGE uses the position x in the grid world as environmental state space for its
γ-modules (sE = x). The punishment level p is given as context information (sC = p).
Q-learning uses as state space the combination of both (s = (x, p)). Both algorithms
used a learning rate of α = 1 and an exponentially decaying ε-greedy action selection
with εinit = 1, d = 0.995 and εmin = 0. For the CP-IGE, ε stayed at zero after the first
phase. For Q-learning, ε was reset after each phase to allow it to explore and update its
Q-values to the new punishment level. The CP-IGE did not need to update its Q-values
after phase transitions.

The results show that CP-IGE and Q-learning behaved similar for Phase 1 (Fig. 3.12).
Both learned the optimal choice c5 with the same number of episodes. In the successive
phases where punishment exists, CP-IGE outperformed Q-learning. The CP-IGE could
immediately adapt to the new punishment levels. Q-learning needed to learn a new policy
for each punishment level.

Discussion

The CP-IGE can guarantee to be optimal under different constant punishments in deter-
ministic and goal-only-reward tasks. It can outperform classical Q-learning in such tasks,
because it can generalize policies learned under one punishment level to other levels.

The punishment level is given to the CP-IGE, but it can also be simply observed. As
long as the agent does not enter a goal state the punishment is the reward that the agent
receives (p = R(st, at)).

A problem for the framework exists for tasks where the reward that the agent receives
by reaching a goal state is stochastic. Then, the reward function used for the γ-modules
(Eq. 3.9) has to give directly the expectation over the reward (E

[
RG
(
sEt+1

)]
). This

expectation is usually not given for a task. However, the expectation could be learned in
an extra step based on observations (st, at, rt, st+1). For each goal state sG the expectation
R̂G over its reward can be learned by a Robbins-Monro approximation algorithm:

R̂G
k+1(st, at) = R̂G

k (st, at) + αR̂

(
rt − R̂G

k (st, at)
)
.

The Q-modules could then use R̂G to define the rewards for entering goal states (rMt =
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exp(R̂G(st, at))). This allows the framework to solve tasks with stochastic reward func-
tions.

Although, the CP-IGE can guarantee optimality for CP-MDPs, its practical applica-
tion is not recommended, because a different Q-learning algorithm that is more general
can be constructed. This Q-learner is also optimal and, in contrast to the CP-IGE, it can
handle environments with stochastic transitions. Moreover, it does not need to model the
expectation R̂G if a stochastic reward function is used for goal states. This Q-learner has
a module for each potential punishment level p. The reward function for each module
depends on its associated punishment level p with:

RM
(
sEt , a, s

E
t+1

)
=

{
p | sEt+1 /∈ SG
rt | sEt+1 ∈ SG ,

where the module receives the punishment for normal transitions and the regular reward
for entering a goal state. The modules can learn in parallel from the same observations
similar to the IGE. Each module learns the optimal policy for its associated punishment
level. This allows this Q-learner to learn the optimal policy for each punishment level
in parallel, even in stochastic environments. The policy of the agent is then based on
the module which is associated with the current punishment level. Although, this ap-
proach outperforms the CP-IGE because it is more general, the CP-IGE still provides an
interesting theoretical case for the abilities of the IGE.

3.4 Learning of γ-Mappings
The previous section discussed special Context MDPs for which an optimal mapping
from context to γ-modules can be derived. This section discusses how the CA-IGE can
be applied to general CMDPs in which a γ-mapping needs to be learned. Three variants
of the CA-IGE algorithm are introduced that can learn γ-mappings. For the CMDPs
where a γ-mapping has to be learned, the convergence of the CA-IGE to the optimal
policy cannot be guaranteed. In contrast, classical algorithms such as Q-learning, which
learn over the whole state space (SE × SC) of the CMDP, are guaranteed to converge to
the optimal policy. Nonetheless, the CA-IGE can outperform classical Q-learning in the
rate of learning, because it reduces the complexity of CMDPs. For tasks where the agent
needs to adapt to changing task conditions the rate of learning is often more important
than the final performance.

The problem of learning a γ-map can be formulated as an MDP with the set of γ-
Modules Γ as its action set:

G-MDP(Γ, SE × SC , T, R) , (3.12)

where the state space (SE × SC), the reward function R, and the transition probability
function T are the same as for the CMDP. The goal is find a mapping G, the policy for the
G-MDP, to maximize the expected reward sum for each episode (Eq. 3.1). Because the
G-MDP is an MDP, the γ-map can be learned by any reinforcement learning algorithm
that can solve MDPs. Section 3.4.1 introduces a model-free, temporal difference method
and two policy search methods to learn the γ-map. The CA-IGE variants are compared
to classical Q-learning in grid-world versions of the energy foraging task in Section 3.4.2.
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Two variations for the reward function RM of the γ-modules are analyzed in Sec-
tion 3.2.2. The first uses the general reward function R from the overall MDP, but
updates values only for observations from a subset Φ ∈ SC of contexts. Although, this
increases the number of needed observations to learn the value functions, the CA-IGE still
outperforms classical Q-learning. The second variation decomposes the reward function
R into a component RE that takes only the task state space SE into account, and RC

that takes only the context SC into account. This allows the γ-modules to learn from all
observation in the task, by using only the reward function RE. This improves the per-
formance of the CA-IGE significantly compared to the version which learns only under
certain contexts and to classical algorithms.

3.4.1 Algorithms to Learn γ-Mappings

Three variants of the CA-IGE are introduced to learn the γ-mapping from context to the
most appropriate γ-module. Because the learning of the γ-map G is an MDP (Eq. 3.12),
all variants are reinforcement learning methods. The first variant (Q-IGE) uses Q-learning
to learn the mapping. The other two variants (PGPE-IGE and EPHE-IGE) use policy
search methods.

The Context Adaptive Q-IGE

The Context Adaptive Q-learning Independent γ-Ensemble (Q-IGE) is a CA-IGE variant
that use a Q-learning approach to learn the γ-map (Algorithm 3.4). Its γ-map G is based
on a learned value function (QG : S × Γ 7→ R) over the state space S and the modules Γ.
The state space is either the task and context space (S = (SE ×SC)) or only the context
space (S = SC) of the CMDP. The value for a state-module pair QG(s, γ) is the sum over
the expected discounted future rewards, if the γ-module’s greedy policy is used in state s
and subsequent steps follow the mapping G. It can be formulated in form of the Bellman
equation:

QG(s, γ) = EG

[∑T−1
t=0 γ

t
Grt

]
= R(s, πγ(s)) + γG · Es′

[
maxγ′ Q

G(s′, γ′)
]
,

where γG ∈ [0, 1] is a discount factor. The map G(s) is defined by the greedy action over
the QG function:

G(s) = argmax
γ

QG(s, γ)

A Q-learning approach is used to learn the optimal value function QG∗. It should be noted
that the optimal mapping G∗ solves the G-MDP (Eq. 3.12) optimally, but not necessarily
the CMPD.

The Q-IGE learns for each state-γ pair a value. The IGE may have a large set of
γ-modules. If a standard Q-learning approach would be used to learn the values, it would
take many observations and a lot of exploration to learn for each γ-module the values.
However, the Q-IGE can be altered in two ways to allow an efficient learning of the values,
and exploration.

First, the Q-IGE has a parallel update of values for γ-modules with the same greedy
policy after one observation. The Q-IGE selects the γ-module γ̃t to select an action at
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Algorithm 3.4: Context Adaptive Q-IGE
Input:

Learning rates: αG ∈ [0, 1], αQ ∈ [0, 1]

Discount factor for γ-mapping: γG ∈ [0, 1]

Sorted list of discount factors: Γ = (γ1, . . . , γm) with γi ∈ (0, 1)

initialize QG to zero
repeat (for each episode)

initialize state (sE, sC)

repeat (for each step in episode)

// select the active γ-module after each transition
γ̃ ← select module for state (sE, sC) based on QG (e.g. ε-greedy)

a← select action for state sE based on Qγ̃ (e.g. ε-greedy)

(rM , r), (sE
′
, sC

′
)← take action a, observe outcome

// identify all γ-modules for which action a is optimal
Γ̂← (γi)∀γi: a = argmaxuQγi (s

E ,u)

// update QG for all modules in Γ̂

forall the γ ∈ Γ̂ do
QG(sE, sC , γ) ← QG(sE, sC , γ)

+ αG
(
r + maxγ γGQ

G(sE
′
, sC

′
, γ)−QG(sE, sC , γ)

)
end

forall the γ ∈ Γ do
Qγ(s

E, a)← Qγ(s
E, a) + αQ

(
rM + γmaxa′ Qγ(s

E′ , a′)−Qγ(s
E, a)

)
end
(sE, sC)← (sE

′
, sC

′
)

until s is terminal-state
until termination

based on its policy. It performs the action and observes the resulting reward rt and the
new state st+1. Then, it updates the values for all modules Γ̂ for which action at follows
their greedy policy:

Γ̂ = (γi)∀γi∈Γ: at = argmaxâQγi (s
E ,â) .

All these modules are updated, because all their greedy policies would take action at and
result in the same observation. Thus, the values of many γ-modules can be updated in
parallel after one observation.

Second, the Q-IGE explores over greedy policies and not γ-modules. An ε-greedy
selection strategy is used. First, it samples if with probability ε an exploration step
should be performed. If not, it will use the γ-module with the maximum value (γ̃ =
argmaxγ Q

G(s, γ)). In the case of an exploration step, one approach would be to select
a random module as active γ-module γ̃. However, there is a problem with this approach
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because many of the modules usually have the same greedy policy. For example, out of
100 modules, 95 might have a1 as greedy action and 5 have a2 as greedy action. If the
policy of a random module would be explored, action a1 would have a probability of 0.95
and a2 of 0.05 to be used. This is problematic because the goal of the random exploration
is to choose between different policies randomly in an uniform manner. Each policy should
have the same probability. To solve this problem, the ε-greedy module selection explores
over policies and not modules. For an exploration step, the greedy actions of all modules
are collected in a set without repetition. For the given example of 100 modules with two
greedy actions, the set would be (a1, a2). From the set of greedy actions, one of them
is randomly selected. Then, one of the modules which has this action as greedy action
is randomly selected. This avoids that policies, i.e. greedy actions, are oversampled just
because more modules have them as their greedy policy.

The parallel update of values for γ-modules with the same greedy policy, and the
exploration over greedy policies and not γ-modules allow the Q-IGE to learn the γ-map
with a large set of γ-modules.

The Context Adaptive PGPE and EPHE-IGE

The Q-IGE uses value-based Q-learning to learn the γ-mapping. The next two variants
of the CA-IGE are policy-search methods. The first is the Context Adaptive Parameter
Exploring Policy-Gradients Independent γ-Ensemble (PGPE-IGE) based on the PGPE
(Sehnke et al. 2010). The second approach is the Context Adaptive EM-based Policy
Hyperparameter Exploration Independent γ-Ensemble (EPHE-IGE) based on the EPHE
(Wang, Uchibe, & Doya 2017). Both algorithms are policy search approaches for deter-
ministic policies. Their goal is to optimize the deterministic γ-map G which is defined by
a parameter vector θ ∈ Θ:

G(sC , θ) = θ1 +
1− θ1

1 + exp(−θ2(sC − θ3))
. (3.13)

The map G has a sigmoidal form. See Fig. 3.14 (d) for an example.
Standard policy search methods like REINFORCE (Williams 1992) use stochastic

policies π(at|st, θ) which are parameterized by θ. Before both algorithms are introduced,
the general approach of stochastic policy search methods are reviewed to provide an
understanding why a deterministic and not a stochastic policy is used.

The goal of policy search methods is to find the parameter that maximizes the objective
function J which is the expected reward sum of the agent:

J(θ) =

∫
H

p(h|θ)R(h)dh ,

where h = [s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT ] is a trajectory history, and R(h) =
∑T−1

t=0 rT
is the reward sum of a trajectory. In MDPs the probability of a trajectory is given by:

p(h|θ) = p(s0)
T−1∏
t=0

p(st+1|st, at)π(at|st, θ) , (3.14)

where p(s0) is the initial state distribution, and p(st+1|st, at) is the transition probability
(usually denoted as T in MDPs). Standard policy search methods such as REINFORCE
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maximize the objective J iteratively. They follow the gradient ∇θJ(θ) with respect to θ
using gradient ascent:

θk+1 = θk + α∇θJ(θ) ,

where α is the step size. If the policy π(at|st, θ) is stochastic the gradient can be calculated
by

∇θJ(θ) = EH

[
T−1∑
t=0

∇θ log π(at|st, θ)R(h)

]
.

To compute the gradient, several trajectories H are collected for the current parameter θk.
The gradient ∇θJ(θ) is then computed to updated the parameters. However, stochastic
policies induce a high variance into the sampling because at each time point an action
at gets sampled. To compensate for this, many samples are required to evaluate a single
policy parameter θ.

To avoid the high variance problem of stochastic policies, a deterministic policy for the
γ-map (Eq. 3.13) is used. The probability for a trajectory (Eq. 3.14) has to be modified
for deterministic policies to:

p(h|θ) = p(s0)
T−1∏
t=0

p(st+1|st, at = π(at|st, θ)) .

As a result, the derivative of it is given by:

∇θat = π(at|st, θ) =
∂p(st+1|st, at)

∂st

∂at
∂θ

∣∣∣∣
at=π(at|st,θ)

,

requiring the knowledge of the state transition probability (Deisenroth, Neumann, &
Peters 2011). For CMDPs, the state transition probability is not given to the agent.

To solve this problem, the PGPE and EPHE use a multivariate Gaussian distribution
over the policy parameters θ:

p(θ|µ, σ) = N (µ, Iσ)

The goal of the algorithms changes to optimize the meta-parameters ρ = (µ, σ) of this
distribution:

J(ρ) =

∫
Θ

∫
H

p(h|θ)p(θ|ρ)R(h)dhdθ .

PGPE uses stochastic gradient ascent ρk+1 = ρk + α∇ρJ(ρ) to maximize J(ρ). The
gradient is given by

∇ρJ(ρ) =

∫
Θ

∫
H

p(h|θ)(R(h)− b)∇ρp(θ|ρ)dhdθ ,

where b is a reward baseline. The baseline is used to decrease the variance of the gradient
estimation. EPHE uses an idea from EM-based Policy Search (Peters & Schaal 2007). It
maximizes a lower bound of the objective function J(ρ) by a new parameter distribution.

The general framework of both algorithms is identical (Algorithm 3.5). The policy
parameter distribution is for both initialized by the hyper-parameters µinit and σinit. The
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Algorithm 3.5: PGPE-IGE and EPHE-IGE
Input:

Inital γ-map hyper-parameters: µinit ∈ RN , σinit ∈ RN

Number of samples: #samples,#subSamples

γ-Module learning rate: αQ ∈ [0, 1]

Sorted list of discount factors: Γ = (γ1, . . . , γm) with γi ∈ (0, 1)

initialize µ← µinit, σ ← σinit
repeat

for i← 1 to #samples do

// draw the policy parameters for the γ-map
draw θi ∼ N (µ, Iσ2)

// evaluate the policy parameters by several episodes
for j ← 1 to #subSamples do

initialize state sE, context sC

rjepisode ← 0

repeat (for each step in episode)

// get active module from the γ-map
γ̃ ← G(sC , θi)

a← choose an action for sE derived from Qγ̃ (e.g. ε-greedy)

(rM , r), (sE
′
, sC

′
)← take action a, observe outcome

forall the γ ∈ Γ do
Qγ(s

E, a) ← Qγ(s
E, a)

+ αQ
(
rM + γmaxa′ Qγ(s

E′ , a′)−Qγ(s
E, a)

)
end
rjepisode ← rjepisode + r

(sE, sC)← (sE
′
, sC

′
)

until sE is terminal-state
end
risamples ← 1

#subSamples

∑
j r

j
episode

end
// update the hyper parameters by Algorithm 3.6 or 3.7
[µ, σ]← update of the policy distribution with (µ, σ, θ, rsamples)

until termination
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Algorithm 3.6: PGPE-IGE - update of the policy distribution
Input:

Policy distribution: µ, σ
Sampled parameters and corresponding returns: θ, r
Step size parameters: αµ, ασ

T ← [tij]ij with tij = θji − µi
S ← [sij]ij with sij =

t2ij−σ2
i

σi

r ← [(r1 − b), · · · , (rN − b)]T with b = 1
|r|
∑

i ri

µ′ ← µ+ αµTr

σ′ ← σ + ασSr

return µ′, σ′

Algorithm 3.7: EPHE-IGE - update of the policy distribution
Input:

Policy distribution: µ, σ
Sampled parameters and corresponding returns: θ, r

b← 1
|r|
∑

i ri

r ← [max(0, r1 − b), · · · ,max(0, rN − b)]T

µ′ ← [µi]i with µi =
∑N
n=1[rnθni ]

b

σ′ ← [σi]i with σi =

√∑N
n=1[rn(θni −µ

′
i)

2]

b

return µ′, σ′

update of the policy parameter distribution is done iteratively. At each iteration several
parameters θ are sampled from the parameter distribution:

θi ∼ N (µ, Iσ) .

The number of parameters is defined by #samples. The parameters are evaluated by
performing several episodes and collecting the reward sum of each episode. Usually, only
one episode per parameter is executed (Sehnke et al. 2010; Wang, Uchibe, & Doya 2017).
For the application of the PGPE and EPHE to the energy foraging task (Section 3.4.2)
several episodes are sampled. The foraging task has varying initial energy levels over
episodes. Hence, to evaluate how a γ-map with the parameters θi performs for different
energy levels, it has to be evaluated over several episodes. The number of sampled episodes
per parameter is given by #subSamples. The reward sum ri of parameter θi is given by
the average reward sum over the collected episodes:

ri =
1

#subSamples

∑
j

rjepisode .

Based on the sampled parameters θi and their evaluated reward ri, the hyper-parameters
µ and σ are updated.
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The update of the hyper-parameters differs between the PGPE and the EPHE . The
PGPE (Algorithm 3.6) calculates the gradient of the objective function and uses gradient
ascent to update the hyper parameters. The gradient ascent uses for each hyper-parameter
(µ, σ) separate step size parameters (αµ, ασ). The baseline b is set to the average reward
over the sampled reward sums (b = 1

|r|
∑

i ri). The EPHE (Algorithm 3.7) has no further
parameters. It uses an expectation maximization approach to update policy parameter
distribution directly, only based on the sampled parameters and their returns and not on
the past distribution.

3.4.2 Experimental Design

The performance of the CA-IGE algorithms that learn γ-maps (Q-IGE, PGPE-IGE and
EPHE-IGE) has been compared to classical Q-learning in energy foraging tasks. This
section describes the tasks and the experimental procedure. The later part describes the
learning parameters for each algorithm.

The Energy Foraging Tasks

The tasks are grid world variants of the discussed energy foraging example (Fig. 3.1).
The agent has to forage for energy sources in a grid world. Each task is formulated as a
CMPD(A, (SE, SC), T, R). The position of the agent in the grid world is the task state
space SE. The agent can move by the actions A = (north, east, south, west). The task
can be stochastic, i.e. a probability of η exist for each transition that the agent moves
in a random direction, instead of its intended direction. The agent has an energy level
sC ∈ R+, which is the task context. It decreases for each action that the agent takes
by p ∈ R− until it reaches 0. If the energy level reaches zero the agent receives a strong
negative punishment p0 ∈ R− for each further movement. If the agent reaches an energy
source, i.e. a goal state sG that gives energy rG, it can refill its energy level. The change
of the energy level sC during a transition is measured by the reward function R with:

sCt+1 = max
(
0, sCt +R(sEt+1, s

C
t+1)
)
.

The reward function R is associated with the gain and loss of energy during a transi-
tion. It depends only on the state st+1 to which the agent transitions:

R(sEt+1, s
C
t+1) = RP (sEt+1) +RC(sCt+1) . (3.15)

It is composed of two components. The first component RP depends on the position of
the agent:

RP (sE) =

{
rG | if sE ∈ SG (sE is a goal state)
p | if sE /∈ SG (sE is not a goal state) ,

where rG is the reward for reaching goal state sG, and p is the loss of energy the agent
has for each action not ending at an energy source. The second reward component RC

only depends on the energy level of the agent:

RC(sC) =

{
p0 | if sC = 0 (agent reached zero energy)
0 | if sC > 0 (agent has energy) .
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It gives the agent a strong negative reward for each action if it reaches a zero energy level.
The goal of the agent is to maximize the reward function per episode:

max
π

Eπ

[
T−1∑
t=0

R(st, a, st+1)

]
.

As a result, the agent tries to gain as much energy as possible during an episode without
reaching an energy level of zero.

Different foraging tasks have been used to evaluate the algorithms under different
conditions. The tasks differed in their layout, i.e. the number, location, and strength of
energy sources, and in their settings of the stochasticity and the punishment strengths.

A simple, a moderate and a complex grid-world layout (Fig. 3.13) have been chosen to
test how task complexity influences the performance of each algorithm. For each layout,
the agent starts in a fixed start position s0. An episode ends, either if the agent reaches
one of the goal states gi ∈ SG, or after a maximum of 30 steps. The complexity of the
layouts increases by an increasing number of states and goal states, and by an increasing
number of steps needed to reach the farthest goal. A more complex layout needs a stronger
exploration to learn the optimal policies to reach all goal states. The simple layout has
36 states with 4 goal states the start state. The farthest goal state can be reached within
6 steps by an optimal policy and if the task has no stochasticity. The moderate layout
has 49 states with 6 goal states. The most distant goal being 9 steps away from the start
state. The complex layout has 100 states with 8 goal states. The farthest goal needs 12
steps to be reached.

Five different task settings for the stochasticity and the punishments were used for each
layout (Table 3.1). The different settings test if the algorithms show a consistent learning
behavior under different task scenarios. In the first setting, the task is deterministic, the
movement punishment is set to p = −1 and the zero-energy punishment is p0 = −9.
In the second setting, stochasticity of η = 0.1 is introduced. The third setting has an
increased stochasticity of η = 0.15. For the fourth setting the movement punishment is
increased to p = −1.5 and in the fifth setting the zero-energy punishment is increased to
pO = −14. Both have a stochasticity of η = 0.1.

The task layouts were designed so that the IGE is not able to learn the optimal policy
for the tasks. Every goal state is an optimal solution for a certain energy level between
1 and 20 with which the agent starts in the start state s0. Thus, to be optimal an agent
should learn the policy to reach each goal state, but the IGE can only learn to reach a
subset of goals as shown by the γ-Curves for the deterministic setting (Fig. 3.13). As
a result, a classical algorithm, such as Q-learning, could outperform the IGE variants,
because it is able to learn the optimal policy. Nonetheless, the experimental results
showed that the IGE variants learned faster and that they usually found a better final
policy than classical Q-learning (Section 3.4.3).

All algorithms were tested in each combination of layout and task setting. For each
algorithm 100 runs were performed to measure their mean performance. Each run con-
sisted of 20, 000 episodes. The agent’s initial energy level was pseudo randomly selected
between 1 and 20 at the beginning of each episode. The distribution was uniform and
over natural numbers: sCt=0 ∼ U(1, 20). It was pseudo random so that for every block of
20 episodes all energy levels between 1 to 20 were used once. This procedure allowed the
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Figure 3.13: The algorithms were evaluated on three task layouts. The layouts increase
in complexity. The number of states increases from 36 to 64 to 100. The number of
goal states from 4 to 6 to 8. The distance to the farthest goal increases from 6 to 9 to
12 steps. The IGE cannot learn to reach every goal state from the start state s0. The
γ-curve (bottom) for the deterministic setting of the task (see Table 3.1) shows that the
IGE modules can learn for the simple task layout to reach 3 out of 4, for the moderate 4
of 6, and for the complex setting 5 of 8 goals.
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Settings Stochasticity η
Movement Zero energy

punishment p punishment p0

1) deterministic 0 −1 −9
2) stochastic 0.1 −1 −9
3) high stochastic 0.15 −1 −9
4) high p 0.1 -1.5 −9
5) high p0 0.1 −1 -14

Table 3.1: Each task layout was tested under five settings. The settings differ in their
tasks stochasticity and punishment strengths.

policy search algorithms (PGPE and EPHE-IGE) to draw 20 sub-samples, each with a
different initial energy level, for every sampled policy parameter θi.

Learning Parameters

The learning parameters of the algorithms were manually optimized to achieve a high
final performance with a reasonable exploration strategy for the stochastic setting (η =
0.1, p = −1, p0 = −9) of the complex task layout.

All IGE algorithms used the same set of 45 γ parameters for their modules (Fig. 3.14,
c). The chosen γ parameters follow the recommended set of modules according to The-
orem 9 (page 47). First, 14 modules were chosen according to: γi=1:14 = i

i+1
. Then,

between each module γi and its smaller module γi−1 two extra modules were added with
equal distances between all modules. Between the last module γi = 14 and 1, three mod-
ules were added with equal distances between all modules. This procedure resulted in a
distribution of γ parameters that becomes more dense toward γ = 0.933.

The learning rates and the exploration parameters change over the episodes for all
algorithms. All algorithms have a stronger learning rate and exploration in the beginning
of the learning. This was needed to achieve a good learning performance.

The γ-modules of each IGE algorithm were given 3000 episodes to learn (Fig. 3.14, a,
b). The learning rate αQ was set to 1 for 1000 episodes and then linearily decreased to 0
until episode 3000. The exploration rate εQ was accordingly set to 0.9 for 1000 episodes
and then linearily decreased to 0 until episode 3000.

The learning of the γ-map for the policy search algorithms (EPHE-IGE and PGPE-
IGE) started after the modules finished their learning. They could not learn the map in
parallel to the learning of the modules. The performance of the modules, i.e. the resulting
reward if they are used as active modules, varies greatly during their learning because
of the exploration. As a result, the distributions (µ, σ) that the PGPE and EPHE-IGE
learn over the policy parameters θ tend to become very extreme. The algorithms could not
recover from these extreme distributions, even if the modules had learned their policies
and their performance stabilized. To avoid this problem, the learning of the γ-map for the
EPHE-IGE and PGPE-IGE was started after 3000 episodes when the modules finished
learning.

The Q-IGE algorithm did not have this problem and could learn the γ-map and the
γ-modules in parallel. Its learning rate αM and the exploration rate εM were set to 1 for
5000 episodes and then linearily reduced to 0.1 until episode 9000 (Fig. 3.14, a, b).
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a) Learning rates b) Exploration rates

c) IGE Γ-set d) Fixed γ-map e) Remaining parameters

Algorithm Parameters
Q-learning γ = 0.99
Q-IGE γG = 1
PGPE &
EPHE-IGE

#samples = 10
#subsamples = 20
µinit = [0.5, 1, 10]

PGPE-IGE σinit = [0.1, 0.2, 0.9]
αµ = 0.1
ασ = 0.01

EPHE-IGE σinit = [0.2, 0.3, 4]
FM-IGE θ = [0.5, 1, 10]

Figure 3.14: The learning parameters for each algorithm. The learning rates and explo-
ration parameters change over time (a, b). EPHE-IGE and PGPE-IGE start to learn their
γ-mapping after the modules finished learning at 3000 episodes. All CA-IGE algorithms
use the same set of 45 γ-modules (c). The remaining parameters of each algorithm are
listed in Table (e). Figure (d) shows the γ-map of the FM-IGE and for the initial mean
µinit of the policy parameter distribution of the EPHE and PGPE-IGE.

Classical Q-learning needed the longest time for exploration and before its learning
rate parameter α could be decreased (Fig. 3.14, a, b). Its learning rate α was set to 1 for
6000 episodes and then linearily decreased to 0.2 until episode 20,000. The exploration
rate ε was kept to 1 for 10,000 episodes. It was then linearly reduced to 0.3 until episode
20,000.

The mean of the policy parameter distribution for the EPHE-IGE and the PGPE-
IGE were initialized to µinit = [0.5, 1, 10]. The PGPE-IGE used as initial variance for
the policy parameter distribution σinit = [0.1, 0.2, 0.9]. The EPHE-IGE needed a larger
initial variance of σinit = [0.2, 0.3, 4]. Both algorithms sampled 10 policy parameters per
iteration and evaluated each on 20 episodes. The step size parameters of the PGPE-IGE
were set to αµ = 0.1 and ασ = 0.01. The discount factor for the γ-map of the Q-IGE was
set to γG = 1.

Besides the IGE algorithms, which learned the γ-map, a fixed mapping IGE (FM-
IGE) was also evaluated. Its γ-map was fixed, but it still needed to learn the values of its
modules. The γ-map had the same sigmoidal form as the PGPE-IGE and the EPHE-IGE
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(Eq. 3.13). The parameters θ = [0.5, 1, 10] of the map were set to the initial mean of the
policy parameter distribution for the PGPE and EPHE-IGE. It used the same learning
rate and exploration parameters for the modules as the other IGE variants.

The energy level sC ∈ R of the agent is real-valued. All algorithms based on Q-function
(Q-learning and Q-IGE) used a discretized energy level bsCc to represent the Q-function
as a table.

Performance Measurement

The algorithms were evaluated by three performance measures. First, the performance of
the final policy at the end of the learning. Second, the learning curve, i.e. the performance
of the learned policy after a certain numbers of episodes. Third, the cumulative reward
over the course of learning.

The first performance measure is the performance of the final policy. It was measured
after the end of the learning at 20,000 episodes. During the measurement, the agents did
not learn or explore. All agents used their greedy policies. For the policy search methods
(PGPE and EPHE-IGE) the parameters of their γ-map G(sC , θ) were set to the final
mean of their policy parameter distribution: θ = µ. Each agent was evaluated for 1000
episodes. The agent’s initial energy level for each episode was pseudo randomized between
1 and 20, as it was done during the learning. The final performance is the average reward
R̄ per episode over the 1000 episodes:

R̄ =
1

1000

1000∑
k=1

[
T−1∑
t=0

rk,t

]
,

where rk,t is the reward in episode k from time step t.
The second performance measurement evaluated how fast the algorithms learn their

policies. It measured the performance of the learned greedy policies after every 100
episodes. Similar to the measurement of the final policy, the agents did not learn or
explore during the evaluation. They used their greedy policy. Each agent was evalu-
ated for 200 episodes, each episode started with a pseudo random energy level between
1 and 20. The performance is the average reward per episode over the 200 episodes
( 1

200

∑200
k=1

[∑T−1
t=0 rk,t

]
). The resulting learn curve over episodes shows how fast the agents

can learn their greedy policies.
The third performance measure is the cumulative reward collected by the agent during

learning until a certain number of episodes K:
∑K

k=1

[∑T−1
t=0 rk,t

]
. The resulting curve

over all episodes shows the performance of an agent during learning. This is an important
measurement in the case that not only the final performance of an agent matters, but
also the reward that it gathers during the learning process itself. This is in particular
important for adaptive agents which need to adapt to changing environments and tasks
during their life time.

3.4.3 Experimental Results

As discussed in Section 3.2.2, the reward function RM for the modules should be invariant
to changes in the context. This allows the modules to learn a consistent set policies over
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all contexts. Two approaches to set the reward function RM of the γ-modules were
evaluated. The first approach is a general approach that can be used for any CMDP.
The modules only learn under a subset of contexts Φ ⊂ SC for which the reward function
does not vary. The second approach makes use of the specific reward function of the
energy foraging task (Eq. 3.15). The reward function is composed of two components.
One of the components is independent of context and could be used for modules so that
they can learn under all contexts. The performance of the IGE variants was better in
complex environments compared to classical Q-learning for both approaches. This section
introduces both approaches and discusses their experimental results.

Results for Agents Learning under Sub-Contexts

First, the results for agents that learned only under a subset Φ ⊂ SC of contexts are
discussed. Learning from a subset of contexts to define the reward function for the γ-
modules of an CA-IGE is a general approach that can be applied to any CMDPs. The
results show that the CA-IGEs outperformed classical Q-learning even with this general
approach. The section first introduces the definition of the modules reward function before
its results are discussed.

The γ-modules learned their Q-values only under a subset of contexts. As discussed
in Section 3.2.2, the modules reward function RM should not vary over contexts. Further-
more, long term strategies should be optimal for it because then the short term strategies
will be learned by modules with stronger discounting in parallel. For the energy foraging
task, the modules reward function RM is defined by the tasks reward function R (Eq. 3.15)
under the contexts that the agent has energy (Φ = (sC)∀sC>0):

RM(sEt+1) =

{
R(sEt+1, s

C
t+1) | if sCt > 0 (agent has energy)

∅ | if sCt = 0 (agent has no energy) ,

where ∅ means that the reward function is not defined and that the γ-modules will not be
updated. As a result, the γ-modules will not learn from transitions in which the agent has
zero energy (sC = 0). The reward function RM allows the modules to learn a consistent
set of policies, because the reward function R of the energy foraging task is consistent
over all positive energy levels (sC > 0). The reward function only changes if the agent
reaches an energy level of zero by giving a strong negative punishment. Moreover, as long
as the agent has energy, the optimal policy is the one that results in the highest energy
payoff. This allows the modules to learn not only the long term strategy with the highest
payoff, but also short term strategies by modules with strong discounting.

The performance of the final policy show that the CA-IGE variants that learned only
under the sub contexts (Q-IGE(s), PGPE-IGE(s), EPHE-IGE(s), and FM-IGE(s)) out-
performed classical Q-learning in tasks with higher complexity (Figs. 3.15 and 3.16). First,
classical Q-learning (Q) is compared to the Q-IGE(s). Both had a similar performance for
all five task settings in the simple MDP layout. Although Q-learning can in theory learn
the optimal policy for the task, it could not find it in every experimental run. Moreover,
the theoretical performance difference between the optimal policy compared to the best
policy that IGE variants can find is relatively small. As a result, the performance of
Q-learning and Q-IGE(s) was similar in simple task layouts.
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The Q-IGE(s) outperformed Q-learning in the moderate and complex MDP layouts for
the task settings 1, 2, 3, and 5. (Figs. 3.15 and 3.16). For the high movement punishment
setting (Setting 4), both had a similar final performance. The results for the policy search
variants (PGPE-IGE(s) and EPHE-IGE(s)) followed a similar trend. The IGE variants
showed similar performance compared to Q-learning in the simple task layout for most
task settings (2, 3, and 5). Whereas, in the moderate and complex task layout they could
outperform Q-learning. They had a similar performance to Q-learning in the deterministic
tasks (Setting 1), and a slightly worse performance in the high movement punishment tasks
(Setting 3) for moderate and complex layouts. Comparing both algorithms with each other
showed that the PGPE-IGE(s) slightly outperformed the EPHE-IGE(s). Compared to
the Q-IGE(s), both had either a similar performance or they are outperformed by it. The
worst performance had the FM-IGE(s). Its γ-modules learned the optimal policies to
reach different goal-states, but the fixed mapping from energy level to the appropriate
γ-module was not optimal.

Simple Tasks Moderate Tasks Complex Tasks
1) Deterministic tasks(η = 0, p = −1, p0 = −9)
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Figure 3.15: The CA-IGE variants outperform classical Q-learning (Q) in the perfor-
mance of their final policies, in moderate and complex task layouts. The average reward
per episode over 1000 episodes was measured. The bars show the mean of the average
from over 100 independent runs. The error bar shows the standard deviation. The black
line indicates the optimal possible performance in each task. IGE variants with (s) learned
under sub-context, variants with (a) learned under all context.
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Simple Tasks Moderate Tasks Complex Tasks
3) High stochastic tasks (η = 0.15, p = −1, p0 = −9)
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4) High movement punishment tasks (η = 0.1, p = −1.5, p0 = −9)
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5) High zero-energy punishment tasks (η = 0.1, p = −1, p0 = −14)
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Figure 3.16: The CA-IGE variants outperform classical Q-learning (Q) in the perfor-
mance of their final policies, in moderate and complex task layouts for most task settings.
The performance is only similar in the high movement punishment tasks (Setting 4). The
average reward per episode over 1000 episodes was measured. The bars show the mean of
the average from over 100 independent runs. The error bar shows the standard deviation.
The black line indicates the optimal possible performance in each task. IGE variants with
(s) learned under sub-context, variants with (a) learned under all context.
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In summary, in terms of performance of the final policy after 20,000 episodes, Q-
learning had a similar performance to the IGE variants in the simple task layout. But, for
the moderate and complex task layout, Q-learning was outperformed by the IGE-variants,
in particular by Q-IGE(s).

The next performance measure is the learning curves of the learned policies over
episodes (Fig. 3.17). The performance in the deterministic (Setting 1) and the stochastic
(Setting 2) tasks exemplify the general trend of all results. Fig. A.1 under Appendix A
shows the results for the other task settings.

First, Q-learning is compared to the Q-IGE(s). In the deterministic task (Setting 1),
Q-learning initially resulted in a faster learning compared to Q-IGE(s). In the simple
layout, Q-learning could retain its better learning rate compared to Q-IGE(s). In the
moderate and complex layout, Q-IGE(s) overtook Q-learning after ∼3000 episodes. For
stochastic tasks, Q-learning had only for the first ∼2500 episodes a better performance,
before it was overtaken by the Q-IGE(s). The dominance of Q-IGE(s) over Q-learning
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Figure 3.17: The CA-IGE variants had a better learning rate compared to classical Q-
learning. Q-learning was only better in the simple, deterministic task. The average reward
per episode was measured for the greedy policy after every 100 episodes of learning. The
greedy policy was evaluated for 200 episodes. Learning was stopped during the evaluation.
The lines show the mean of the average over 100 independent runs. The shaded area shows
the standard deviation. Only the CA-IGE variants that learn their modules values under
a sub-context are shown.
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was stronger in the moderate and complex environment.
The PGPE-IGE(s) and the EPHE-IGE(s) initially had a better learning rate com-

pared to Q-learning because they only learned values for their γ-modules for the first
3000 episodes. They had no learning or exploration over their initial γ-map. The fixed
map is not optimal, but it initially had a good performance compared to the Q-learning
algorithms that had to learn the best policy for each context from the beginning. In
the deterministic tasks (Setting 1), Q-learning could overtake both policy search vari-
ants after ∼1000 episodes. In the moderate and complex setting Q-learning was then
overtaken again after ∼3000− 5000 episodes. Comparing PGPE with EPHE-IGE(s), the
EPHE-IGE(s) had initially a faster learning rate. EPHE-IGE(s) could reach its asymp-
totic performance after ∼4000 episodes. PGPE-IGE(s) needed up to ∼8000 episodes,
but reached a better final performance. The inital learning rate of both is slightly better
compared to the Q-IGE(s) in all stochastic environments.

The FM-IGE(s) had initially the same learning rate as the PGPE-IGE(s) and the
EPHE-IGE(s), but it stopped improving after 3000 episodes because then the modules
stopped learning.
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Figure 3.18: The CA-IGE variants had a better cumulative reward compared to classical
Q-learning for all tasks. The cumulative reward was measured over the course of learning.
The lines show the mean of the cumulative reward over 100 independent runs. The
standard deviations are too small to be plotted. Only the CA-IGE variants that learn
their modules values under a sub-context are shown.
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In summary, Q-IGE(s) had generally a better asymptotic performance compared to
PGPE-IGE(s) and EPHE-IGE(s), but their learning rate was better. Moreover, EPHE-
IGE(s) had a faster learning rate compared to PGPE-IGE(s), but also a lower asymptotic
performance. The IGE variants seem to have a trade-off between learning speed and
asymptotic performance. Nonetheless, all IGE variants had generally a better learning
rate compared to Q-learning, except when the task is simple and deterministic.

The third performance measure evaluates the cumulative reward over the course of
learning. The results for the deterministic (Setting 1) and the stochastic (Setting 2) tasks
show a large difference between the IGE variants and classical Q-learning (Fig. 3.18). The
results are similar for all other task settings (Fig. A.4 in Appendix A). Q-learning had the
poorest performance in all tasks. For example, in the deterministic task (Setting 1) with
a simple layout, the cumulative reward after 20,000 episodes was approximately −860,000
for Q-learning. In contrast, the Q-IGE(s) had −66,000, the FM-IGE(s) had −25,000, the
EPHE-IGE(s) had −10,500, and the PGPE-IGE(s) had −9,200. For all task settings the
difference between the IGE variants and classical Q-learning was very strong. This is the
result of Q-learning’s need for a strong exploration of each task context, i.e. energy level,
to learn a relatively good final policy. Due to the exploration, the agent often reached a
energy level of zero and received strong punishment. The IGE-variants did not need so
much exploration.

In summary, the experimental results show a clear difference between classical Q-
learning and the CA-IGE variants. In theory, Q-learning is guaranteed to converge to the
optimal policy for each task, whereas the IGE algorithms cannot guarantee this. However,
the IGE algorithms outperformed Q-learning in nearly all tasks and for the others, they
had a similar performance. In tasks with the simple layout, Q-learning and the CA-IGE
variants learned policies with a similar final performance. If the task complexity increases,
the CA-IGE variants generally outperformed Q-learning. Besides the performance of the
final policy, the CA-IGE variants also showed a better learning rate in stochastic settings
and especially moderate and complex task layouts. In particular, the cumulative reward
showed a very large difference between Q-learning and the CA-IGE algorithms among the
performance measures.

Comparing the CA-IGE algorithms with each other shows that they had a trade-
off between learning rate and asymptotic performance. For many settings, the Q-IGE(s)
had the best asymptotic performance, followed by the PGPE-IGE(s) and then the EPHE-
IGE(s). Nonetheless, the learning rate was generally better for the EPHE-IGE(s), followed
by the PGPE-IGE(s) and then the Q-IGE(s).

Results for Agents Learning under all Contexts

The previous section discussed the results for CA-IGE variants where the γ-modules are
learned based on a subset Φ ⊂ SC of contexts, i.e. non-zero energy levels (sC > 0).
A problem with this approach is that the γ-modules do not learn from transitions that
are not under these contexts. This results in a higher demand for observations to learn
an appropriate policy. Depending on the algorithm, and the task, the number of used
observations over the course of the 20,000 learning episode lay between 80 to 95 percent
(Fig. 3.19, and Fig. A.7 of Appendix A). For the energy foraging task it is possible to
use all observations by defining the modules reward function RM in a different way. The
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experimental results of this approach showed that it outperformed agents that learned
their γ-modules only from observations with non-zero energy levels.

The approach that uses observations of all contexts to learn γ-modules uses the prop-
erty that the reward function of the energy foraging task is a linear combination of two
components (Eq. 3.15). The first component (RP ) depends only on the task state sEt+1 to
which the agent transitions. It defines the punishment p that the agent receives for each
transition and the reward rG it receives for reaching an energy source sG. It is independent
from context. Therefore, it can be used as the reward function RM for the γ-modules:

RM(sEt+1) = RP (sEt+1) .

This allows the agent to update its Q-values after each transition. The reward function
allows the agent to also learn all important strategies in the task. It does not punish
trajectories to energy sources that are far away, because it does not consider the energy
level of the agent. Thus, the modules learn for large γ’s long term policies that give a
high payoff. The modules with smaller γ’s can learn in parallel the short term strategies.

All CA-IGE variants (Q-IGE(a), PGPE-IGE(a), EPHE-IGE(a), and FM-IGE(a)) were
evaluated with this approach. They were compared to the variants that update the
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Figure 3.19: The approach of learning values of γ-modules only for non-zero energy
levels (sC > 0) can not use between 5 to 15 percent of the observations. The bars show
the mean percentage of observations that could be used to update the modules over 100
independent runs. The error bar shows the standard deviation.
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modules Q-values only under non-zero energy levels (Q-IGE(s), PGPE-IGE(s), EPHE-
IGE(s), and FM-IGE(s)). The identifier (a) stands for "all contexts" and (s) for "sub-
contexts". First, the algorithms are compared based on the performance of their final
policy (Figs. 3.15 and 3.16). For the simple and the moderate task layouts, learning under
all contexts gave a similar performance for all CA-IGE variants compared to learning
under sub-contexts. For some CA-IGE variants and task settings a small improvement
existed. Nonetheless, a significant improvement existed for each CA-IGE variant in the
complex task layouts for the Settings 1, 2, 3, and 5. Only the high movement punishment
tasks (Setting 4) showed no improvement. The learning curves and the cumulative rewards
followed the same tendency (Appendix A).

In summary, the componentwise structure of the reward function for the energy forag-
ing task can be exploited to allow the γ-modules to learn from each observation, regardless
of the current context. This increased the performance of the CA-IGE algorithms, es-
pecially for the complex task layouts. As a result, the CA-IGE variants could further
improve their advantage over classical Q-learning.

3.4.4 Discussion

The results for the foraging energy task showed that CA-IGE algorithms can outperform
classical methods such as Q-learning. Although Q-learning is theoretically guaranteed
to converge to the optimal policy, in practice, the non-optimal CA-IGE variants yielded
either a similar or a better asymptotic performance and they had a faster learning rate.
Only in simple and deterministic tasks could classical Q-learning outperform the CA-IGE
variants. Although these are striking results, their are some limitations and critical points
that have to be considered in regard to the application CA-IGE algorithms.

Missing Theoretical Background about Optimal Application Scenarios

One critical point is that the CA-IGE cannot guarantee to be better, compared to classical
algorithms, for every possible task. The energy foraging task has some advantageous
features that allow the CA-IGE to outperform classical algorithms. It has a trade-off
between time and reward strength for different possible strategies. This allows the CA-
IGE to learn the different strategies and to apply them under different contexts.

Moreover, the reward function of the task allowed the γ-modules to learn a consistent
set of policies with few observations. A sub-context approach for the module’s reward
function RM could be successfully used by learning only under non-zero energy levels.
Nonetheless, the agents could still use 80 to 95 percent of all observations to update the
γ-modules. The reward function could be decomposed into a component that is consistent
over all contexts, making it possible to update the γ-modules from all observations.

Other tasks might not have such features. For example, the γ-modules might only be
able to learn under a small set of sub-contexts. This would increase the number of total
observations that the CA-IGE needs to learn its modules policies. As a result, the CA-
IGE could loose its advantage in learning speed over classical algorithms. At the moment,
the theoretical background does not exist to evaluate for which tasks the CA-IGE has an
advantage over classical methods.
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The Q-IGE

The Q-IGE had generally the best asymptotic performance in the energy foraging tasks.
Q-learning had a similar performance only for simple task settings. The Q-IGE also
outperformed Q-learning in the learning rate for more complex task settings. Nonetheless,
the PGPE-IGE and the EPHE-IGE performed better in terms of the learning rate.

The Q-IGE learned its γ-map G(sE, sC) over the task and the context state space.
The policy search variants define the γ-map only over the context state space SC . This
could be the reason why the Q-IGE has a lower learning rate compared to the PGPE-IGE
and the EPHE-IGE. Q-IGE has to learn the optimal strategy for each task and context
state pair, instead of only for contexts. Experiments with a γ-mapping G(sC) only over
the context states showed that the Q-IGE was not able to learn the task. Its performance
was significantly worse compared to classical Q-learning and the other CA-IGE variants.

The problem of learning the mapping only over context states seems to be that the Q-
values have a high variance. The values are the expected future reward sum if module γ is
used under context sC : QG(sCt , γt) = ESE

[∑T−1
t=0 γ

t
Grt

]
. The variance of this measurement

can be very high, because the reward depends strongly on the agents position sE in the grid
world. For example, an agent could be far away from a goal state that would be reached
by using module γ̂ under context ŝC . Because of the punishment per movement, the
reward sum might be low. Whereas, if the agent is nearby the goal state, then the reward
sum is higher. As a result, the variance over the reward sum is high, making it difficult
for the Q-values to converge. Q-values over the task and context space QG(sEt , s

C
t , γt) do

not have this problem and can converge.
Although Q-IGE has to learn the map over task and context states it still performed

better compared to classical Q-learning. The reason seems to be that Q-IGE does not learn
which individual actions are optimal for each context like classical Q-learning. Instead, it
learns which module’s policy is optimal and the policies of the modules already provide
the optimal path to one of several goal states. Thus, the Q-IGE learns over macro actions,
i.e. which goal state to reach under which context, and not over micro actions, i.e. in which
direction to walk under which context. This reduces the number of strategies the Q-IGE
has to explore to find a good mapping.

The PGPE-IGE and the EPHE-IGE

The PGPE-IGE and the EPHE-IGE had a lower asymptotic performance compared to
the Q-IGE, but their learning rates were generally better. The PGPE-IGE had a lower
learn rate compared to the EPHE-IGE, but also a higher asymptotic performance.

An important advantage of the EPHE over the PGPE is that it has fewer learning
parameters. For the PGPE, the tuning of the step sizes αµ and ασ were crucial to reach a
good performance. The EPHE does not have such learning parameters, making it easier
to apply to a problem.

Although, the PGPE-IGE and the EPHE-IGE could outperform classical Q-learning
in the complex task settings of the energy foraging task, they have some limitations.
As many other policy search methods, the PGPE-IGE and the EPHE-IGE evaluate the
performance of sampled parameters θi ∼ N (µ, Iσ2) for their γ-map G(sC , θ) (Eq. 3.13)
by the cumulative reward over whole trajectories. The performance is the reward sum
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that a γ-map generates during a trajectory. In CMDPs, the reward of trajectories depend
strongly on the context under which they are executed. For the energy foraging task,
the parameters θ of the γ-map should be evaluated for different start energy levels of the
agent. The experimental design allows this, because for every block of 20 episodes each
start energy level between 1 and 20 is used once. This guarantees that the γ-map can be
evaluated under all possible contexts. For other tasks, this might not be possible. For
example, the agent could start for many episodes with a high energy level. Under this
circumstance, the PGPE-IGE and EPHE-IGE learn good parameters θA for this context.
If afterward, the initial energy level is very low for many episodes, then the algorithms
might be able to adapt their γ-map parameters to them, but the new parameters θB
will only be optimized for low energy levels. Thus, if the context switches back to higher
energy levels, the parameter θB yields again a low performance. The Q-IGE does not have
this problem. It learns separate Q-values for every context. Values learned for one context
are not discarded if the agent is in a different context for a longer time. In conclusion,
the usage of the PGPE and EPHE to learn the γ-map is only useful in tasks where agents
can evaluate γ-maps over all possible contexts in short time windows.

Another critical point if comparing the policy search methods (PGPE-IGE and EPHE-
IGE) to the value-based methods (Q-learning and Q-IGE) is that the form of their γ-map
includes already a priori information about the task. Their γ-map is a sigmoidal function
(Eq. 3.13) over the contexts, i.e. the energy levels. The sigmoidal function already entails
the information that similar discounting parameters γ’s are good for similar energy levels.
This is true for the energy foraging task. Moreover, the form of a sigmoid fits well with
the assumption that for lower energy levels short term strategies are better and, vice
versa, that for higher energy levels long term strategies are better. For other tasks,
such assumptions might not be possible. The γ-map could be changed to include no
a priori information about the task. For example, for each context sC it could have a
parameter θSC ∈ [0, 1] which defines directly the optimal discount factor with G(sC , θ) =
θsC . Experiments with such γ-maps resulted in a low learning performance below the level
of classical Q-learning. The potential reason is that the number of γ-map parameters
increased for these maps from 3 (Eq. 3.13) to 20 which made their optimization harder.
In summary, the γ-map of the PGPE-IGE and EPHE-IGE needs a reasonable form to
allow a good learning performance.

3.5 Conclusion

The IGE provides a framework to adapt quickly to changes in the context of tasks. The γ-
modules of an IGE learn different policies for a task that represent different solutions for a
trade-off between gained reward and invested time. Modules with weak discounting (large
γ’s) learn policies resulting in large reward sums, but that might take longer to reach.
Strong discounting (small γ’s) result in policies that prefer short term strategies with less
reward. The IGE learns these different policies in parallel from the same observations.

This ability of the IGE is useful for tasks where the context defines the optimal trade-
off between reward and time. In such tasks, the IGE allows rapid adaptation to different
contexts. For example, an agent might have the task of foraging for food. The task has a
trade-off between food quality and the time needed to reach some food dependent on the
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hunger level the agent. If the agent is well feed, it can use a long-term strategy that result
in food of high quality, i.e. a high reward value. Whereas, if the agent is very hungry, it
will prefer more short-term strategies that result in any food, even of lower quality. The
IGE learns long-term and short-term strategies at the same time. If the agent learns the
task while being well-fed and later is has to do the task while being hungry, the agent can
immediately switch to a short-term strategy without any additional learning.

Agents adapt to different contexts by selecting a γ-module for a certain context and
then following the module’s policy. The selection is based on a γ-map from context to
γ-modules. The IGE can only adapt well to different contexts if the γ-map is appropriate,
i.e. when it provides the most appropriate module for a certain context. Two possibilities
exists to find an appropriate map. First, for certain tasks a map can be analytically
derived. Three task scenarios exist for which a map can be derived: 1) tasks which have
constant risk of interruption, where the probability of interruption is the context, 2) tasks
with a constant risk that all future reward becomes zero, where the probability of this
risk is the context, and 3) tasks in which a constant punishment is given for each step,
where the punishment level is the context. The other approach to find an appropriate
γ-map is to learn it. The learning problem of a map is itself an MDP. Therefore, standard
reinforcement methods can be applied such as Q-learning or policy search methods.

An open question is for which tasks the IGE provides an advantage over classical
algorithms such as Q-learning. In terms of optimality, the IGE can guarantee to converge
to the optimal policy only for the three tasks for which a γ-map can be derived. In these
tasks, the IGE has, in contrast to classical methods, the ability to adapt immediately
to changes in context and therefore is better compared to them. For tasks, where the
γ-map has to be learned, the IGE cannot guarantee to be optimal. Nonetheless, because
of its adaptive abilities it can outperform classical methods in terms of learning rate. In
practice, this can lead to a better final performance of the IGE’s policies compared to
classical methods. The theoretical background is currently missing to determine for which
tasks this advantage exists.





Chapter 4

Adaptation to Changing Objectives

The IGE has the ability to immediately adapt to changing objectives of a task that define
different trade-offs between the amount of reward that should be gained and the invested
time. One of our daily routines, going out for lunch, is is an example of such tasks. Several
restaurants exist in our neighborhood. Each requires a different amount of time to reach
and provides food of different quality. The general goal is to learn the shortest way to a
good restaurant, but our specific objective might change from day to day. One day we
might want to go to the best restaurant. Another day we are under stress and we have
to judge between the restaurant quality and the time to get there. Another day we want
to go to the best restaurant given a fixed time limit.

In principle, such tasks can be formalized as episodic MDPs (S,A, T,R). The state
space S is our position. The actions A are the directions in which we can go. A transition
function T (s, a, s′) defines what position s′ can be reached from position s with action a in
a fixed time, e.g. ∆t = 30 seconds. Each restaurant is a goal state s ∈ SG. Reaching and
eating in a restaurant provides a reward R(s) reflecting its food quality. The problematic
point is how different objectives regarding the trade-off between food quality and invested
time can be implemented.

A standard approach would be to use a different reward function R for each objective.
For example, in the case of learning the way to the best restaurant, the reward function of
reaching a restaurant returns simply its food quality. An agent will learn the shortest way
to the best restaurant with this reward function. If the agent is under stress and has to
judge between food quality an invested time, the reward function could give a punishment,
a negative reward, for each performed step until a restaurant is reached. Thus the agent
might not go to the best restaurant, but to one that is closer. In the case of a fixed
time limit, the reward function could return a punishment if a restaurant is reached with
more steps than the limit. With this approach, each objective represents a different task
for which a new policy has to be learned. But learning takes time, and the objectives
might change from one episode to another. Also, the number of possible objectives can
be infinite. Thus, a classical agent might not have time to learn an appropriate policy for
each objective.

The IGE can overcome this problem. It has the ability to learn policies that repre-
sent different trade-offs between rewards and time invested to obtain them (Section 2.2).
Moreover, the IGE can decode information about the expected reward and the needed
time of its policies (Section 2.3). Based on this information, the IGE can immediately
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select an appropriate policy for a new objective. It does not need to learn the task for
each objective from scratch, like classical model-free methods.

Model-based methods also provide a solution to the problem of adapting rapidly to
new objectives. They learn a model of the external environment that can be used to find
the best policy for a new objective. Nonetheless, they can be computationally demanding.
Furthermore, learning a correct model can be very difficult for stochastic tasks with high
state dimensions.

This chapter has the following structure. Section 4.1 introduces the Objective Adap-
tive MDP (OA-MDP) used to formalize tasks with the problem of adapting to different
objectives. Afterward, the IGE framework used to solve OA-MDPs, the Objective Adap-
tive IGE (OA-IGE), is described in Section 4.2. Two variants of the OA-IGE exist that
differ in the way they compute information necessary to select the most appropriate γ-
policy for an objective. The first variant, introduced in Section 4.3, decodes the expected
future reward trajectory from the Q-values of the γ-modules. The second variant, intro-
duced in Section 4.4, learns estimations about the outcomes of the different γ-policies.

4.1 Objective Adaptive Markov Decision Processes
Tasks that should be solved under different objectives are formulated as Objective Adap-
tive MDPs.

Definition 9. An Objective Adaptive Markov Decision Process (OA-MDP) is an MDP
with a finite or infinite set of objective functions J = (f1, f2, . . .) :

OA−MDP (A, S, T,R, J) ,

where A is a finite set of actions, S is a finite set of states, T : S × A × S 7→ [0, 1] is a
transition probability function and R : S × A × S 7→ R is a reward function. Objective
functions evaluate reward trajectories: h = (r1, r2, . . . , rT ) ∈ H. Objectives either take
into account the full trajectory (fk : H 7→ R) or the sum over the rewards and the number
of steps (fk : R × N 7→ R) of a trajectory with fk(R =

∑T−1
t=0 ht, T ) . At each episode,

one of the objectives is active. The goal is to maximize the expectation over the active
objective function k, while using a minimum expected number of steps:

min
E[T ]

max
πk

Eπk [fk(H)] , (4.1)

where πk is the policy used for objective fk, and H is a random variable over trajectories
generated by πk.

The restaurant example from the introduction can be formalized as an OA-MDP. The
agent’s possible positions are the state space S. Its actions A are the different movement
directions and the transition function T (s, a, s′) defines their outcomes. Restaurants are
goal states s ∈ SG. The reward function R(s) indicates the food quality of restaurants
after reaching them. The three objectives that the agent should fulfill are represented
as objective functions: J = (f1, f2, f3, . . .). The first objective is to go to the restaurant
with highest food quality. Its objective function is f1(h) =

∑T−1
t=0 rt. The second objective

makes a judgment between the time to reach a restaurant and its food quality. A possible
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formulation is a linear combination of both pieces of information: f2(h) =
∑T−1

t=0 rt −
1
2
T .

The third objective sets a strict time limit of five steps:

f3(h) =

{ ∑T−1
t=0 rt | T ≤ 5
−10 | T > 5 ,

where a violation is strongly punished with a reward of −10. Depending on the active
objective, the agent has to change its policy, i.e. to go to a different restaurant, to maximize
it.

Objective functions can be defined in two forms. The first form f(h) uses the full
reward trajectory h as input. It can evaluate a trajectory based on the exact time when a
reward was received. This makes this formulation very flexible. For example, the objective
could be to obtain in the first 5 steps at least a reward sum of 10 and then to maximize
reward until the end of the episode. Theoretically, the IGE can be used to solve objectives
with this form, but practically it is restricted to the subset of deterministic, goal-only-
reward tasks. However, many practical objectives can be represented by the second form
for objectives f(R, T ) that takes into account only the reward sum R =

∑T−1
t=0 rt and the

number of steps T of a trajectory. For example, all three objectives of the lunch example
(f1, f2, f3) can be expressed in this form. The IGE can be applied to any OA-MDP that
uses this form.

The major challenge in OA-MDPs is that the number of objective functions can be
infinite such that each episode can have a different objective. Thus, an agent might
experience a certain objective only a few times or even only once. As a result, it might
not have enough time to learn a dedicated optimal policy for each objective function.
Instead, given a new objective it has to adapt immediately to it.

4.2 The Objective Adaptive Independent γ-Ensemble
The Objective Adaptive Independent γ-Ensemble (OA-IGE) is an IGE framework that
allows immediate adaptation to a new objective using information gained from previous
experience under different objectives. It uses the ability of the IGE to learn a set of policies
by its γ-modules. The policies represent different solutions for the trade-off between their
resulting reward and invested time. The OA-IGE tries to select one of its γ-policies that
maximizes the given objective function (Fig. 4.1). Because objectives may change from
one episode to another and may not repeat, the OA-IGE tries to adapt immediately to a
given objective function without actually experiencing how its policies perform for a new
objective.

The goal of the OA-IGE is to identify the module γ̃ that has the policy πγ̃ maximizing
the objective function fk:

γ̃ = argmax
γ

Eπγ ,s0 [fk(H)] or γ̃ = argmax
γ

Eπγ ,s0 [fk(R, T )] ,

where H is the random variable over the trajectories, and R and T over the reward sum
and number of steps for policy πγ starting in state s0. If several modules optimize the
objective, then a module resulting in the shortest number of steps T among these is
selected. Using the policy of module γ̃ would maximize the active objective (Eq. 4.1).
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Figure 4.1: The general framework of the Objective Adaptive IGE (OA-IGE). The goal
of the agent is to maximize the active objective fk from the set of infinite objectives J .
Objective functions evaluate either full trajectories fk(h) or the reward sum r and length t
of a trajectory f(r, t). The agent selects the active γ-module γ̃ based on the approximated
outcome of each modules policy for the active objective. Approximations are computed
based on either a decoded expected trajectory (Section 4.3) or a learned prediction of the
expected reward sum and length (Section 4.4).

However, the OA-IGE has no access to the true expectation over an unseen objective
function. Instead, the OA-IGE approximates it using the expectation over the trajectories
or their reward sum and number of steps:

Eπγ ,s0 [fk(H)] ≈ fk(Eπγ ,s0 [H]) or Eπγ ,s0 [fk(R, T )] ≈ fk(Eπγ ,s0 [R] ,Eπγ ,s0 [T ]) . (4.2)

The selection of the active γ-module using the approximation becomes:

γ̃ = argmax
γ

fk(Eπγ ,s0 [H]) or γ̃ = argmax
γ

fk(Eπγ ,s0 [R] ,Eπγ ,s0 [T ]) .

If several modules maximize the objective, on with the shortest expected steps is selected.
If the approximation of the outcome for the objective function is correct, i.e. E [fk(H)]

= fk(E [H]), then the OA-IGE selects the most appropriate policy for the objective func-
tion. However, correctness cannot be guaranteed for every task or objective function.
Nonetheless, the use of the approximation allows the OA-IGE to adapt immediately to
a new objective function without experiencing how its policies perform. Experimental
results in Sections 4.3 and 4.4 show that the approximation yields a practical advantage
over classical algorithms.

The next part describes some cases in which the correctness of the approximation can
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be guaranteed. It is followed by a description of how the expectation over a trajectory or
its reward sum and length are computed by the OA-IGE.

Correctness of the Approximation

The correctness of the approximation (Eq. 4.2), i.e. that E [fk(H)] = fk(E [H]) can be
guaranteed for a subset of tasks and objective functions. The following three cases ex-
emplify tasks and objective functions for which the approximation is correct. They do
not constitute a complete list of all cases. Correctness is shown for objectives f(h) that
use the full reward trajectory as input. Nonetheless, the following cases apply also for
objectives f(R,N) that use the reward sum and the number of steps as input, because the
discussed objectives use only the reward sum and number of steps to evaluate a trajectory.

In the case of tasks with a deterministic transition and reward function the approxi-
mation is correct for any objective function.

Theorem 13. The approximation Eπγ ,s0 [f(H)] ≈ f(Eπγ ,s0 [H]) is correct for any objective
function in OA-MDPs that have deterministic state transitions and a deterministic reward
function.

Proof. In deterministic tasks the trajectory hπ,s0 resulting from a policy π and starting
in state s0 is the same for each episode, i.e. the random variable over trajectories H has
only hπ,s0 as outcome. Thus, the expectation over the objective function is:

Eπ,s0 [f(H)] = f(hπ,s0) .

This is equal to its approximation, i.e. the result of the objective function over the expected
trajectory:

Eπ,s0 [H] = hπ,s0 ⇔ f(Eπ,s0 [H]) = f(hπ,s0) ,

proving that the approximation is correct for deterministic OA-MDPs.

In the case of general OA-MDPs that include stochasticity, the approximation for some
objective functions can be proven. The objective of maximizing the reward sum is such a
case.

Theorem 14. The approximation Eπ,s0 [f(H)] ≈ f(Eπ,s0 [H]) is correct for the objective
function

f(h) =
T−1∑
t=0

ht , (4.3)

in all OA-MDPs.

Proof. In general, the transitions and rewards in OA-MDPs can be stochastic. Therefore,
a specific policy π starting in state s0 can result in different possible trajectories hi ∈ H,
each having a different probability Pr(hi) to occur. Therefore the expectation over the
objective function is given by:

Eπ,s0 [f(H)] =
∫
i
Pr(hi)f(hi)di

=
∫
i
Pr(hi)

∑T i−1
t=0 (hit)di ,
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where T i is the length of trajectory hi. The approximation of this expectation is equal.
It can be shown by using the sum rule in integration:

f(Eπ,s0 [H]) =
∑T−1

t=0 Eπ,s0 [Ht]

=
∑T−1

t=0

∫
i
Pr(hi)hitdi

=
∫
i
Pr(hi)

∑T i−1
t=0 (hit)di ,

where T = maxi T
i is the maximum length of all possible trajectories and the expectation

of the reward for time step t is Eπ[Ht] =
∫
i
Pr(hi)hitdi. The reward for time steps that are

longer than its trajectory are assumed to be zero: ∀t ≥ T i : hit = 0. This shows that the
approximation of the objective function to maximize the reward sum (Eq. 4.3) is correct
for any OA-MDP.

In other cases, approximations are correct for certain combinations of tasks and ob-
jective functions. For example, the objective to get the highest reward sum, but to use
only a maximum number of steps can be correctly approximated in tasks that have a
deterministic transition function.

Theorem 15. The approximation Eπ,s0 [f(H)] ≈ f(Eπ,s0 [H]) is correct in all OA-MDPs
with a discrete transition function T for the objective function

f(h) =

{ ∑T−1
t=0 rt | T ≤ n
p | T > n ,

where n ∈ N is the maximum number of steps the agent should perform and p ∈ R− is a
negative punishment if the agent used more steps.

Proof. Each trajectory hi ∈ H for policy π starting in state s0 has the same length:
∀i : T i = T , because the task has a deterministic transition function. Therefore, the
expectation over the objective function is given by:

Eπ,s0 [f(H)] =
∫
i
Pr(hi)f(hi)di

=

{∫
i
Pr(hi)

∑T−1
t=0 (hit)di | T ≤ n

p | T > n .

Using the sum rule in integration, its approximation is shown to equal:

f(Eπ,s0 [H]) =

{∑T−1
t=0 Eπ,s0 [Ht] | T ≤ n

p | T > n
=

{∑T−1
t=0

∫
i
Pr(hi)hitdi | T ≤ n

p | T > n

=

{∫
i
Pr(hi)

∑T i−1
t=0 (hit)di | T ≤ n

p | T > n ,

where Eπ,s0 [Ht] is the expectation of the reward for time step t.

In summary, the OA-IGE’s approximation of the expected outcome for an objective
function is correct for some task variants and objective functions. In other cases, it
represent only an approximation which might result in using an inappropriate policy.
Nonetheless, the approximation allows the OA-IGE to adapt immediately to a new and
unseen objective function.
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Identification of the Expected History

The OA-IGE computes the approximation of the expected outcome for an objective
(Eq. 4.2), using either the expectation over the reward trajectory Eπγ ,s0 [H] or the reward
sum Eπγ ,s0 [R] and the number of steps Eπγ ,s0 [T ]. Which expectation is used depends upon
the form of the objective functions, either f(h) or f(r, n). Two variants for the OA-IGE
exist, one for each of the two forms of the objective functions. The first, the Decoding
OA-IGE, can theoretically approximate the expectation over the trajectory Eπγ ,s0 [H]. It
decodes the expected history based on Q-values from several modules. However, in prac-
tice it can only be applied to the subset of deterministic, goal-only-reward environments.

The second variant, the Prediction OA-IGE, can be applied for objective functions that
use the reward sum and number of steps f(r, n). It learns a prediction for the expected
reward sum Eπγ ,s0 [R] and the expected number of steps Eπγ ,s0 [N ] for the policy of each
γ-module. In contrast to the Decoding OA-IGE, it can be applied to any OA-MDP. The
next two sections describe the two OA-IGE variants and compare each experimentally to
Q-learning in grid-world tasks.

4.3 Decoding of Trajectories
The first OA-IGE variant, the Decoding OA-IGE (DOA-IGE), is used for OA-MDPs with
objectives f(h) that use the full reward trajectory h as input. The algorithm decodes
the expected reward trajectory Eπγ ,s0 [H] from its γ-modules to select the most appropri-
ate γ-policy for the active objective. First, the algorithm is introduced, followed by an
comparison of it to a classical Q-learning approach in a deterministic, goal-only-reward
OA-MDP. The DOA-IGE outperformed Q-learning. It could immediately adapt to chang-
ing objective functions, whereas Q-learning needed several hundred episodes to learn a
new policy for each.

4.3.1 The Decoding OA-IGE

The DOA-IGE (Algorithm 4.1) exploits the ability of the IGE to decode the expected
reward trajectory Eπγ ,s0 [H] from several γ-modules that follow the same policy (Sec-
tion 2.3). Based on this, it selects the γ-policy that maximizes the active objective fk in
the beginning of an episode by:

γ̃ = argmax
γ

fk(Eπγ ,s0 [H]) .

The selected module’s policy πγ̃ is then used during the whole episode to define the agent’s
actions.

Decoding of the expected trajectory is theoretically possible for any MPD (Section 2.3).
However, in practice, decoding is difficult and numerically unstable. Nonetheless, it can be
done for the subset of deterministic, goal-only-reward MDPs. In such MDPs the expected
reward trajectory for a greedy policy π is given by:

Eπ,s0 [H] = (0, 0, . . . , 0︸ ︷︷ ︸
T-1 times

,Eπ[rT−1]) . (4.4)
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Algorithm 4.1: Decoding Objective Adaptive IGE
Input:

Learning rate: α ∈ [0, 1]

Sorted list of discount factors: Γ = (γ1, . . . , γm) with γi ∈ (0, 1)

initialize Qγ(s, a) to zero
repeat (for each episode)

initialize state s, and goal fk

// calculate expected rewards and number of steps for module pairs
for i from 1 to m− 1 do

Ri ← r(γi, γi+1)

Ti ← ns(γi, γi+1)

end

// remove invalid module pairs and calculate goal function fk
for i from 2 to m− 1 do

if Ti−1 = Ti and Ti = Ti+1 then
h← ( 0, . . . , 0︸ ︷︷ ︸

Ti−1 times

, Ri)

J(i)← fk(h)

else
J(i)← ∅

end
end

// select as active module γ̃ a module that maximizes fk
γ̃ ← Γ (argmaxi J(i))

repeat (for each step in episode)
a← choose an action for s derived from Qγ̃(s, a) (e.g. ε-greedy)
r, s′ ← take action a, observe outcome
forall the γ ∈ Γ do

Qγ(s, a)← Qγ(s, a) + α (r + γmaxa′ Qγ(s
′, a′)−Qγ(s, a))

end
s← s′

until s is terminal-state
until termination



4.3 Decoding of Trajectories 113

The length T of the trajectory and the visited states are the same for each episode, because
state transitions are deterministic and the policy is greedy. The only random variable is
the final reward rT−1. All previous rewards are 0. As a result, the expected trajectory
Eπ,s0 [H] can be constructed using the expected final reward Eπ,s0 [rT−1] and the trajectory
length T . Given two modules (γa, γb) which have the same greedy policy (πγa = πγb), this
information can be decoded from their values with:

T =
log(Vγa(s0))− log(Vγb(s0))

log(γa)− log(γb)
and Eπγa ,s0 [rT−1] =

Vγa(s0)

γTa
. (4.5)

Theorem 8 (page 44) shows their derivation.
The following procedure decodes the expected trajectory Eπ,s0 [H] for all modules and

approximates their outcomes for the active objective. First, it iterates over all neighbor
pairs (γi, γi+1) of its γ-modules Γ = (γ1, . . . , γm). Neighboring pairs have usually similar
values and therefore the same policy, which is the prerequisite to decode their expected
trajectory by Eq. 4.5. Most pairs will have the same policy. However, for certain module
pairs, the modules will have different policies and the resulting decoded length T and
reward sum R are incorrect (Section 2.3). These cases are identified by checking whether
the number of steps is similar to its neighboring pairs:

T (γi−1, γi) = T (γi, γi+1) = T (γi+1, γi+2) .

If this condition is violated, the module pair (γi, γi+1) is ignored. For all other pairs,
the expected trajectory Eπ,s0 [H] is constructed based on T and R (Eq. 4.4). Then, the
outcome for the active objective function fk(Eπ,s0 [H]) is calculated. One of the γ-modules
from pairs with the highest expected outcome is selected and one of its module’s policies
is used for action selection during the episode.

4.3.2 Deterministic, Goal-Only-Reward Tasks

The DOA-IGE can be used for deterministic, goal-only-reward tasks. To evaluate its
performance it has been compared to a time-dependent Q-learning approach. First, the
task is described followed by an introduction of the time-dependent Q-learning algorithm.

Task Design

The DOA-IGE was evaluated on a discrete, two-dimensional grid-world task (Fig. 4.2).
The grid world has 10x10 states. The agent starts each episode from a fixed position s0.
The episode ends if it reaches one of 7 goal states or after a maximum of 30 steps. Each
goal state is reachable by a different minimum number of steps and it gives a different
reward value (Fig. 4.2, b). The DOA-IGE has the ability to learn the optimal policy to
reach 5 of the 7 goal states as illustrated by the γ-Curve (Fig. 4.2, c).

The location of the goal states and their rewards were chosen so that they represent
different solutions for the nine objective functions (J = (f1, . . . , f9)), the agents had to
adapt to. Although, the objective functions fk(h) take the whole trajectory as input, they
are are defined in terms of the final reward rT and the number of steps T (Fig. 4.4). In
goal-only-reward tasks, reward trajectories are zero for all rewards up to the final reward



114 Adaptation to Changing Objectives

(a) Task Layout (b) Choices (c) γ-Curve

Figure 4.2: (a) Layout of the grid world used to evaluate the DOA-IGE in deterministic
and stochastic, goal-only-reward tasks. The task has 7 goal states g1, . . . , g7. The agent
starts in state s0. It can move in 4 directions (north, east, south, west). Each transition
results in a reward of 0 until a goal state is reached. (b) If the agent starts in state s0 it has
several choices. Each choice represents the minimal number of steps n and the reward r
of reaching one of the possible goal states. (c) The discounted values Vγ(s0, g) = γng−1rg
for each choice for state s0 (broken lines) show that the DOA-IGE will learn to reach
5 of the 7 goals. The solid line represents the values that the γ-Ensemble would learn
(maxg Vγ(s0, g)).

rT−1. Therefore, only information about the last reward and when it was reached is
important.

The first objective f1 is to receive the maximum reward in an episode. The second f2

also maximizes reward, but a punishment of −1 for each step is given after 3 steps. f3

gives exponentially increasing punishment for more than 3 steps. The goal of f4 is to find
the shortest path to the closest goal state. For f5 the shortest path to a goal state that
gives at least a reward of 6.5 is optimal. Reaching a goal state with less reward will result
in a strong punishment. For f6 the goal is to find the highest reward with a maximum of
7 steps. For f7 the agent has only a maximum of 5 steps. In f8 the goal is to maximize
average reward. The final objective f9 maximizes the average reward, but the agent has
to reach at last a reward of 6.5.

The DOA-IGE was compared to a time-step dependent Q-learning that is described in
the next section. For both algorithms, 100 runs were performed to measure their average
learning performance. Each run consisted of 54,000 episodes that were divided in nine
phases. In each phase, the agents had to adapt to a different objective function. The
objectives did not change during the 6000 episodes of a phase to evaluate how long an
agent needs to adapt to each objective. The performance was measured by the return for
the objective function fk(h) that the agent received for each episode during the learning
process.

Time-Dependent, Goal-Only-Reward Q-learning

The DOA-IGE was compared to a modified, time-dependent Q-learning variant (Algo-
rithm 4.2). Q-learning had to be modified because the goal in OA-MDPs is to opti-
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mize the objective function fk(h) and not the expected discounted future reward sum
Eπ

[∑T−1
t=0 γ

trt

]
as for standard Q-learning. Objective functions evaluate the whole re-

ward trajectory of an agent during an episode. Q-learning can be adapted to optimize
such objectives by adapting the rewards on which it is learning. Instead of using the
OA-MDPs reward function R, the Q-values a learned on a different reward function ξ
with

ξ(k, st+1) =

{
0 | st+1 /∈ SG

fk(h) | st+1 ∈ SG ,

where k is the active objective and st+1 is the state the agent transitions into. The function
gives a reward of 0 for each step during an episode. The final reward, when a goal state is
reached, is the outcome for the active objective based on the observed trajectory h. The
Q-values are defined by:

Q(k, s, a) = E

[
T−1∑
t=0

γtξt(k)

]
,

where for each objective function fk different values are learned.
Nonetheless, this approach has a problem. The final reward ξT depends on the full

history of the agent and not only on its current state and action. This violates the Markov
property that is needed to guarantee that Q-learning can solve the task optimally. This
problem can by solved for goal-only-reward task by using the information of the current
time step i ∈ (0, . . . , T − 1) as an extra state dimension:

Q(k, i, s, a) = E

[
T−1∑
t=0

γtξt

]
,with ξt =

{
0 | t < T − 1

fk(h
i) | t = T − 1

, (4.6)

where hi is the trajectory assuming that the agent is in the i’th time step:

hi = [0, 0, . . . , 0︸ ︷︷ ︸
i-1 times

, rT=i−1] . (4.7)

The final reward ξT−1 = f(hi) used for learning the Q-function depends only on the final
reward rT−1 from the reward function R and the number of steps i. As a result, the
Markov property is fulfilled because the agent has the time step i as state information.

The update rule for the Q-function based on a observation (k, t, st, at, st+1) is:

Q(k, t, st, at)← Q(k, t, st, at)
+ α (ξ(k, st+1) + γmaxa′ Q(k, t+ 1, st+1, at+1)−Q(k, t, st, at)) ,

Q-values for all time steps t = (0, . . . , T − 2) can be updated simultaneously for one
observation, because the reward ξt depends only on the time step information and the
current reward rt. Moreover, the transition for time steps is fixed to t→ t+1. As a result,
the update can be done for every time step after an observation, reducing the number of
observations to learn the Q-function.
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Algorithm 4.2: Time-dependent Q-learning for goal-only-reward OA-MDPs
Input:

Learning rate: α ∈ [0, 1]

Discount factor: γ ∈ [0, 1]

Maximum number of steps: T ∈ N

initialize Q(k, t, s, a) to zero
repeat (for each episode)

initialize state s, and goal fk

repeat (for each step t in episode)
a← choose an action for s derived from Q(k, t, s, a) (e.g. ε-greedy)

// take action and observe if it ends in a terminal state
r, s′, isTerminal← take action a, observe outcome

forall the i ∈ (0, . . . , T − 2) do

// use the goal definition fk as final reward of a task
if isTerminal = true or i+ 1 = T then

hi ← (0, . . . , 0︸ ︷︷ ︸
i−1 times

, r)

ξ ← fk(h
i) or fk(

∑i
j=0 h

i
j, i+ 1)

else
ξ ← 0

end

Q(k, i, s, a)← Q(k, i, s, a)+α (ξ + γmaxa′ Q(k, i+ 1, s′, a′)−Q(k, i, s, a))

end
s← s′

until s is terminal-state
until termination

Learning Parameters

Learning parameters of the OA-IGE and time-dependent Q-learning were manually ad-
justed to allow learning of the optimal policy with few episodes. Both agents used the
learning rate α = 1 because the task is deterministic.

The ε-greedy action-selection strategy was used for both algorithms. However, their
exploration rates differed (Fig. 4.3, a). The DOA-IGE explored only during the first
phase. It kept an exploration rate of ε = 0.9 for the first 500 episodes. Afterward, it
reduced the exploration rate linearly to ε = 0 until episode 1000. For the rest of Phase
1 and all successive phases, it had no exploration (ε = 0). DOA-IGE, did not need
further exploration because if a phase and the associated objective function changed, it
could immediately select an appropriate policy from its γ-policies that it learned in the
beginning of Phase 1.

In contrast, exploration was needed for Q-learning at the beginning of each phase. In
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a) Exploration rates
Phase 1 Phase 2-9

b) IGE Γ-set c) Remaining parameters

Algorithm Parameters
DOA-IGE α = 1
Q-GOR α = 1

γ = 0.99
T = 30

Figure 4.3: The learning parameters for the deterministic, goal-only-reward task. Both
algorithms had a strong exploration at the beginning of learning that was reduced over
time (a). Q-learning needed more exploration and it had to explore in each phase. DOA-
IGE needed to explore only in Phase 1. The DOA-IGE used a set of 90 γ-modules with
γ parameters that are more densely distributed towards γ = 0.933 (b).

the first 2000 episodes of each phase its exploration rate was set to ε = 0.9. Afterward,
the exploration rate was reduced to ε = 0 until episode 4000. Q-learning’s exploration
is longer compared to the first phase of the DOA-IGE. This was necessary to allow Q-
learning to find the optimal policy in Phase 5. Shorter explorations could not identify the
optimal policy in this phase. Other phases would only have required a similar exploration
strategy as the DOA-IGE for Phase 1.

The DOA-IGE used 90 γ-modules (Fig. 4.3, b). Their γ parameters followed the
recommended set of modules from Theorem 9 (page 47). First, 14 modules were chosen
according to: γi=1:14 = i

i+1
. Then, between each module γi and its predecessor module

γi−1, four extra modules were added with equal distances between all modules. Between
the last module γi=14 and 1, five modules were added with equal distances between all
modules. This procedure resulted in a distribution of γ parameters that is more dense
toward γ = 0.933. The discount factor of the Q-learning approach was set to γ = 0.99.

Experimental Results

The results of the experiment followed the expected outcomes for the DOA-IGE and the
time-dependent Q-learning approach (Fig. 4.4). In terms of asymptotic performance, the
DOA-IGE could reach the optimal policy for each objective besides f7. The DOA-IGE
was not able to solve it optimally because the optimal behavior, to go to goal state g4,
is not in the policy set of the DOA-IGE (Fig. 4.2, c). In contrast, the time-dependent
Q-learning approach could find the optimal policy for every objective.

However, Q-learning needed to learn the optimal policy in each phase, which took
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f1 = R f2 =

{
R | T ≤ 3

R− (T − 2) | T > 2
f3 =

{
R | T ≤ 3

R− 1.3(T−2) | T > 2

f4 = −T f5 =

{
−10 | R ≤ 6.5
−T | R > 6.5

f6 =

{
R | T ≤ 7
−10 | T > 7

f7 =

{
R | T ≤ 5
−10 | T > 5

f8 = R
T

f9 =

{
R
T
| R ≥ 6.5

−1 | R < 6.5

Figure 4.4: The DOA-IGE could immediately adapt to new objective functions com-
pared to the time-dependent Q-learning approach in the deterministic, goal-only-reward
task (Fig. 4.2). The performance was measured by the outcome of the objective function
fk(h) per episode. Each of the 9 phases had a different objective function. R denotes the
final reward rT−1. The plots show the mean and the standard deviation over 100 runs per
algorithm. The minimal reward per episode was limited to −10 to make the plots more
readable, because some goal formulations can result in a large negative reward during
explorations.
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approximately 4000 episodes per phase. DOA-IGE could immediately adapt to any new
objective after it learned its policy set in Phase 1. Moreover, Q-learning needed more
exploration compared to the DOA-IGE in Phase 1. The longer exploration was needed
to allow Q-learning to find the optimal policy in Phase 5.

4.3.3 Conclusion

The ability of the IGE to decode the expected trajectory can be used adapt immediately to
a new objective function. Results from such a task with different goal formulations show
that the DOA-IGE can outperform a Q-learning approach in terms of adaptation speed.
The Q-learning approach needed several thousand episodes to adapt to a new objective.
The DOA-IGE could immediately adapt; however, its decoding approach is currently
restricted to deterministic, goal-only-reward OA-MDPs. The next section introduces a
OA-IGE variant that can be used for any OA-MDP.

4.4 Prediction of Trajectory Statistics
The second OA-IGE variant, the Prediction OA-IGE (POA-IGE), can be applied for
objectives f(R, T ) with the reward sum R =

∑T−1
t=0 ht and the trajectories length T as

input. The algorithm learns the expectation over the reward sum and the trajectory length
for each of its γ-modules to select the most appropriate for a given objective. First, the
algorithm is introduced. Afterward, it is compared to Q-learning in two different task
environments. The first is a stochastic, goal-only-reward task. The second is a general
stochastic task. The results show that the POA-IGE can adapt immediately to new
objectives compared to Q-learning.

4.4.1 The Trajectory Prediction OA-IGE

The POA-IGE (Algorithm 4.3) selects the most appropriate of its γ-policies for an ob-
jective fk using the expectation over the reward sum Eπγ ,s0 [R] and the number of steps
Eπγ ,s0 [T ] for each policy:

πk = argmax
πγ

fk(Eπγ ,s0 [Rγ] , Eπγ ,s0 [Tγ]) .

Expectations are learned for every γ-module in form of state-dependent value functions,
Rγ(s) and Tγ(s), because expectations can be formulated in a recursive manner according
to the Bellman equation. This follows the idea behind the Horde architecture (Section 1.3)
that is also composed of different value functions. The functions differ in their reward
functions, which make it possible to predict different future events with them, such as the
expected reward sum and number of steps until a goal is reached.

The expected reward sum Eπγ ,st

[∑T−1−t
k=0 rt+k

]
of using policy πγ starting from state

st is given by:

Rγ(st) = Eπγ ,st

[∑T−1−t
k=0 rt+k

]
= Eπγ ,st [rt] + Eπγ ,st [rt+1] + . . .+ Eπγ ,st [rT−1]
= Eπγ ,st [rt] + Eπγ ,st [Rγ(st+1)] .
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Algorithm 4.3: Prediction Objective Adaptive IGE
Input:

Learning rate: α ∈ [0, 1]

Sorted list of discount factors: Γ = (γ1, . . . , γm) with γi ∈ (0, 1)

initialize Qγ(s, a), Rγ(s), and Tγ(s) to zero
repeat (for each episode)

initialize state s, and goal fk

// select as active module γ̃ a module that maximizes fk
γ̃ ← argmaxγ fk(Rγ(s), Tγ(s))

repeat (for each step in episode)
a← choose an action for s derived from Qγ̃(s, a) (e.g. ε-greedy)
r, s′ ← take action a, observe outcome
forall the γ ∈ Γ do

Qγ(s, a)← Qγ(s, a) + α (r + γmaxa′ Qγ(s
′, a′)−Qγ(s, a))

// update R and N only if the greedy action was used
if a = argmaxāQγ(s, ā) then

Rγ(s)← Rγ(s) + α (r +Rγ(s
′)−Rγ(s))

Tγ(s)← Tγ(s) + α (1 + Tγ(s
′)− Tγ(s))

end
end
s← s′

until s is terminal-state
until termination

The number of steps can be defined in the same recursive manner:

Tγ(st) = Eπγ ,st [T ]

= Eπγ ,st

[∑T−1
t=0 1

]
= 1 + Pr(t+ 2|πγ) + Pr(t+ 3|πγ) + · · ·+ Pr(T |πγ)
= 1 + Eπγ ,st [T (st+1)] ,

where Pr(t|πγ) is the probability that the trajectory has t steps, i.e. that it did not end in
a terminal state until then. Expectations are formulated for episodic environments that
end if a goal state or a maximum number of steps per episode is reached. In continuous
tasks, steps Tγ(st) would diverge toward infinity and the reward sum might diverge. The
idea of state-dependent discount factors from the Horde framework (Sutton, Modayil,
et al. 2011) could be used to stop the learning after a goal state was reached.

The POA-IGE learns predictions for each module in parallel to the learning of their
Q-functions. Based on an observation (st, at, rt, st+1), the expectation of the γ-modules,
which have action at as greedy action (∀γ : at = argmaxaQγ(st, a)), are updated by:

Rγ(st)← Rγ(st) + α (rt +Rγ(st+1)−Rγ(st)) ,
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and
Tγ(st)← Tγ(st) + α (1 + Tγ(st+1)− Tγ(st)) ,

where α is the learning rate parameter also used for the update of the Q-values.
At the beginning of an episode the active module γ̃ is selected based on the expecta-

tions for the initial state s0:

γ̃ = argmax
γ

fk (Rγ(s0), Tγ(s0)) .

The policy of the selected module γ̃ is then followed during the episode.
In contrast to the Decoding OA-IGE which can only be applied to deterministic, goal-

only-reward environments, the Prediction OA-IGE can be applied to any OA-MDP. For
deterministic, goal-only-reward MDPs, preliminary experiments showed that the DOA-
IGE and the POA-IGE perform similarly. The next two sections evaluate the POA-IGE
in a stochastic, goal-only-reward task and a general stochastic task without restrictions
on the reward function.

4.4.2 Stochastic, Goal-Only-Reward Tasks

The POA-IGE is first compared to the time-dependent Q-learning approach for goal-
only-reward tasks (Algorithm 4.2) in a stochastic, goal-only-reward task. Q-learning
outperformed POA-IGE in asymptotic performance for most objective functions, but the
POA-IGE adapted immediately to a new objective. Q-learning needed several thousand
episodes to do so. The next part introduces the experimental design, followed by the
learning parameters used for the algorithms and the results of the experiment.

Task Design

The task uses the same grid world environment as the deterministic, goal-only-reward
task (Fig. 4.2). In contrast, a stochasticity of η = 0.1 for state transitions was introduced,
where for each transition a probability of η exist that the agent moves in a random
direction, instead of its intended direction. The task has the same nine objective functions
(J = (f1, . . . , f9)) as the deterministic task, but their formulations changed (Fig. 4.6).
Instead of using the full trajectory h as input, the objectives use the reward sum R =∑T−1

t=0 rt and the length T of the trajectory as input. The task was separated in nine
phases. Each phase had a different objective function and the agents had 6000 episodes
to adapt to it.

Learning Parameters

The POA-IGE was compared to the time-dependent Q-learning approach for goal-only-
reward tasks (Algorithm 4.2). Learning parameters of both algorithms were manually
optimized to yield a high asymptotic performance while having a high learning rate.

The learning rate parameter α of both algorithms was set to α = 1 in the beginning
of learning to allow a faster convergence of the values (Fig. 4.5, a). Over the course of
learning it was reduced to α = 0.1. The POA-IGE kept α = 1 for 500 episodes and
reduced it linearly to α = 0.1 until episode 1000. The learning rate stayed at α = 0.1 for
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the rest of Phase 1 and for all following phases. The Q-learning approach needed a longer
learning time to reach its asymptotic performance in each phase. Moreover, it needed to
learn a new policy for each phase. Its learning was kept to α = 1 for 750 episodes and
linearly reduced to α = 0.1 until episode 3000 for each phase.

Both algorithms used the ε-greedy action selection. Similar to the learning rate, the
exploration rate ε was high at the start of learning and then reduced (Fig. 4.5, b). The
POA-IGE’s exploration rate was ε = 0.9 for the first 500 episodes of Phase 1 and then
reduced to ε = 0 until episode 1000. It stayed at ε = 0 for the rest of Phase 1 and all
successive phases. Q-learning used a learning rate of ε = 0.9 for the first 750 episodes.
Afterward, it was linearly reduced to ε = 0 until episode 3000 for each phase.

The POA-IGE used a set of 45 γ-modules (Fig. 4.5, c). Their discount factors were
chosen using the same process as for the DOA-IGE for the deterministic, goal-only-reward
experiment (Section 4.3.2). First, 14 modules were chosen according to γi=1:14 = i

i+1
, but

instead of adding 4 modules with equal distance to each other between each of the chosen
14 modules, only 2 were added. The POA-IGE needed fewer modules compared to the
DOA-IGE, because the DOA-IGE needs three modules with the same policy to decode
their expected trajectory. As a result, additional modules were necessary to ensure that
each possible policy in the task was learned by at least two modules. In contrast, the
POA-IGE learns the expected return Rγ and number of steps Tγ for each module’s policy
by the module itself. Thus, only one module per policy is needed. The discount factor of
Q-learning was set to γ = 0.99.

a) Learning rates b) Exploration rates
Phase 1 Phase 2-9 Phase 1 Phase 2-9

c) IGE Γ-set d) Remaining parameters

Algorithm Parameters

Q-GOR γ = 0.99
T = 30

Figure 4.5: The learning parameters for the stochastic, goal-only-reward task and the
general task. Both algorithms had a high learning rate and exploration rate at the begin-
ning of the learning that were reduced over time (a,b). Q-learning needed more exploration
and it had to learn a new policy in each phase. POA-IGE needed to explore and learn its
γ-policies only in Phase 1. The POA-IGE used a set of 45 γ-modules with γ parameters
that are more densely distributed towards γ = 0.933 (c).
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f1 = R f2 =

{
R | T ≤ 3

R− (T − 3) | T > 3
f3 =

{
R | T ≤ 3

R− 1.3(T−3) | T > 3

f4 = −T f5 =

{
−10 | R ≤ 6.5
−T | R > 6.5

f6 =

{
R | T ≤ 7
−10 | T > 7

f7 =

{
R | T ≤ 5
−10 | T > 5

f8 = R
T

f9 =

{
R
T
| R ≥ 6.5

−1 | R < 6.5

Figure 4.6: The POA-IGE could immediately adapt to new objective functions com-
pared to the time-dependent Q-learning approach in the stochastic, goal-only-reward task
(Fig. 4.2). Performance was measured by the outcome of the objective function fk(R, T )
per episode, where R =

∑T−1
t=0 rt is the reward sum of the agent’s trajectory and T is its

length. Each of the 9 phases has a different objective function. The plots show the mean
and the standard deviation over 100 runs per algorithm. The minimal reward per episode
was limited to −10 to make the plots more readable, because some goal formulations can
result in a large negative reward during explorations.
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Experimental Results

The experimental results (Fig. 4.6) show that Q-learning reached a better asymptotic
performance for 5 of the 9 objectives (f1, f5, f6, f7, f9). The POA-IGE could reach a
similar asymptotic performance for the other 4 objectives (f2, f3, f4, f8). The asymptotic
performance of the OA-IGE approach was worse compared to the deterministic, goal-only-
reward task (Fig. 4.4), because in deterministic environments the OA-IGE is guaranteed
to approximate the correct outcome of its policies for each objective (Theorem 13). This
is not guaranteed for the stochastic task. This was especially a problem for objectives
with hard constraints (f5, f6, f7, f9).

Nonetheless, the POA-IGE could immediately find a relatively appropriate policy for
each new objective. Q-Learning needed approximately 2000 to 3000 episodes to reach the
same performance as the POA-IGE.

4.4.3 General Tasks

The POA-IGE can be applied to general MDPs where non-zero rewards can be given for
any transition, because the POA-IGE learns the expectation over the full reward sum of a
trajectory. This section compares the POA-IGE to Q-learning in such a task. Because of
the non-zero rewards, the introduced time-dependent Q-learning approach (Algorithm 4.2)
cannot guarantee convergence upon the optimal policy. It violates the Markov property
in such tasks. An adapted variant of the Q-learning algorithm can be formulated that is
better suited. However, this variant also cannot guarantee optimality. The results show
that the POA-IGE outperformed it in terms of asymptotic performance and adaption
speed.

This section introduces first the task used to evaluate POA-IGE and the Q-learning
approach. Afterward, the changed version of the time-dependent Q-learning approach is
introduced, followed by the experimental results.

Task Design

The task environment is a stochastic (η = 0.1) two-dimensional grid world (Fig. 4.7). It
is similar to the environment used for the goal-only reward tasks (Fig. 4.2). It has the
same basic layout with 7 goal states and a fixed start position. In contrast to the previous
task, a punishment is given as reward for each state transition that does not end in a goal
state (Fig. 4.7, a). For each goal state there exists an optimal path for which the agent
receives a punishment of −1 per step. If the agent leaves the optimal path, it receives a
punishment of −2. The rewards for reaching a goal state (Fig. 4.7, b) are chosen so that
following the optimal path results in the same reward sum as for the optimal path to the
same goal in the previous tasks.

The OA-MDP has the same nine objectives from the previous tasks (Fig. 4.8). Each
objective is active in a different phase of the experiment. Each phase has 6000 episodes.

Time-Dependent Q-learning for General Tasks

The POA-IGE was compared to an adapted version of the time-dependent Q-learning
approach. The Q-learning approach was adapted to work with environments that can have
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(a) Example MDP (b) Choices (c) γ-Curve
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Figure 4.7: (a) A grid-world MDP with 7 goal states g1, . . . , g7. The agent starts in
state s0. It can move in 4 directions (north, east, south, west). Transitions result in zero
reward until a goal state is reached. (b) If the agent starts in state s0 it has several choices
to choose from. Each choice represents the minimal number of steps n and the reward r
of reaching one of the possible goal states. (c) Discounted values Vγ(s0, g) = γng−1rg for
each choice for state s0 (broken lines). The solid line represents the values the γ-Ensemble
would learn (maxg Vγ(s0, g)). For state s0 the ensemble will learn policies to go to goal
states g1, g2, g5, g6, g7. It will not learn policies to go to g3, g4.

non-zero rewards for all time steps. The previous Q-learning approach (Algorithm 4.2)
assumes that all rewards are zero until a goal-state is reached. Based on this assumption
it recreates the past reward trajectory h. All rewards for the last t − 1 steps are set 0
and only if a goal state is reached is the current reward set to R(s) (Eq. 4.7). This is not
possible for general non-zero reward environments.

The adapted version of the Q-learning approach stores (Algorithm 4.4) at every time
step the reward rt in a history h. As in the previous version it learns its Q-function based
on a changed reward function ξ (Eq. 4.6). It updates its Q-values for every step during
an episode by zero (ξt = 0). If a goal state, i.e. a terminal state, is reached, it uses as
reward for its Q-values the outcome for the active objective fk. The outcome is either
computed based on the full trajectory h or its reward sum and length:

ξT−1 = fk (h) or ξT−1 = fk

|h|−1∑
i=0

hi, |h|

 .

The adapted, time-dependent Q-learning approach cannot guarantee convergence upon
the optimal policy because the Markov property is violated for it. The final reward ξT
in an episode depends on the full reward history and not only on the previous state and
action. Optimality can only be guaranteed if the full reward trajectory of all previous
steps is part of the state information (Q : S ×H × A 7→ R). Unfortunately, this creates
a huge state space for which learning is impractical. Nonetheless, with time information,
Q-learning can still converge in many cases to an appropriate policy, as shown by the
experimental results.
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Algorithm 4.4: Time-dependent Q-learning for general OA-MDPs
Input:

Learning rate: α ∈ [0, 1]

Discount factor: γ ∈ [0, 1]

initialize Q(k, t, s, a) to zero
repeat (for each episode)

initialize state s, and goal fk

// start with an empty reward history
h← ∅
repeat (for each step t in episode)

a← choose an action for s derived from Q(k, t, s, a) (e.g. ε-greedy)

// take action and save reward in history
r, s′, isTerminal← take action a, observe outcome
ht ← r

// if a goal state is reached, use the outcome for the
// objective fk as basis for the Q-function
if isTerminal = true then

ξ ← fk(h) or fk(
∑t−1

i=0 hi, t)

else
ξ ← 0

end

Q(k, t, s, a)← Q(k, t, s, a) + α (ξ + γmaxa′ Q(k, t+ 1, s′, a′)−Q(k, t, s, a))

s← s′

until s is terminal-state
until termination

Experimental Results

The POA-IGE and the adapted time-dependent Q-learning approach were evaluated us-
ing the same learning parameters as for the stochastic, goal-only-reward task (Fig. 4.5).
Compared to the results of the stochastic, goal-only-reward task (Fig. 4.6), the POA-
IGE performed better compared to Q-learning in terms of asymptotic performance and
learning speed in the general task.

The POA-IGE outperformed Q-learning in its asymptotic performance in 5 of the 9
objectives (f1, f2, f3, f4, f9). Both had a similar final performance for 3 objectives (f5,
f6, f8). Q-learning could slightly outperform POA-IGE for objective f7. The reduced
performance of the Q-learning approach, compared to the stochastic, goal-only-reward
task, is the result of the violated Markov property. It hindered the algorithm to converge
upon the optimal policy for some objectives.

Its low performance for objectives f4 and f5 was the result of the negative outcome
values that these objectives give. Q-values were initialized to 0. Because the outcome
for all objectives are negative, the agent is doing an optimistic exploration (Osband &



4.4 Prediction of Trajectory Statistics 127
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Figure 4.8: The POA-IGE immediately adapted to new objective functions compared
to the time-dependent Q-learning approach in the stochastic task (Fig. 4.7). Performance
was measured by the outcome of the objective function fk(R, T ) per episode, where R =∑T−1

t=0 rt is the reward sum of the agent’s trajectory and T is its length. Each of the 9
phases has a different objective function. The plots show the mean and standard deviation
over 100 runs per algorithm. The minimal reward per episode was limited to −10 to make
the plots more readable, because some goal formulations can result in a large negative
reward during explorations.
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Van Roy 2017). It explores every possible state action pair for every possible time step,
because it has to learn that their initial Q-values of 0 are not optimal. As a result, Q-
learning needed more episodes to learn a good policy for these objectives. In the previous
goal-only-reward experiments, the leaning rate was faster because the Q-learning approach
could update its Q-values for all possible time steps of an state-action pair simultaneously
for one observation.

As for the previous tasks, the POA-IGE could immediately adapt to a new objective
function. Q-learning needed at least 3000 episodes to reach its final asymptotic perfor-
mance.

4.4.4 Conclusion

The POA-IGE learns for each of its module’s policies the expected reward sum and
the expected number of steps. It uses this information to find its most appropriate
policy for objective functions that use the reward sum and the length of the agent’s
trajectory as input. In contrast to the DOA-IGE, which decodes the expected trajectory
from its modules Q-values, the POA-IGE can be applied to any task, regardless of being
deterministic or stochastic or depending on the time points when non-zero reward is given.
The experimental results show that the POA-IGE could immediately adapt to an unseen
objective function. In contrast, time-dependent Q-learning approaches needed several
thousand episodes to learn policies that reach the same performance. In tasks where
non-zero reward is given for any state transition, the POA-IGE could also outperform
Q-learning in its asymptotic performance.

4.5 Discussion

The following sections discuss similar approaches to the OA-IGE framework, the limi-
tations to its ability to guarantee convergence upon the optimal policy and its memory
demand in contrast to classical Q-learning.

Similar Zero-shot Learning Approaches

The ability of the OA-IGE to adapt immediately to an unknown objective makes it a
zero-shot learning algorithm. The goal in zero-shot learning is to solve an unseen task
on the first attempt, using a description of the task. In the case of OA-MPDs, the
task is to optimize a new objective function in an MDP. The description is the objective
function itself. Zero-shot learning is part of transfer learning (Section 1.2). Different
zero-shot learning approaches have been explored in reinforcement learning, but none is
connected to the problem of adapting an agent to different objectives based on the trade-
off between the amount of gained reward and the invested time. The next part describes
some approaches and compares the OA-IGE to them.

Some approaches make use of policies πθ parameterized by a vector θ ∈ RN . In the
approach by Da Silva, Konidaris, & Barto (2012), tasks are also parameterized with a
vector. After observing some tasks and learning their optimal policy parameters, a map
from task parameters to policy parameters is learned. Given the task parameters of a
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new task, the mapping is used to extrapolate its policy parameters. In the framework by
Isele, Rostami, & Eaton (2016), each task t has a descriptor vector mt. The approach
learns for each task a coefficient vector st to describe the policy parameters θt = Lst

and the task description mt = Dst. L is a shared basis do define policies and D is a
dictionary. Both are learned over several tasks. Given a new task t′ and its descriptor
mt′ , the approach identifies the coefficient st′ that describes best the new description
mt′ = Dst

′ . The new st
′ is then used to define the new policy by θ′t = Lst

′ . In difference,
the OA-IGE learns several value-based policies by its γ-modules. It selects the most
appropriate given a new objective. However, the discount parameter γ associated with
each policy can be interpreted as a policy parameter (θ = γ) that is similar to the discussed
approaches. Nonetheless, learning a map from objective functions to the appropriate γ
parameters is difficult, because the objectives in OA-MDPs can be expressed as any
complex mathematical formulation and not as a relatively simple task vector. Moreover,
the OA-IGE does not need to know the formulation of the objective functions. It only
needs to compute their outcome for expected trajectories to adapt to them.

A different class of approaches has domain adaptation as goal where a specific task
should be handled in different domains or environments. The approach of Devin et al.
(2017) generalizes over different tasks such as opening a drawer and over different robots
such as robot arms with 3 or 4 degrees of freedom. Different robots can be interpreted
as different domains in which tasks should be performed. Each task and each robot have
distinct neural network modules. The output of a task module is used as input for the
robot module that generates the actions. Modules are trained over different task-robot
combinations with the goal that each robot module can work in combination with every
task module. Given an unseen task-robot combination, the corresponding modules that
were learned in different combinations are combined to solve the new combination. The
approach by Higgins et al. (2017) uses unsupervised learning for a deep neural network
to identify the important state features for a task from a video-camera input. The policy
of a task, such as grasping an object with a robot arm, is learned based on these features
instead of the direct state information. If the task has to be performed in a different
environment, e.g. picking up an object in a red room instead of the blue room where it
was previously encountered, but where the important state features can be still extracted,
e.g. the position of the object, then the previously learned policy can be immediately
applied. The goal of the OA-IGE is different to the domain adaptation approaches. Its
goal is to adapt its policy to different objectives in a single domain or environment.

Other approaches do zero-shot learning by dividing tasks in a sequence of sub tasks,
e.g. go to room A, get object X, go to room B. The policies for sub tasks can be recombined
for a new task, e.g. go to room B, get object X, go to room A. In (Andreas, Klein, &
Levine 2016), each task is described by policy sketches, that are a list of symbols where
each symbol is associated with a sub task. The approach learns for each symbol a sub
policy to solve it, without direct information about the sub goals for this symbol. Given
the policy sketch for a new task, the approach can immediately recombine its sub-policies
accordingly. Oh et al. (2017) use for the sub tasks parameterized policies, which can
generalize from from one sub-goal to another, e.g. from learning to pick up object X
to picking up object Y. Given a sequential list of sub-goals for a task, the agent learns
their corresponding sub-policies and how to combine them. In a new task the agent can
immediately recombine its sub-policies and generalize to unseen sub-goals. In principle,
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the tasks in OA-MDPs can also be divided in sub-tasks, such as go first to position A,
then go to position B. However, the objective functions do not provide information about
which of these sub-tasks should be performed in which sequence. Nonetheless, the OA-
IGE could be used as a part of such sub-task frameworks as a way to generalize sub-tasks
over different objectives based on the reward and time trade-off.

Schaul et al. (2015) proposed an approach based on the Horde architecture (Sec-
tion 1.3). The tasks are to reach different goal states in grid-world environments. The
approach learns value functions a function approximator that takes also the goal position
as input. After learning the value functions to reach different goal states, the approach
generalizes new value functions for new goal states. In OA-MDPs the optimal goal states
change also from one objective to another, but which goal state is optimal for a certain
objective and its position is not given by the formulation.

A general alternative approach to solve OA-MDPs is model-based reinforcement learn-
ing. Model-based approaches either have or learn a model for an environment, i.e. its tran-
sition probability and the reward function. Given a new objective, the framework can
learn a policy to optimize the objective by using simulations of the task by the model. If
the model is correct, the approach can guarantee convergence upon the optimal policy for
any MDP and objective. In contrast, the OA-IGE cannot guarantee to find the optimal
policy for all MDPs and objectives.

Nonetheless, the model-free approach of the OA-IGE can provide advantages in com-
plex tasks. First, the learning of the correct model is problematic for high-dimensional
state spaces and may not succeed (Tangkaratt, Morimoto, & Sugiyama 2016). Without
a correct model, the model-based approach may not find a good policy. Second, even if a
correct model exists, finding the optimal policy for a new objective can still be computa-
tional demanding. For example, in the recent breakthrough by Silver, Schrittwieser, et al.
(2017), where the AlphaGo framework can beat the human world champion, the agent
has a perfect model of the game. However, it takes the agent 29 millions of played games
against itself to learn its final policy. The task of playing Go is different from the tasks
used to evaluate the OA-IGE, but it shows that even if an optimal model is given, finding
a good policy for a new task can have a high computational demand for a model-based
framework. In contrast, the computational demand of the OA-IGE to adapt to a new task
is relatively small. Given a new objective, it only has to approximate the outcome for the
new objective for each of its modules policies. The computation of the outcome either
based on the decoded expected trajectory (DOA-IGE) or on the learned expectation over
their reward sum and length (POA-IGE) and has a low computational cost.

Multi-Objective Reinforcement Learning

The IGE, especially the OA-IGE, has strong connections to the field of multi-objective
reinforcement learning (MORL) (Roijers et al. 2013; Liu, Xu, & Hu 2015). MORL is an
extension to standard reinforcement learning where the reward function returns a vector
instead of a scalar. Each element of the reward vector represents a different objective
that the agent has to take into account. For example, a mining robot could mine not only
a single mineral, but several different minerals at once. It can learn the way to different
mining sites, which provide a different amount of minerals for each type. The reward
function returns how much minerals could be mined at a certain site for each mineral
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type.
Multi-objective MDPs (MOMDPs) are defined as a standard MDP:

MOMDP(A, S, T, ~R) ,

with the distinction that the reward function ~R : S × A× S 7→ RN returns a vector. As
a result, the value function changes from a scalar function to a vector function:

~V π(st) = Eπ

[
∞∑
k=0

γk~rt+k

]
,

where ~V and ~r denote the vectorized version of the value and reward in MOMDPs. As in
single-objective reinforcement learning the value function can be recursively formulated
in form of a Bellman equation, and a Q-function can be defined in the same way. In
difference to single-objective reinforcement learning, the optimal value cannot be easily
defined, because the maximum over vectors does not exist. For example, three mining sites
could exist in a mining task with two mineral types. Each site gives a return of ~r1 = [0, 3]ᵀ,
~r2 = [1, 1]ᵀ, and ~r3 = [3, 0]ᵀ. Which of the three sites is optimal is not immediately clear,
because none has the maximum reward for both mineral types. However, a function that
maps the vectors to a scalar value can be used to define the optimal solution. It could,
for example, compute how much profit can be made by selling both mined mineral types.
In MORL such functions are called scalarization functions. They map a multi-objective
value ~V to a scalar value:

V π
ω = f(~V π(s), ω) ,

where ω is a weigh vector parameterizing f . The goal of the agent is maximize the
scalarized value function: π∗(s) = argmaxπ V

π
ω . In the mining example the scalarization

function could be a weighted sum over the vector components, where the weights for each
component defines its selling price: V π

ω (s) =
∑

i ωi
~Vi(s).

Roijers et al. (2013) provide a taxonomy of MORL problems and their associated
algorithms. Problems and algorithms can be differentiated between single-policy and
multi-policy approaches. In single-policy approaches, the weights of the scalarization
function are known during the learning phase. Therefore, a single optimal policy exists
which optimizes the MOMDP. In principle, such scenarios could be solved by single-
objective reinforcement learning that solves the problem for the scalarized value function.
Nonetheless, the multi-objective approach of learning a vectorized value function can be
helpful in scenarios where it is easier to learn the individual elements of the values, for
example if their state representation can be simplified. In multi-policy approaches, the
agent does not know the weights ω during the learning phase. It should therefore learn
several policies, that can then be used during a selection phase to determine the optimal,
or most appropriate, policy for a given weight vector ω.

A second property used to differentiate MORL approaches is the form of the scalar-
ization function. The functions can be either linear or monotonically increasing. Linear
scalarization functions are a weighted sum over the value dimensions: V π

ω (s) =
∑

i ωi
~Vi(s).

As a result, the potential set of policies that result in the optimal policy for each possible
weight vector ω is restricted to a convex hull set (Roijers et al. 2013). Therefore, multi-
policy algorithms need only to learn such convex hull policies to guarantee optimality. In
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difference, monotonically increasing scalarization functions can be non-linear. Their only
restriction is that if all other value dimensions are fixed, then increasing any specific value
dimension results in a higher scalar value. As a result, the set of policies to guarantee
optimality have to be a Pareto optimal set, which includes the convex hull set (Roijers
et al. 2013).

Please note, that approaches are also differentiated between the types of policies, that
the algorithms learn. They can be either be deterministic or stochastic. Depending on
the type and the other properties of an MOMDP, the set of optimal policies changes, i.e.
if they are stationary or non-stationary. Please refer to Roijers et al. (2013) for more
information.

The IGE can be understood as a specialized MORL algorithm having two objective
dimensions. The first is the regular scalar reward function R. The second is the number
of steps until a goal-state is reached. Both could be included in a vectorized reward
function using ~R(st, at, st+1) = [R(st, at, st+1),−t]ᵀ. The number of steps are multiplied
by −1 because the general goal is to minimize and not to maximize them. In the case of
OA-MDPs the objectives J = (f1, f2, . . .) represent different scalarization functions and
weights ω. The OA-IGE is in this form a multi-policy algorithm. It learns several policies
with its γ-modules. Depending on the current scalarization function fk from J , it selects
the most appropriate policy to maximize the function.

In terms of the scalarization functions, it can be shown that the OA-IGE learns in de-
terministic, goal-only-reward environments the convex hull set of policies. This insight can
be derived from the definition of the IGE choice set in these environments (Theorem 7).
It is therefore guaranteed to learn all optimal policies for linear scalarization functions.
If the objective functions J are monotonically increasing scalarization functions, then the
OA-IGE can not guarantee to learn all optimal policies, because the IGE policy set is not
guaranteed to be the Pareto optimal set of all policies. For example, in the deterministic,
goal-only-reward tasks the OA-IGE cannot learn to reach goal state g4 (Fig. 4.2, c), which
is part of the Pareto optimal set.

Existing multi-policy algorithms in MORL (Liu, Xu, & Hu 2015) use either a convex
hull approach or a varying parameter approach. The convex hull approach by Barrett
& Narayanan (2008) identifies the convex hull set of policies in an MOMDP. This allows
the algorithm to guarantee optimality for linear scalarization functions similar to the OA-
IGE. In difference, the OA-IGE also learns policies outside the convex hull set and can
therefore also adapt to non-linear scalarization functions, although without guaranteeing
optimality. Furthermore, the convex hull approach is a dynamic programming approach
requiring a model of the MOMDP, whereas the OA-IGE is model-free.

Varying parameter approaches such as by Shelton (2001) learn different policies by
varying the parameters ω of the scalarization function and learning the optimal policies
for them. Then if a new target set of parameters ω is given, it is for example possible to
select the learned policy with the closest parameters. Such algorithms need the knowledge
of the set of scalarization functions J , and they are not guaranteed to be optimal. In the
case of the OA-IGE, the set of scalarization functions can be unknown.

In summary, the IGE can be interpreted as a special case of an MORL approach, where
the first objective is the reward and the second the number of steps. The approach to
learn a set of policies based on different discountings has not been explored in MORL and
represents an interesting new approach for MOMDPs that include time as a objective.
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Optimality

A problematic point of the OA-IGE is that it can guarantee optimality only for a subset
of tasks and objectives. This problem is based on two points. First, it can only adapt
to new objectives using policies from the IGE policy set, but these might not have the
optimal policy. For example, in the deterministic, goal-only-reward task the OA-IGE
cannot learn to reach goal state g4 (Fig. 4.2, c). As a result, it cannot find the optimal
policy for objective f7 that has g4 as optimal solution (Fig. 4.4). Nonetheless, optimality
can be guaranteed for a subset of goal formulations. The OA-IGE converges to the
optimal policy for objectives that maximize the exponentially discounted reward sum
E
[∑T−1

t=0 γ
trt

]
. Depending on the discount factor γ, the Q-values of the corresponding

γ module will converge to the optimal value function for it (Watkins & Dayan 1992;
Tsitsiklis 1994). This includes also the case of maximizing the expected total reward sum
E
[∑T−1

t=0 rt

]
, because this is the same objective as for γ = 1. Most interestingly, it is

possible to prove its convergence upon the optimal policy for the average reward r
n
in

deterministic, goal-only-reward MDPs as discussed in Chapter 5. For other objectives,
the OA-IGE can be viewed as a heuristic that does not guarantee optimality, but that
produces often good results with the ability to adapt immediately to a new objective.

The second point why optimality generally cannot be guaranteed is that OA-IGE uses
the approximation Eπγ ,s0 [f(h)] ≈ f(Eπγ, s0[h]) or Eπγ ,s0 [f(R, T )] ≈ f(Eπγ ,s0 [R],Eπγ ,s0 [T ])
to select its most appropriate policy for an objective. The approximation is only correct for
a subset of tasks and objectives (Section 4.2). For other conditions, a wrong approximation
might result in selecting an underperforming γ-policy. A solution to this problem is to use
a similar approach as for the Context Adaptive IGE (Section 3.4.1) that learns a mapping
from a context to the most appropriate γ-module. A map (G : J × S 7→ Γ) from the
objective function fk ∈ J and the agent’s states s ∈ S to the γ-module with the most
appropriate policy could be learned for the OA-IGE. A value-based approach similar to
the Q-IGE (Algorithm 3.4) could be used. The expected outcome F for using a module
starting in state s for objective fk could be learned:

F (k, s, γ) = Eπγ [fk(R,N)] .

This would allow the OA-IGE to find the most appropriate module for a certain objective,
because the value function F could learn the true expectation over outcomes. Zero-shot
learning would still be possible by initializing F for a new objective fk by using the
approximation:

Finit(k, s, γ) = fk(Eπγ [R],Eπγ [N ]) .

Memory Demand

Comparing the memory demand of the OA-IGE to that of the classical time-dependent Q-
learning approach shows that it needs less memory, depending on the number of objectives.
Both approaches used a tabular representation of their value functions. The DOA-IGE
needed to represent |Γ| × |S| × |A| = 90 × 100 × 4 = 36,000 values. The POA-IGE has
two extra value functions for the expected reward sum and number of steps, but it also
had less γ-modules. It needed Qγ : (|Γ| × |S| × |A|) + Rγ : (|Γ| × |S|) + Tγ : (|Γ| × |S|)
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= 45 × 100 × 4 + 45 × 100 + 45 × 100 = 27,000 values. The time-dependent Q-learning
approaches needed to store values over the objectives, time steps, states and actions:
|J |×T ×|S|× |A|, which resulted in 9×30×100×4 = 108,000 values. This is a factor of
3 larger than the memory demand for the DOA-IGE. Furthermore, the list of objectives
J is in principle infinite, making it impossible for the Q-learning approach to store the
values for each possible objective function. The OA-IGE algorithms do not store values
for certain objectives and can generalize therefore to an infinite number of objectives.

4.6 Conclusion
The OA-IGE has the ability to adapt immediately to different and unseen objectives in
an environment. Objectives define different requirements by the amount of reward that
should be acquired and the time that should be invested. For example, the objective could
be to maximize the total amount of reward, but to use only a certain maximum number
of time steps. The ability of the IGE to learn different policies for an environment, each
representing a different solution for a trade-off between the reward amount and invested
time, allows it to adapt to such objectives. It can select its most appropriate policy
for a given objective. The decision, which policy to use for an objective, is solved by
approximating each policy’s outcome for the objective. The Decoding OA-IGE uses the Q-
values of its γ-modules to decode the expected future reward trajectory for each policy, but
its application is limited to deterministic, goal-only-reward environments. The Prediction
OA-IGE learns for each of its module’s policies the expected future reward sum and the
expected number of steps. It can be applied to any OA-MDP. Although, convergence
upon the optimal policy can only be guaranteed for specific tasks and objectives, the
OA-IGE can adapt immediately to new and unseen objectives by selecting an appropriate
policy. In contrast, classical Q-learning approaches need several observations to adapt to
a new objective.



Chapter 5

Average Reward Optimization

The tasks to which the IGE is applied are episodic in nature. The objective is usually to
gain the highest reward during an episode, or under some time restriction. Nonetheless,
in tasks that are repeated in a loop it would be more beneficial to optimize the average
reward over the time steps. For example, a mining agent has to collect resources and
bring them back to a storage facility. The agent has to repeat this task over and over in a
loop. In this case, the optimal strategy would not be to collect the maximum amount of
resources in each episode, because this could take the agent a very long time. Instead, the
agent should optimize the average amount of the collected resources per time step. The
average-reward objective results in the largest amount of reward for the invested time.

The objective is formulated as a function over the number of steps T that go towards
infinity:

lim
T→∞

1

T
E

[
T−1∑
t=0

rt

]
. (5.1)

The most widely utilized methods to optimize this objective are policy-based algorithms
(Deisenroth, Neumann, & Peters 2011), but value-based methods, such as the IGE, have
also been proposed (Mahadevan 1996). The value-based algorithms optimize the average
reward by learning two entities. First, they learn an average-reward adjusted value func-
tion that is analogous to the value function for the discounted reward objective (Eq. 1.3,
page 10). Second, the value function is based on an estimate of the average reward gained
by the agents current policy. The estimation has to be learned in parallel to the value
function. The agents policy is then defined over the value function by choosing the actions
that maximize it.

This chapter explores the ability of the IGE to optimize average reward. The IGE al-
lows optimizing the average reward per episode in deterministic, goal-only-reward MDPs.
This objective is equal to optimizing the average reward over all time steps (Eq. 5.1) in
tasks where the start state is the same for each episode. The IGE provides a new way
to optimize average reward. In contrast to the average adjusted approaches, it does not
need to learn an estimate of the average reward of the agents policy. Instead, it learns
different policies to reach some of the goal states in an MDP (Section 2.2). It can identify
which policy results in the highest average reward per step in an episode. Two algorithms
are introduced that differ in the method used to identify the optimal policy. One is using
the ability of the IGE to decode the expected reward and number of steps for its learned
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policies. Based on the decoded information the average reward of each policy is calculated
to detect the one that maximizes it. The other approach identifies the optimal policy by
directly comparing the values of the modules with each other. For deterministic, goal-
only-reward MDPs it can be shown that the IGE is guaranteed to learn the policy to the
goal state that results in the optimal average reward. Moreover, it is possible to define
the number of necessary modules and their γ factors for which the IGE is guaranteed to
be optimal.

This chapter is organized in the following way. First, existing approaches using
average-adjusted values are introduced in Section 5.1, followed by a description of the
Average-Reward IGE (AR-IGE) in Section 5.2. The two AR-IGE variants and their op-
timality proofs are discussed in Sections 5.3 and 5.4. The results of an experimental
comparison between the AR-IGE and the existing methods are given in Section 5.5. The
experiments were performed in two task domains with randomly generated MDPs. The
results show that the AR-IGE outperforms the existing approaches, especially in MDPs
that change over time. The discussion in Section 5.6 provides details of the difference
between the AR-IGE and the existing methods in terms of their objective, i.e. which type
of average reward they optimize. In addition, it describes the relationship between the
number of γ-modules and the performance of the AR-IGE.

5.1 Existing Average-Adjusted Approaches

Various approaches to optimize the average-reward objective exist. Policy-based ap-
proaches such as policy-gradient methods (Deisenroth, Neumann, & Peters 2011) are the
most popular. Nonetheless, value-based approaches similar to Q-learning (Definition 3)
also exist. This section introduces the value-based approaches.

Average reward optimization is usually formulated for continuous MDPs instead of
episodic MDPs. In such MDPs the average reward for a policy π is defined by:

ρπ = lim
T→∞

Eπ

[
1

T

T−1∑
t=0

rt

]
, (5.2)

where the expectation is over the policy π. The goal is to find the policy π∗ that results
in the highest average reward: ρπ∗ ≥ ρπ for all π.

Value-based algorithms solve this problem for the class of unichain MDPs. It is neces-
sary to first introduce some other concepts before unichain MDPs can be defined. These
concepts describe structural aspects of MDPs in respect to possible transitions between
states under some policy π. Policies are assumed to be stationary and deterministic, i.e.
they do not change and map only one action to each state (π : S 7→ A). Under this
assumption, a state sa is called to communicate with another state sb if a policy exists
that can reach sb in one or more steps from sa. A state is recurrent under a policy if
the probability of visiting it again by starting from it is 1. Such states are visited again
and again in a kind of a loop. In contrast, transient states might be visited for a certain
number of times but then not anymore. Based on these definitions a recurrent or ergodic
set of states can be defined. All states in such a set are recurrent and communicate with
each other, but not with any other state outside the set.
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Using the introduced concepts the class of unichain MDPs can be defined. An MDP
is unichain if for each possible policy only one set of recurrent states exists and possibly
some transient states. As a result, a policy might start in some states and then loop over
the set of recurrent states. This allows the existence of a single average reward ρπ that is
associated with a policy in such MDPs. Multichain MDPs have for at least one possible
policy more than one set of recurrent states. In such a case the average reward depends on
the set of recurrent states over which the agent loops. Therefore, a single average reward
ρπ cannot be defined for such MDPs.

Analogues to the value function based on the expected discounted reward sum, a
recursive value function for the average reward can be defined. In can be proven that for
any unichain MDP a value function V ∗ and a scalar ρ∗ exist that satisfy the following
equation (Puterman 1994):

V ∗(st) = max
at∈A

R(st, at)− ρ∗ +
∑
st+1∈S

T (st, at, st+1)V ∗(st+1)

 . (5.3)

The greedy policy π∗, i.e. the action that maximizes the right hand side, results in the
optimal average reward ρ∗.

Several model-free and model-based algorithms exist that use the average-adjusted
value function to optimize average reward (Mahadevan 1996). The IGE has been ex-
perimentally compared to some of the model-free approaches that use a TD approach
similar to Q-learning for discounted value functions. All of the methods learn an average-
adjusted Q-function. The Q-function follows the same principle as the state-value function
(Eq. 5.3). All methods (Algorithm 5.1) start with an arbitrarily initialized Q-function.
The Q-values are updated after a transition from st to st+1 with action at, and the obser-
vation of reward rt:

Q(st, at)← Q(st, at) + αQ

(
rt − ρ+ max

at+1

Q(st+1, at+1)−Q(st, at)

)
,

where αQ ∈ [0, 1] is the learning rate, and ρ is a stochastic estimation of the average
reward. The estimation ρ is also learned from the observations of transitions. It is
updated after transitions that used the greedy action based on the current Q-function.
The difference between the average-adjusted algorithms is their method to update the
estimate ρ.

R-Learning (Schwartz 1993) was the first variant of these algorithms. Its average
reward is updated by:

ρ←ρ + αρ

(
rt − ρ+ max

at+1

Q(st+1, at+1)−max
at

Q(st, at)

)
,

where αρ ∈ [0, 1] is the learning rate for the average reward. The Semi-Markov Average
Reward Technique (SMART) (Das et al. 1999; Mahadevan, Marchalleck, et al. 1997) cal-
culates the average reward by summing over all perceived rewards during the experiment
and dividing the sum by the total number of time steps:

ρ←
∑T−1

t=0 rt
T

,
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Algorithm 5.1: Average-adjusted algorithms for continuous average-reward MDPs
Input:

Learning rate: αQ ∈ [0, 1]

Discount factor: αρ ∈ [0, 1]

initialize Q(s, a) arbitrarily
initialize ρ arbitrarily
initialize state s
repeat (for each step)

a← choose an action for s derived from Q(s, a) (e.g. ε-greedy)
r, s′ ← take action a, observe outcome
Q(s, a)← Q(s, a) + αQ

(
r − ρ+ maxa′ Q(s′, a′)−Q(s, a)

)
// ρ is update for steps that follow the greedy policy
if a = argmaxuQ(s, a) then

ρ← update estimate of average reward (depends on the algorithm)

s← s′

until termination

where T is the total number of time steps up to the current time point. Relaxed SMART
(rSMART) (Gosavi 2004) is variant of SMART for which a convergence proof of the
algorithm was developed. It uses a relaxed update of the average reward:

ρ← ρ+ αρ

(
ρ · (T − 1) + rt

T
− ρ
)
.

Robbins-Monro SMART (rmSMART) (Gosavi 2004) is a further variant of SMART which
uses a Robbins-Monro update (Robbins & Monro 1951) of the average reward:

ρ← ρ+ αρ(rt − ρ) .

A more recent approach is CSV-Learning by Yang et al. (2016) where ρ is not updated
during the learning but set to an initial guess. This algorithm can outperform existing
approaches, but it is excluded from the analysis because of its required initial guess of the
average reward.

5.1.1 Average-Reward Optimization in Episodic MDPs

The average-adjusted algorithms introduced above optimize the average reward in con-
tinuous tasks. In contrast, the objective of the AR-IGE is the optimization of the average
reward per episode in episodic MDPs. The average reward per episode for a policy π is
given by:

ρπk = Eπ

[
1

Tk

Tk−1∑
t=0

rk,t

]
, (5.4)

where Tk is the number of steps, and rk,t is the reward at step t of episode k.
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a) Episodic MDP b) Continuous MDP

Figure 5.1: Episodic MDPs can be reformulated as continuous MDPs by introducing
transitions back to a start state instead of transitions to the goal states. This allows the
use of average-adjusted methods, such as R-Learning, for such tasks.

Average-adjusted methods can also be applied to episodic tasks that are continuously
repeated. This can be done simply by adapting the task so that instead of a transition
into a goal state the transition brings the agent to the initial state of the next episode
(Fig. 5.1). As a result, the average-adjusted methods optimize the average reward over
all steps (Eq. 5.2). In terms of the episodic representation of the MDPs they optimize the
average reward over the steps of all episodes:

ρπexp = lim
K→∞

Eπ

[
1∑K

k=1 Tk

K∑
k=1

Tk−1∑
t=0

rk,t

]
, (5.5)

where K is the number of episodes, and Tk is the number of steps in episode k.
Generally, optimizing the average reward per episode is different from optimizing the

average reward over the steps of all episodes. Nonetheless, both are the same for tasks
where the initial state is the same for each episode (Theorem 16). Such tasks can therefore
be optimized by either approach, the AR-IGE or the average-adjusted algorithms. The
difference between average reward per episode and over all steps is further addressed in
the discussion section.

Theorem 16. The expected average reward over episodes (Eq. 5.5) for a greedy policy π
in an episodic MDP with a deterministic transition function, and a single start state s0

is equal to its expected average reward per episode (Eq. 5.4):

∀k : ρπk = ρπexp ,

where k is the index over episodes.

Proof. In MDPs with deterministic state transitions, the number of steps Tk(π, s0) re-
sulting from a greedy policy π starting in the same initial state s0 is the same for each
episode:

∀k : Tk(π, s0) = T .

Based on this, the average reward per individual episode (Eq. 5.4) becomes:

ρπk = Eπ

[
1

Tk

Tk−1∑
t=0

rk,t

]
=

1

T

T−1∑
t=0

E [rk,t] .
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Furthermore, it shows that the expected average reward over the steps of all episodes
(Eq. 5.5) is equal to the average reward per episode:

ρπexp = lim
K→∞

Eπ

[
1∑K

k=1 Tk

K∑
k=1

Tk−1∑
t=0

rk,t

]
= lim

K→∞
Eπ

[
1∑K
k=1 T

K∑
k=1

T−1∑
t=0

rk,t

]

= lim
K→∞

1

KT
K

T−1∑
t=0

Eπ [rk,t] =
1

T

T−1∑
t=0

Eπ [rk,t] = ρπk .

5.1.2 Episodic Average-Adjusted Algorithms

In deterministic, goal-only-reward MDPs with a single start state, an alternative form of
the average-adjusted algorithms can be defined that operates on the episodic formulation
of the MDPs (Fig. 5.1, a). The alternative form uses the observation that the value of
the start state is zero (V π∗(s0) = 0) for the optimal policy π∗ in such MDPs. This results
from the zero-rewards that are given in trajectories, besides the last transition into the
goal state:

V ∗(s0) = r0 − ρ∗ + r1 − ρ∗ + . . .+ rT−1 − ρ∗
= rT−1 − (T )ρ∗

= rT−1 − (T ) rT−1

T

= 0 ,

(5.6)

where ρ∗ = r∗

T
is the average reward for the optimal trajectory, where T is its number

of steps and rT−1 is the final reward. This insight can be used to formalize an episodic
variant of the average-adjusted algorithms (Algorithm 5.2). For transitions into goal states
(isTerminal = true), the continuous version of the algorithms would make a transition
to the start state of the next episode and uses its value to update the last Q-value. The
episodic variant uses the assumption that the optimal value of the start state is zero
(Eq. 5.6) and updates the last Q-value by it, instead of using the Q-value of the next start
state.

The performance of both versions, the continuous and the episodic form, of the average-
adjusted algorithms were evaluated. The results show, that for some problems the con-
tinuous form is better and for others the episodic form (Section 5.5).

5.1.3 Conclusion

Model-free, value-based algorithms use the concept of an average-reward adjusted Q-
function to optimize average reward. The value function is learned with a similar TD
approach as classical Q-learning for the discounted value function. In addition the algo-
rithms have to estimate the average reward ρ of its policy from observations. Although
the methods were developed for continuous tasks, they can be applied to episodic tasks
that are repeated. Their objective is the optimization of the average reward over the
steps of all episodes. In contrast, the AR-IGE, which is introduced in the following sec-
tion, optimizes the average reward per episode. The objectives of the AR-IGE and the
average-adjusted algorithms are different for general MDPs. Nonetheless, the objectives
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Algorithm 5.2: Average-adjusted algorithms for episodic average-reward MDPs
Input:

Learning rate for Q-values: αQ ∈ [0, 1]

Learning rate for average reward: αρ ∈ [0, 1]

initialize Q(s, a) arbitrarily
initialize ρ arbitrarily
repeat (for each episode)

initialize state s
repeat (for each step in episode)

a← choose an action for s derived from Q(s, a) (e.g. ε-greedy)
r, s′, isTerminal← take action a, observe outcome

// if the goal state is reached assume a value of 0 for the
next state

if isTerminal = false then
Q(s, a)← Q(s, a) + αQ

(
r − ρ+ maxa′ Q(s′, a′)−Q(s, a)

)
else

Q(s, a)← Q(s, a) + αQ (r −Q(s, a))

end

// ρ is update for steps that follow the greedy policy
if a = argmaxuQ(s, a) then

ρ← update estimate of average reward (depends on the algorithm)

s← s′

until s is terminal-state
until termination

are equal for deterministic MDPs where the initial state is the same for each episode.
These MDPs are therefore used to compare the algorithms in two problem domains in
Section 5.5.

5.2 The Average-Reward Independent γ-Ensemble
The Average-Reward Independent γ-Ensemble (AR-IGE) is a IGE framework to optimize
the average reward per episode in episodic tasks (Fig. 5.2). It learns different policies by
its γ-modules (Section 2.2). At the beginning of an episode, it selects the γ-policy that
will optimize the average reward:

γ̃ = argmax
γ

Eπγ ,s0 [R]

Eπγ ,s0 [T ]
,

where R is the reward sum of the episode and N is the number of steps. For exploration
purposes, it uses an ε-greedy selection of the active module.

This chapter introduces two AR-IGE variants to identify the policy with the highest
average reward. The first is the Decoding AR-IGE (DAR-IGE). It decodes the expected
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Figure 5.2: The general framework of the Average-Reward IGE (AR-IGE). The goal of
the agent is to maximize the average reward per episode.

reward and the expected number of steps from the Q-values of the γ-modules to compute
for each module the expected average reward. The decoded information can also be used
to guide the exploration of the AR-IGE. The second approach is the Value Quotient
AR-IGE (VQAR-IGE). It compares the Q-values of its modules directly with each other
to identify the module with the best policy. It needs fewer modules compared to the
Decoding AR-IGE. However, it cannot identify further information about its policies,
besides identifying the best.

The AR-IGE framework differs in several ways from the average-adjusted approaches
(Section 5.1). First, it does not learn an estimate of the average reward ρπ. In addition,
instead of learning only the optimal policy and its average reward, it learns several possible
policies for a task and can compute their average reward. This can be useful, for example,
if the algorithm has to adapt to changes in the MDP. The AR-IGE is able to quickly switch
to another policy if the currently optimal policy becomes suboptimal.

Both AR-IGE variants are guaranteed to converge to the optimal average reward policy
per episode. Two points have to be proven to show this. First, one of γ-modules has to
converge to the optimal average-reward policy. Second, the γ-module with the optimal
policy has to be identifiable. The first point is proven in the next section. Afterward, the
DAR-IGE and the VQAR-IGE are introduced with the proofs that they can identify the
module with the optimal policy.

The DAR-IGE was aleady introduced in (Reinke, Uchibe, & Doya 2017) with a proof
of its optimality. However, the proof required the assumption that the IGE has an infinite
number of γ-modules with uniformly distributed discount factors between 0 and 1. The
proof presented in this chapter requires only a finite number of modules and it allows to
define the required discount factors.
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5.2.1 Existence of the Optimal Policy

To guarantee that the AR-IGE is optimal, some of its γ-modules have to learn the optimal
average-reward policy per episode. Theorem 17 proves this point. Moreover, the theorem
defines precisely which γ-modules, i.e. which discount factors Γ, are necessary to guarantee
optimality. The proof makes use of the concept of choices (Definition 4, page 37) in
deterministic, goal-only-reward MDP. It assumes that the Q-functions of all γ-modules
converged to their optimal values Q∗γ as proven by Watkins & Dayan (1992) and Tsitsiklis
(1994).

Theorem 17. For any deterministic, goal-only-reward MDP exists a γ-region Γ∗ for
which all its discount factors γ∗ encode the optimal average reward choice c∗. The region
is defined by:

Γ∗ =

{
γ∗L =

n∗ − 1

n∗
< γ∗ < γ∗U =

n∗

n∗ + 1

}
,

where γ∗L and γ∗U are the lower and upper border of the region, and n∗ is the number of
steps of the the optimal choice c∗.

Proof. The γ region for which the optimal choice c∗ is the solution given all other possible
choices in the MDP is defined by (Theorem 3, page 38):

γ∗L = max
∀ci<c∗

γE(ci, c
∗) < γ∗ < γ∗U = min

∀cj>c∗
γE(c∗, cj) ,

where γE(cx, cy) is the discount factor for which the choices cx and cy have the same value
(Eq. 2.6, page 38). The lower bound γ∗L can be shown to be equal to n∗−1

n∗
, starting with:

γ∗L(n∗) = max∀ci<c∗ γE(ci, c
∗)

= maxr∗,ri,ni
(
ri
r∗

) 1
n∗−ni s.t. ni < n∗, r∗

n∗
≥ ri

ni
, ni, n

∗ ∈ N+ ,
(5.7)

with the choices ci = (ri, ni), and the optimal average reward choice c∗ = (r∗, n∗). The
number of steps of the optimal choice n∗ is assumed to be given, i.e. the goal is to find
the lower region border γ∗L given that the optimal choice has a certain number of steps n∗.
The maximum can be solved by using the constraints that all choices ci have fewer steps
than the optimal choice (ni < n∗), and that their average reward is smaller ( r∗

n∗
≥ ri

ni
).

Moreover, the number of steps can only be positive natural numbers (ni, n∗ ∈ N+). First,
the reward ri is identified which maximizes Eq. 5.7:

rmaxi = argmaxri
(
ri
r∗

) 1
n∗−ni

= argmaxri
(
ri
r∗

)
= argmaxri ri s.t. ni < n∗, r∗

n∗
≥ ri

ni
, ni, n

∗ ∈ N+ .

(5.8)

By reformulating the average reward constraint:

r∗

n∗
≥ ri
ni
⇔ ri ≤ ni

r∗

n∗
,

the reward rmaxi (Eq. 5.8) is given by:

rmaxi = ni
r∗

n∗
.
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Using this result for the lower γ-region border γ∗L (Eq. 5.7) reduces the reward variables
r∗ and ri from its maximum formulation:

γ∗L(n∗) = maxr∗,ri,ni
(
ri
r∗

) 1
n∗−ni

= maxr∗,ni

(
ni

r∗
n∗
r∗

) 1
n∗−ni

= maxni
(
ni
n∗

) 1
n∗−ni s.t. ni < n∗, ni, n

∗ ∈ N+ ,

(5.9)

Lemma 9.1 (page 47) shows that the maximum of Eq. 5.9 is given by:

γ∗L(n∗) =
n∗ − 1

n∗
.

The upper bound γ∗U of the γ-region is equal to n∗

n∗+1
. It can be derived in a similar

way as the lower bound γ∗L, starting with its definition:

γ∗U(n∗) = min∀cj>c∗ γE(c∗, cj)

= minr∗,rj ,nj

(
r∗

rj

) 1
nj−n∗ s.t. nj > n∗, r∗

n∗
≥ rj

nj
, nj, n

∗ ∈ N+ ,
(5.10)

where the larger choices cj = (rj, nj), and the optimal average reward choice c∗ = (r∗, n∗).
The minimum (Eq. 5.10) can be derived, by first deriving the reward rj that yields

the minimum:

rminj = argminrj

(
r∗

rj

) 1
nj−n∗

= argminrj

(
r∗

rj

)
= argmaxrj rj
= nj

r∗

n∗
s.t. nj > n∗, r∗

n∗
≥ rj

nj
, nj, n

∗ ∈ N+ ,

Using this result for the upper γ-region border γ∗U (Eq. 5.10) reduces the reward
variables r∗ and rj from its minimum formulation:

γ∗U(n∗) = minr∗,rj ,nj

(
r∗

rj

) 1
nj−n∗

= minr∗,nj

(
r∗

nj
r∗
n∗

) 1
nj−n∗

= minnj

(
n∗

nj

) 1
nj−n∗ s.t. nj > n∗, nj, n

∗ ∈ N+ ,

(5.11)

Lemma 9.2 (page 48) shows that the minimum of Eq. 5.11 is given by:

γ∗U(n∗) =
n∗

n∗ + 1
.

Finally, after showing the borders of the γ region (γ∗L, γ∗U), it has to be shown that the
region between these borders exists, i.e. that γ∗L < γ∗U :

γ∗L < γ∗U ⇔ n∗ − 1

n∗
<

n∗

n∗ + 1
⇔ (n∗ − 1)(n∗ + 1) < (n∗)2 ⇔ (n∗)2 − 1 < (n∗)2 ,

which is true. This ends the proof of Theorem 17.
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Theorem 17 defines the region of discount factors which are guaranteed to learn an
optimal average reward choice if it has n∗ steps. Theorem 18 shows that these regions do
not overlap. Therefore, an IGE needs at least N modules, one for each possible number
of steps n = (1, . . . , N), to guarantee that any optimal average reward choice with a
maximum of N steps can be learned by an IGE.

Theorem 18. The γ-regions (Theorem 17) to learn the optimal average reward choice c∗
with different number of steps n∗ do not overlap.

Proof. The regions do not overlap, because the upper border γ∗U for an optimal choice
with n∗ steps is the same as the lower border γ∗L for an optimal choice with n∗ steps:

γ∗U(n∗) = γ∗L(n∗ + 1) ⇔ n∗

n∗ + 1
=

(n∗ + 1)− 1

(n∗ + 1)
⇔ n∗

n∗ + 1
=

n∗

n∗ + 1
.

In summary, if the AR-IGE has at least one module in each of the γ-regions defined
by n−1

n
< γ < n

n+1
(Theorem 17) for each possible n up to the maximum number of steps

in the MDP, then it is guaranteed that at least one of its modules will learn the optimal
average reward policy. The most interesting point of these γ-regions is, that they do not
depend on the reward values of the choices in an MDP.

5.2.2 Alternative Geometric Proof of Optimality

A more intuitive proof for Theorem 17 can be constructed to show that some γ-modules
with γ ∈ (0, 1) are guaranteed to learn the optimal average-reward policy. However, the
proof does not allow the definition of the borders of the γ-region that is guaranteed to
learn the optimal choice.

The alternative proof makes use of a geometrical connection between the average
reward of a choice and its angle in the choice space spanned by the number of steps n and
the reward r (Fig. 5.3). The average reward of each choice c = (r, n) can be represented
by the tangent function of the angle αc of the line that goes through the origin of the
choice space and the choice. The tangent is given by:

tanαc =
r

n+ 1
.

The reward r can be interpreted as the opposite side, and the number of steps n as
the adjacent side for the angle αc of a rectangular triangle. The triangle is defined by
the origin and the choice in the choice space. Because the tangent function is monotonic
increasing, the optimal average reward choice c∗ has the largest angle of all choices in an
MDP:

∀c : tanαc∗ ≥ tanαc ⇔ αc∗ ≥ αc .

Therefore, all other choices have a smaller angle and lie below the line defined by the
origin and the optimal choice in the choice space (Fig. 5.3):

tanαc∗ ≥ tanαc ⇔ tanαc∗ ≥
r

n
⇔ r ≤ n · tanαc∗ . (5.12)
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Figure 5.3: Geometric interpretation of the optimality proof.

As a result, the optimal choice c∗ is guaranteed to be in the IGE choice set, i.e. it
exists some discount factor γ for which it is the optimal solution. A choice is in the IGE
choice set, given two other choices (ca = (ra, na) and cb = (rb, nb)) that bracket it, if its
reward is above the border defined by Eq. 2.7 (page 40):

r >
n log rb

ra
+ nb log ra − ra log rb

nb − na
.

This reward border is a convex function between the two choices ca and cb in the choice
set space (Fig. 5.3). Because it is convex, and the two choices lie below the border line
defined by the optimal choice c∗ (Eq. 5.12), the optimal choice c∗ lies above the IGE
choice set border. This shows that the optimal average-reward choice is learnable by
certain γ-modules.

This proof only shows that γ parameters exist for which the optimal choice will be the
solution. Based on this proof, to guarantee that the AR-IGE learns the optimal choice,
it needs to be assumed that the number of modules is going to infinity and that the γ
parameters are evenly spread between 0 and 1. In contrast, Theorem 17 shows also that
only a finite number of modules is needed and it defines which γ parameters are needed.
Nonetheless, the geometrical proof provides an intuitive explanation why the optimal
average reward choice can be learned by an IGE for any deterministic, goal-only-reward
MDP.

5.3 The Decoding Average-Reward IGE

The previous section introduced the AR-IGE framework and proved that some γ-modules
of the IGE are guaranteed to learn the optimal average-reward policy. This section in-
troduces the Decoding AR-IGE (DAR-IGE), the first of two AR-IGE variants to identify
which of the γ-modules learned the best average-reward policy. The DAR-IGE uses the
ability of the IGE to decode the expected reward and number of steps of each learned
policy to identify the optimal one. The next section introduces the algorithm followed by
the proof that the DAR-IGE can correctly identify the optimal average reward policy.
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5.3.1 The DAR-IGE Algorithm

The DAR-IGE (Algorithm 5.3) is a IGE variant. It identifies at the beginning of an
episode for each of its learned γ-policies the expected future reward and the number of
steps to reach the goal state. Based on this information it calculates the expected average
reward for each policy. One of the policies is then selected with an ε-greedy strategy based
on their expected average reward. The policy is used during the whole episode until a
terminal state is reached.

The DAR-IGE uses the ability of the IGE to decode the number of steps and the ex-

Algorithm 5.3: Decoding Average-Reward IGE
Input:

Learning rate: α ∈ [0, 1]

Sorted list of discount factors: Γ = (γ1, . . . , γm) with γi ∈ (0 1)

initialize Qγ(s, a) to zero
repeat (for each episode)

initialize state s

// calculate expected rewards and number of steps for module pairs
for i from 1 to m− 1 do

Ri ← r(γi, γi+1)

Ti ← ns(γi, γi+1)

end

// remove invalid module pairs and calculate average reward
for i from 1 to m do

if Ti−1 = Ti or Ti = Ti+1 then
R̄(i)← Ri

Ti

else
R̄(i)← ∅

end
end

// select the module that maximizes the average reward
γ̃ ← choose module based on R̄(i) (e.g. ε-greedy)

repeat (for each step in episode)
a← choose an action for s derived from Qγ̃(s, a) (e.g. ε-greedy)
r, s′ ← take action a, observe outcome
forall the γ ∈ Γ do

Qγ(s, a)← Qγ(s, a) + α (r + γmaxa′ Qγ(s
′, a′)−Qγ(s, a))

end
s← s′

until s is terminal-state
until termination
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pected final reward of its γ-policies in deterministic, goal-only-reward MDPs (Theorem 8,
page 44). Given two modules (γa, γb) with the same expected trajectory from state s0,
the number of steps to reach the goal state at the end of the trajectory is:

ns0(γa, γb) =
log Vγa(s0)− log Vγb(s0)

log γa − log γb
+ 1 . (5.13)

The expected reward for reaching the goal state can be decoded by:

rs0(γa, γb) =
Vγa(s0)

γ
ns0 (γa,γb)−1
a

.

Based on this information the average reward of the module pair is given by:

r̄s0(γa, γb) =
rs0(γa, γb)

ns0(γa, γb)
. (5.14)

The DAR-IGE computes the average reward for all neighbors in its set of modules
Γ. Pairs which have different trajectories and therefore a wrongly computed average
reward are detected by comparing the number of steps of neighboring pairs as discussed
in Section 2.3. A module pair (γi, γi+1) is ignored if:

ns0(γi−1, γi) 6= ns0(γi, γi+1) 6= ns0(γi+1, γi+2) . (5.15)

The active module γ̃ for an episode is selected with an ε-greedy approach controlled
by the exploration rate εγ. With probability 1 − εγ one of the modules with the policy
that is expected to result in the highest average reward is selected:

γ̃ = argmax
γi

r̄s0(γi, γi+1) .

With probability εγ, a random policy is selected. The random selection is based on the
different greedy policies that the agent can use starting from state s0. The policies are
identified based on the decoded number of steps ns0(γa, γb) of the module pairs (Eq. 5.13).
Each possible choice that an IGE can learn results in a different number of steps in a
deterministic MDP (Definition 4, page 37). One of these policies is selected and one of
the modules that encodes this policy is used as active module γ̃.

5.3.2 Proof of Optimality

This section provides the proof that the DAR-IGE is guaranteed to converge to the optimal
average-reward policy per episode and discusses the number of modules that are needed.
The proof is build on Theorem 17 that showed that some γ-modules converge to the
optimal policy. The missing part to prove optimality is to show that the optimal policy
can be identified within the set of all learned γ-policies . The proof assumes that no
exploration over the modules is performed, i.e. εγ = 0.

The goal of the DAR-IGE is to optimize the expected average reward per episode:

Eπ,s0

[
1

T

T−1∑
t=0

rt

]
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The DAR-IGE identifies the expected average reward for each γ-modules policy by de-
coding their policies expected reward r and the number of steps n + 1. The decoded
information is then used to calculate the average reward by Eq. 5.14. It can be shown
that the average reward is correctly computed. First, Theorem 8 (page 44) proved that
the decoded reward and number of steps are correct, i.e. that ns0(γa, γb) = Tπγa,b ,s0 and
rs0(γa, γb) = Eπγa,b ,s0

[rT−1]. In MDPs with a determinsitic transition function, the state
transitions of trajectories of greedy policies are deterministic. Therefore, the number of
steps for a policy Tπ,s0 to reach a goal state is the same for each episode. Moreover, in
goal-only-reward MDPs, only the final reward is non-zero. Thus, the expected average
reward becomes:

Eπ,s0

 1

Tπ,s0

Tπ,s0−1∑
t=0

rt

 =
1

Tπ,s0

Tπ,s0−1∑
t=0

Eπ,s0 [rt] =
Eπ,s0 [rT−1]

Tπ,s0
,

which is the average reward that the DAR-IGE calculates for each module (Eq. 5.14) and
proves that it can correctly select the optimal one.

The number of modules needed to guarantee that the optimal policy can be identified
is 3 ·N , where N is the maximum number of steps of the optimal trajectory in an MDP.
This results from the fact that modules in N distinct γ-regions are needed (Theorem 17).
Furthermore, the DAR-IGE needs to have at least three modules to correctly identify that
the modules encode the same policy (Eq. 5.15).

5.4 The Value-Quotient Average-Reward IGE
This section introduces a different variant of the IGE to optimize average reward, the
Value-Quotient Average-Reward Independent γ-Ensemble (VQAR-IGE). In contrast to
the DAR-IGE, VQAR-IGE does not decode the average reward for each of its γ-policies.
Instead, it compares the values of all modules directly with each other to identify the
optimal policy. As a result, it only needs N modules to guarantee optimality, whereas the
DAR-IGE needs 3N modules, where N is the maximum number of steps of the optimal
trajectory in an MDP. However, the VQAR-IGE cannot decode extra information for its
γ-policy, which can, for example, help to distinguish between the learned policies that can
be helpful for exploration. First, the VQ-AR-IGE algorithm is introduced, followed by a
discussion of its optimality.

5.4.1 The VQAR-IGE Algorithm

The VQAR-IGE (Algorithm 5.4) selects its active module γ̃ at the beginning of an episode
and uses the module’s values to define its policy. It’s goal is to select the γ-module that
maximizes the expected average reward per episode.

The selection of the active module is done with an ε-greedy approach controlled by
the exploration parameter εγ. With a probability of 1−εγ, the module is chosen that tries
to maximizes the average reward, otherwise a random module is selected for exploration.
The identification of the γ-module that maximizes the average reward is directly based
on a comparison of the values between all modules for start state s0. The values are
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Algorithm 5.4: Value-Quotient Average-Reward IGE
Input:

Learning rate: α ∈ [0, 1]

Sorted list of discount factors: Γ = (γ1, . . . , γm) with γi ∈ (0 1)

initialize Qγ(s, a) arbitrarily
repeat (for each episode)

initialize s

// Selection of the active γ-module γ∗

initialize nBiggerFactor to 0

for i from 1 to m do
for j from 1 to m do

if Vγi (s)

Vγj (s)
≥ FV (γi, γj) then

nBiggerFactor(i)← nBiggerFactor(i) + 1

end
end

end

// select the module that maximizes the average reward
γ̃ ← choose module based on nBiggerFactor (e.g. ε-greedy)

repeat (for each step in episode)
choose an action a for s derived from Qγ̃(s, a) (e.g. ε-greedy)
take action a, observe r, s′

forall the γ ∈ Γ do
Qγ(s, a)← Qγ(s, a) + α (r + γmaxa′ Qγ(s

′, a′)−Qγ(s, a))

end
s← s′

until s is terminal-state
until termination

compared by the quotient between each other ( Vγ(s0)

Vγi (s0)
). It can be shown that the quotient

between the module that learned the optimal average reward policy and all other modules
has to be greater than the following boundary:

FV (γa, γb) =
γ
n(γa)−1
a n(γa)

max
(
γ
bnRc−1
b bnRc, γdnRe−1

b dnRe
) with nR = − 1

log γb
, (5.16)

where n(γa) is the number of steps n for which a module with discount factor γa is
guaranteed to learn the optimal average reward choice with this number of steps (n−1

n
<

γa <
n
n+1

) as defined by Theorem 17. Only the quotient between the optimal module and
all other modules is guaranteed to be bigger than this boundary. The module that fulfills
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this condition is used as active module:

γ̃ = γ s.t. ∀γi 6= γ :
Vγ(s0)

Vγi(s0)
≥ FV (γ, γi) . (5.17)

5.4.2 Proof of Optimality

The VQAR-IGE is guaranteed to converge to the optimal average reward policy per
episode. The proof is built on Theorem 17 which shows that one of the γ-modules learns
the optimal average-reward policy per episode. The following section shows that the
selection condition of the VQAR-IGE (Eq. 5.17), based on boundary FV , can identify
the optimal module. It also discusses the requirement for the number of modules and
their discount factor settings. The proof assumes that no exploration over the modules is
performed, i.e. εγ = 0.

The proof that Eq. 5.17 selects the optimal module is composed of two theorems. The-
orem 19 shows that the quotient between the values of the module γ∗, that is guaranteed
to learn the optimal choice (Theorem 17), and modules γ that are not is larger or equal
than the boundary FV (γ∗, γ). This is the necessary condition that the quotient of the
optimal module, compared to all other modules, has to fulfill. Theorem 20 shows that
this condition is also sufficient, because the quotient of any module γ, that is not guar-
anteed to learn the optimal choice and the optimal module γ∗, is smaller than boundary
FV (γ∗, γ). Both theorems make use of the concept of choices (Definition 4, page 37).

Theorem 19. The quotient between the values of the module γ∗ that is guaranteed to
encode the optimal average choice c∗ and the values of any module γ that is not according
to Theorem 17 has the lower bound FV :

∀c∗, c ∈ C, γ∗ ∈ Γ∗, γ /∈ Γ∗ :
Vγ∗(c

∗)

Vγ(c)
≥ FV (γ∗, γ) , (5.18)

where c is any possible choice, and FV (γ∗, γ) is defined by Eq. 5.16.

Proof. The inequality Eq. 5.18 is proven by showing that the minimum of the value
quotient is equal to the boundary FV (γ∗, γ). First, the minimum is reformulated using
the definition of values for choices (Theorem 2, page 37):

min
c,c∗

Vγ∗(c
∗)

Vγ(c)
= min

r∗,r,n

γ
n(γ∗)−1
∗ r∗

γn−1r
s.t.

r∗

n(γ∗)
≥ r

n
, (5.19)

where n(γ∗) is the number of steps of the optimal choice which γ∗ is guaranteed to learn.
The minimum can be solved by substitution, concentrating at first on the reward r.
Eq. 5.19 is minimized by maximizing the reward:

rmin = argminr
γ
n(γ∗)−1
∗ r∗

γn−1r

= argmaxr r s.t. r∗

n(γ∗)
≥ r

n

Given the average reward constraint ( r∗

n(γ∗)
≥ r

n
⇔ r ≤ n r∗

n(γ∗)
) the maximum of r is:

rmin = argmaxr r s.t. r∗

n(γ∗)
≥ r

n

= n r∗

n(γ∗) .
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Using this result for the minimization of the value quotient (Eq. 5.19) eliminates the
reward variables in the formulation:

min
r∗,r,n

γ
n(γ∗)−1
∗ r∗

γn−1r
= min

r∗,n

γ
n(γ∗)−1
∗ r∗

γn−1n r∗

n(γ∗)

= min
n

γ
n(γ∗)−1
∗ n(γ∗)

γn−1n
=

γ
n(γ∗)−1
∗ n(γ∗)

maxn γn−1n
. (5.20)

The result for the maximum of Eq. 5.20’s denominator is given by Lemma 19.1.

Lemma 19.1. For γ ∈ (0, 1), n ∈ N it holds that

max
n

γn−1n = max
(
γbnRc−1bnRc, γdnRe−1dnRe

)
, with nR = − 1

log γ
. (5.21)

Proof. Assuming that the number of steps is real valued (nR ∈ R), the maximum of
f(nR) = γnR−1nR can be shown to be n = − 1

log γ
using the derivative test approach.

Setting the first derivative of f(nR) to 0 results in:

∂

∂nR
f(nR) ⇔ ∂

∂nR
γnR−1nR = γnR−1(nR log γ + 1) = 0 ⇔ nR = − 1

log γ
.

The second derivative ∂2f
∂2nR

= γnR−1 log γ(nR log γ + 2) at nR = − 1
log γ

is negative, showing
that the extremum is a maximum:

∂2f

∂2nR

(
− 1

log γ

)
= γ−

1
log γ
−1 log γ

(
− 1

log γ
log γ + 2

)
= γ−

1
log γ
−1 log γ .

The second derivative is negative because log γ is negative and γ−
1

log γ
−1 is positive for

γ ∈ (0, 1). Therefore, the maximum point for γnR−1nR is at nR = − 1
log γ

for nR ∈ R.
However, this ignores that the steps in Eq. 5.21 are natural numbers (n ∈ N). Thus,
either the smaller bnRc or the larger dnRe natural number of nR is the maximum point,
finishing the proof of Lemma 19.1.

Using Lemma 19.1 for the minimization of the value quotient in Eq. 5.20 results in
the lower bound FV (γ∗, γ) defined by Eq. 5.16 and finishes the proof of Theorem 19.

Theorem 19 shows that the optimal module will fulfill the necessary condition that
its quotient with all other modules is larger than boundary FV . The next theorem shows
that this is also a sufficient condition, because no other module can fulfill it.

Theorem 20. The quotient between the values of any module γ, that is not guaranteed
to encode the optimal average choice c∗, and the value of the module γ∗ that is according
to Theorem 17 is smaller than the bound FV :

∀c, c∗ ∈ C, γ /∈ Γ∗, γ∗ ∈ Γ∗ :
Vγ(c)

Vγ∗(c
∗)
≤ FV (γ, γ∗) , (5.22)

where c is any possible choice, and FV (γ∗, γ) is defined by Eq. 5.16.
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Proof. The inequality Eq. 5.22 is proven by showing that the maximum of the value
quotient is equal to the boundary FV . First, the maximum is reformulated using the
definition of values for choices (Theorem 2, page 37):

max
c,c∗

Vγ(c)

Vγ∗(c
∗)

= max
n,r,r∗

γn−1r

γ
n(γ∗)−1
∗ r∗

s.t.
r∗

n(γ∗)
≥ r

n
,

where n(γ∗) is the number of steps of the optimal choice for which γ∗ is guaranteed to
learn it. Similar to the proof of Theorem 19, the reward variables can be eliminated from
the maximum by using the average reward condition ( r∗

n(γ∗)
≥ r

n
⇔ r ≤ n r∗

n(γ∗)
):

max
n,r,r∗

γn−1r

γ
n(γ∗)−1
∗ r∗

= max
n,r∗

γn−1n r∗

n(γ∗)

γ
n(γ∗)−1
∗ r∗

=
maxn γ

n−1n

γ
n(γ∗)−1
∗ n(γ∗)

.

Lemma 19.1 can be used to reformulate the maximum:

maxn γ
n−1
a n

γ
n(γb)−1
b n(γb)

=
max

(
γ
bnRc−1
a bnRc, γdnRe−1

a dnRe
)

γ
n(γb)−1
b n(γb)

. (5.23)

To show that the maximum of the value quotient (Eq. 5.23) is equal to the boundary FV ,
Lemma 20.1 is used to identify the number of steps n(γ) of the optimal choice for which
γ is guaranteed to learn it.

Lemma 20.1. The number of steps n(γ) ∈ N of the optimal choice c∗ = (r∗, n(γ)) for
which a module with the discount factor γ is guaranteed to learn it is given by:

n(γ) =

{
bnRc | γbnRc−1 bnRc > γdnRe−1 dnRe
dnRe | otherwise , with nR = − 1

log γ
.

Proof. The choice c∗ is guaranteed to be the outcome of module γ if its value is larger
than any other choice:

γn(γ)−1r∗ > max
r,n

γn−1r s.t.
r∗

n(γ)
≥ r

n
, n(γ) 6= n , (5.24)

where the conditions are that c∗ is the optimal average reward choice, and that in deter-
ministic, goal-only-reward MDPs only one choice with a specific number of steps exists
(Definition 4, page 37). Using the average reward condition ( r∗

n(γ)
≥ r

n
⇔ r ≤ n r∗

n(γ)
), the

reward variables of Eq. 5.24 can be eliminated:

γn(γ)−1r∗ > maxr,n γ
n−1r ⇔ γn(γ)−1r∗ > maxn γ

n−1n r∗

n(γ)

⇔ γn(γ)−1n(γ) > maxn γ
n−1n s.t. n(γ) 6= n .

(5.25)

Because the number of steps between the optimal choice and any other choice are different
(n(γ) 6= n), Eq. 5.25 can only be fulfilled if γn(γ)−1n(γ) is the maximum. Lemma 19.1
provides the solution of the maximum:

max
n(γ)

γn(γ)−1n(γ) = max
(
γbnRc−1bnRc, γdnRe−1dnRe

)
, with nR = − 1

log γ
.

As a result, n(γ) is either bnRc or dnRe depending on if γbnRc−1bnRc is larger than
γdnRe−1dnRe or not as stated by Lemma 20.1.
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Using Lemma 20.1 on Eq. 5.25, the maximum value quotient becomes:

max
c,c∗

Vγa(c)

Vγb(c
∗)

=
max

(
γ
bnRc−1
a bnRc, γdnRe−1

a dnRe
)

max
(
γ
bnRc−1
b bnRc, γdnRe−1

b dnRe
) . (5.26)

Using Lemma 20.1 on the boundary FV results in:

FV (γa, γb) =
max

(
γ
bnRc−1
a bnRc, γdnRe−1

a dnRe
)

max
(
γ
bnRc−1
b bnRc, γdnRe−1

b dnRe
) , (5.27)

showing that both (Eq. 5.26 and Eq. 5.27) are equal and that the inequality of Eq. 5.22
is correct, finishing the proof of Theorem 20.

Theorems 19 and 20 show that the selection condition of the VQAR-IGE (Eq. 5.17)
can guarantee to find the optimal module.

Both theorems compare the value quotient of modules that are guaranteed to learn
the optimal choice and modules that do not. They do not consider the value quotient
of two modules (γa, γb) that are guaranteed to learn the optimal choice with the same
number of steps n (n−1

n
< γa < γb <

n
n+1

). Therefore, to guarantee optimality, only one
module per possible number of steps has to be used. As a result, in MDPs with optimal
choices that have up to N steps, the VQAR-IGE needs N modules to guaranteed that
one module converges to the optimal policy, and to identify it.

5.5 Experimental Evaluation

Both variants of the AR-IGE have been compared to the continuous and episodic variants
of the average-adjusted algorithms (Section 5.1). The episodic variants are indicated by
(e) and the continuous by (c) after their name. Two task domains were used for the
comparison: decision-tree and grid-world tasks. For each domain, 100 tasks have been
randomly generated for the evaluation. In decision-tree tasks, the AR-IGE had a slightly
better performance than the average-adjusted algorithms. The AR-IGE’s performance
advantage was stronger in the more complex grid-world tasks. The optimal variant of
the average-adjusted algorithms depended on the task domain. In decision-tree tasks, the
continuous variants demonstrated a better performance. Whereas, in grid-world tasks,
the episodic variants were better. The next section introduces both domains and their
task designs, followed by a description of the used learning parameters. The final section
discusses the experimental results.

5.5.1 Task Design

For each problem domain 100 tasks were randomly generated. First, the decision-tree
domain and its generation of random tasks are described, followed by the description of
the grid-world domain. Each task had three experimental conditions that are described
in the final part of this section.
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Decision-tree tasks have the form of directed, rooted tree graphs (Fig. 5.4, a). The
agent starts in the root of the graph. Several paths with different lengths lead to goal
states. Paths branch from each other at certain states where the agent has to choose
between them. One hundred decision-tree tasks were randomly generated. The tasks
were generated by first sampling the number of goal states NG ∈ N from a uniform
distribution between 3 and 6 (NG ∼ U(3, 6)). Then, the number of steps ng ∈ N to
reach a goal state and its reward rg ∈ R were uniformly sampled between 1 and 25
(ng ∼ U(1, 25), rg ∼ U(1, 25)). Afterward, the paths to the different goal states were
iteratively created. At first, the states on the path to the goal with the smallest number
of steps were created. Next, a loop over the other goals, sorted by their number of steps
from smallest to largest, was used to create the other states. For the current goal, one of
the previously created states was randomly chosen as a decision point for the path to the
current goal. The missing states on its path from the decision point were created so that
it has the correct number of steps ng from the start state.

The grid-world tasks have a 9x9 state space (Fig. 5.4, b). The agent starts in a start
state and has four actions to move either north, east, south or west. It can reach one of
several goal states where it receives positive reward. Also for the grid-world domain, 100

a) Decision-Tree Example b) Grid-World Example

c) Different Phases of the Experiment

Figure 5.4: Example of a randomly generated task for the decision-tree (a), and the
grid-world domain (b). Each task has two phases (c). In Phase 1, the agent learns the
randomly generated task. In Phase 2, the rewards of the task are modified so that the
optimal goal state changes. In Condition 1, the reward of the optimal goal from Phase
1 (g2) is reduced, to make a different goal (g5) optimal. In Condition 2, the reward of a
previous non-optimal goal (g1) is changed to make it optimal.
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different tasks have been randomly generated. Each task has one randomly placed start
state and a set of 3 to 6 randomly placed goal states (NG ∼ U(3, 6)). The rewards rg ∈ R
of every goal state were uniformly sampled between 0 and 25 (rg ∼ U(0, 25)).

Each algorithm was executed for 100 runs per task to measure their average perfor-
mance. Each run was divided in two phase (Fig. 5.4, c). Phase 1 evaluated how the
algorithms learn a new task. For decision-tree tasks the algorithms had 1000 episodes to
learn, and for grid-world tasks they had 3000 episodes. For grid-world tasks more episodes
were given, because they are more complex than decision-tree tasks. Phase 2 evaluated
how the algorithms adjust to changes in the task. This was tested under two conditions.
In the first condition, the reward for the optimal average-reward goal was reduced making
it non-optimal. Whereas, in the second condition the reward for a non-optimal goal was
increased to make it optimal. Phase 2 had a length of 500 episodes for decision-tree tasks
and 1500 episodes for grid-world tasks. In both conditions of Phase 2, the agents started
with the Q-values and average-reward estimates learned during Phase 1.

5.5.2 Learning Parameters

The learning parameters for each algorithm were selected to achieve a high average reward
over all phases. For each task domain, a different set of learning parameters was identified
(Figs. 5.5 and 5.6). Only the parameters for the continuous average-adjusted variants
in the decision-tree, and the episodic ones for the grid-world tasks are discussed. The
parameters of the other variants can be found in Appendix B.

The learning rate for the Q-values of all algorithms and for each domain was set to
αQ = 1. This was possible because all tasks were deterministic. The best learning rate

Learning Parameters for Decision-Tree Tasks
a) Exploration rates

b) AR-IGE Γ-sets c) Remaining parameters
Algorithm Parameters
All αQ = 1
AR-IGE εγ = 0.1
R-Learning(c) αρ = 0.005
rSMART(c) αρ = 1
rmSMART(c) αρ = 0.01

Figure 5.5: The learning parameters for decision-tree tasks for the AR-IGE variants,
and the continuous variants of the average-adjusted algorithms.
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αρ for the expected average reward ρ of R-Learning, rSMART, and rmSMART differed
between the algorithms (Figs. 5.5 and 5.6, c). For both domains, the best learning rate
for the rSMART algorithm was αρ = 1. As a result, its update rule is synonymous with
the update rule of the SMART algorithm, and the performance for both algorithms was
very similar.

All algorithms used an ε-greedy action selection. The exploration rate depended on
the number of episodes k and was bounded between εmin and 1:

ε(k) = min
(
εmin,max

(
1, εinit · dk

) )
,

where d ∈ [0, 1] is the decay factor, and εinit ∈ R+ is the initial ε. A εinit larger than 1
allows the exploration rate to stay at 1 for several episodes at the beginning of learning.
For most algorithms, a strong exploration in the beginning that decayed within 200 to 300
episodes to its minimum exploration rate was best for both domains (Figs. 5.5 and 5.6,
a). Only, the SMART and rSMART algorithms reached their optimal performance with
less exploration for the decision-tree domain.

The γ-modules were selected to allow the AR-IGE to learn all possible optimal so-
lutions based on Theorem 17. The decision-tree tasks had a maximum path length of
25 steps, resulting in a set of 75 modules for the DAR-IGE and 25 for the VQAR-IGE
(Fig. 5.5, b). For the grid-world tasks, only 54 modules for the DAR-IGE and 18 modules
for the VQAR-IGE were necessary (Fig. 5.6, b). The exploration rate of the AR-IGEs
ε-greedy module selection was set to εγ = 0.1 for decision trees, and εγ = 0.025 for grid
worlds.

Learning Parameters for Grid-World Tasks
a) Exploration rates

b) AR-IGE Γ-sets c) Remaining parameters
Algorithm Parameters
All αQ = 1
AR-IGE εγ = 0.025
R-Learning(e) αρ = 0.01
rSMART(e) αρ = 1
rmSMART(e) αρ = 0.005

Figure 5.6: The learning parameters for grid-world tasks for the AR-IGE variants, and
the episodic variants of the average-adjusted algorithms.
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5.5.3 Experimental Results

The algorithms were compared based on their achieved average reward over the 100 ran-
domly generated tasks per domain. Three measurements are used to compare the algo-
rithms. The first is the total average reward gained over all steps of the experiment. It
was averaged over the 100 tasks per domain, and calculated for each individual phase
and condition. The second measurement evaluates the difference between the algorithms
per task. The third compares the learning curve of the algorithms over all environments
in terms of the average reward per episode. The next sections introduce each perfor-
mance measure in detail and discusses their results for both task domains. Results for
the episodic variants of the average-adjusted algorithms were partly presented in (Reinke,
Uchibe, & Doya 2017).

Average Reward over all Steps

The main criteria to evaluate the algorithms and to select their learning parameters was
their average reward per step gained over the steps of all phases. To make the performance
comparable between tasks and phases, the average reward has been normalized to lie
between 0 and 1, with 1 being the optimal average reward. The normalization uses the
optimal average reward r̄∗m,p for task m and phase p to adjust the reward of each step
with:

r̂m,p(t) =
rm,p(t)

r̄∗m,p
, (5.28)

Algorithm Decision-Tree Tasks Grid-World Tasks
episodic continuous episodic continuous

R-Learning 0.819 0.845 0.784 0.779
SMART 0.774 0.832 0.772 0.684
rSMART 0.823 0.829 0.772 0.683
rmSMART 0.818 0.847 0.773 0.709
DAR-IGE 0.849 0.800
VQAR-IGE 0.826 0.775

Table 5.1: Results for the normalized average reward over the steps of all phases. The
results of the episodic and continuous variant of the average-adjusted algorithms are
shown. The DAR-IGE had in both task domains the best performance. In decision-tree
tasks, it was only slightly better than R-Learning(c), and rmSMART(c). In the more
complex domain of grid-worlds, it had a stronger advantage over other algorithms. The
continuous variant of the average-adjusted algorithms performed better in the decision-
tree domain. Whereas, the episodic variant performed better in grid-world tasks. The
VQAR-IGE had a reduced performance compared to the DAR-IGE in both tasks domains.
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where rm,p(t) is the reward of step t. Based on the adjusted reward, the normalized
average reward r̄m,p per phase p and over all phases (r̄m) for task m are calculated by:

r̄m,p =
1

Tm,p

Tm,p−1∑
t=0

r̂m,p(t) , r̄m =

∑Tm,1−1
t=0 r̂m,1(t) +

∑Tm,2−1
t=0 r̂m,2(t) +

∑Tm,3−1
t=0 r̂m,3(t)

Tm,1 + Tm,2 + Tm,3
,

(5.29)
where Tm,p is the number of steps in phase p. The two conditions of Phase 2 are indexed
by p = 2 and p = 3. Finally, the mean over the 100 tasks is taken and used as the basis
to compare the algorithms:

r̄p =
1

100

100∑
m=1

Eruns [r̄m,p] , r̄ =
1

100

100∑
m=1

Eruns [r̄m] ,

where Eruns [r̄m,p] and Eruns [r̄m] are the means over the 100 runs per task.
The results for the continuous and episodic variants of the average-adjusted algorithms

showed a consistent trend for all algorithms (Table 5.1). In the decision-tree domain,

Results for the Average Reward over all Steps
a) Decision-Tree Tasks
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Figure 5.7: Results for the normalized average reward over the steps of all phases, and
for the individual phases. The bars show the mean over the 100 tasks per domain, and
the error bars the standard deviation. The DAR-IGE had the best performance in both
domains. Although, it was not the optimal algorithm for each phase, as indicated by
the black border. Different variants of the average-adjusted algorithms were compared
for each domain. The continuous (c) performed better in decision-tree tasks, and the
episodic (e) in grid-world tasks.
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the continuous variants performed better for all algorithms. Whereas, in the grid-world
domain, the episodic variants performed better. The following comparison to the AR-
IGE concentrates only on the variant of the average-adjusted algorithms that had the
best performance per domain. The results for the non-optimal variants can be found in
Appendix B.

The DAR-IGE reached the highest total average reward over all phases for both do-
mains (Fig. 5.7). For the decision-tree domain, the advantage over R-Learning(c) and
rmSMART(c) was small. Moreover, only in Condition 1 or Phase 2 was the DAR-IGE
the best algorithm. In Phase 1, it was SMART(c), and in Condition 2 of Phase 2 it
was rmSMART(c). The VQAR-IGE demonstrated a poorer performance compared to all
other algorithms.

The advantage of the DAR-IGE over the other algorithms for all phases was stronger
in the grid-world domain. Only for Condition 1 of Phase 2 was its performance worse
than that of R-Learning(e). The VQAR-IGE demonstrated a better performance than
most average-adjusted algorithms, but it was still below that of DAR-IGE. This might be
the result of DAR-IGE’s ability to perform the ε-greedy module selection over its learned
set of policies and not modules, whereas the VQAR-IGE is performing exploration over
modules. The AR-IGE has more modules with larger γ-values (Figs. 5.5 and 5.6, b).
These prefer higher rewards with longer trajectories. Thus, using an exploration over
modules is biased towards policies with more steps than shorter policies. This may have
resulted in the decreased performance of the VQAR-IGE.

In summary, the DAR-IGE reached the highest average reward over all tasks in both
problem domains. However, the difference from the other algorithms is statistically not
significant, because of the high standard deviation of the mean average reward over all
tasks. In terms of the average-adjusted algorithms, R-Leaning showed the best perfor-
mance.

Difference between Average Reward per Task

The next measurement compares the average reward over all steps between the DAR-
IGE and the average-adjusted algorithms for individual tasks. The difference per task
shows for how many of the 100 tasks the DAR-IGE showed a better or worse performance
compared to the other algorithms. The difference is measure by:

r̄Diff
m = r̄DAR-IGE

m − r̄Algorithmm ,

where r̄Algortihmm is the normalized average reward of task m for a certain algorithm
(Eq. 5.29). The differences per task are sorted from the largest to the smallest for each
algorithm (Fig. 5.8). Positive differences show that the DAR-IGE performed better for a
certain task compared to the average-adjusted algorithm.

Generally, the DAR-IGE showed a better performance for more tasks compared to
the average-adjusted algorithms. In the decision-tree domain, DAR-IGE had a better
performance compared to R-Learning(c) for all phases in 60 tasks. In Phase 1, it had a
better performance in 72 tasks, in Condition 1 of Phase 2 in 87, and in Condition 2 in
48. For the grid-world domain, the DAR-IGE showed in 65 tasks a better performance
compared to R-Learning(e) for all phases. For Phase 1, DAR-IGE was better in 81 tasks,
in Condition 1 of Phase 2 in 47, and in Condition 2 in 83.
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Results for the Difference between Average Reward per Task
a) Decision-Tree Tasks
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Figure 5.8: Comparison of the difference in average reward over all steps for all phases
and per phase between the DAR-IGE and the average-adjusted algorithms. The dif-
ferences per task are sorted by magnitude. A positive difference means the DAR-IGE
performed better in a task, and a negative difference that the other algorithm performed
better. The results show that the optimal algorithm depended on the task, but that on
average the DAR-IGE performed best.

In summary, the DAR-IGE showed a better performance for more tasks than the
average-adjusted algorithms. This tendency was stronger in the more complex domain
of grid-world tasks. Nonetheless, the results also show that it depended on the task if a
certain algorithm is better compared to another. The properties of a task that influence
which algorithm is better suited for it is an open question requiring further investigation.

Average Reward per Episode

The previous measurements evaluated the average reward over all steps of an experiment.
The next measurement compares the learning rate of the algorithms based on the average
reward per episode. The average reward r̄m,k per episode k was also normalized based on
the optimal average reward per task and phase with:

r̄m,k =
1

Tm,k

Tm,k−1∑
t=0

r̂m,p(k)(t) ,
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where Tm,k is the number of steps in episode k of task m, and r̂m,p(k)(t) is the adjusted
reward of step t by the optimal average reward of the active phase p(k) (Eq. 5.28).

The results show that the DAR-IGE generally had a better learning rate compared
to the average-adjusted algorithms (Fig. 5.9). In decision-tree tasks, the learning rate of
DAR-IGE and R-Learning(c) were similar for Phase 1, but the DAR-IGE had a higher
asymptotic performance. The other average-adjusted algorithms have initially a higher
learning rate, but they are overtaken after 200 episodes. For Condition 1 of Phase 2,
DAR-IGE outperformed all other algorithms, with R-Learning(c) in the second place.
In Condition 2, the DAR-IGE performed worse than the average-adjusted algorithms.
Additional experiments showed the performance in Condition 2 can be improved by using
a stronger exploration for the module selection (εγ), but then the performance in the other
phases suffered. In grid-world tasks, the DAR-IGE had generally the best learning rate.

In summary, in terms of the average reward per episode, the DAR-IGE showed a
better ability to reach a higher asymptotic performance and to learn faster compared
to the classical algorithms. Its advantages were especially visible in the more complex
domain of grid-world tasks. By learning different policies to reach several goal states, the
DAR-IGE could quickly change its policy if a change occurs in the task.

Results for the Average Reward per Episode
a) Decision-Tree Tasks

av
er
ag
e
re
w
ar
d

b) Grid-World Tasks

av
er
ag
e
re
w
ar
d

Figure 5.9: Results for the normalized average reward per episode during the learning.
The DAR-IGE had a better performance than the average-adjusted algorithms, besides
for Condition 2 of Phase 2 of the decision-tree tasks.
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5.5.4 Conclusion

The above experiments showed that the AR-IGE outperformed the average-adjusted al-
gorithms slightly in the decision-tree domain. In the more complex domain of grid-world
tasks, it increased its performance advantage. However, this is only true for the DAR-
IGE. The VQAR-IGE was generally outperformed by the DAR-IGE. One reason for this
might be the different exploration strategies of the algorithms. The DAR-IGE explores
over policies, whereas the VQAR-IGE explores over modules.

Which of the two variants of the average-adjusted algorithms, either the continuous
and episodic form, was better depended for all algorithms on the task domain. For
decision-tree tasks, the continuous form was better, and for grid-world tasks the episodic
form. The reason for this behavior is an open question which requires further investigation.

5.6 Discussion
The following section discusses in more detail the differences between the AR-IGE and
the average-adjusted algorithms in terms of their objectives, i.e. the optimization of av-
erage reward per episode compared to the average reward over the steps of all episodes.
Afterward, the connection between the performance of the AR-IGE, and its number of
γ-modules is discussed.

5.6.1 Average Reward per Episode vs Over All Steps

The difference between the average-adjusted algorithms and the AR-IGE is the objective
that they maximize. The AR-IGE maximizes the expected average reward per individual
episode:

E

[
1

Tk

Tk−1∑
t=0

rk,t

]
,

where Tk is the number of steps, and rk,t is the reward at step t of episode k. In contrast,
the average adjusted algorithms maximize the expected average reward over the steps of
all episodes:

lim
K→∞

E

[
1∑K

k=1 Tk

K∑
k=1

Tk−1∑
t=0

rk,t

]
,

where K is the number of episodes.
Which objective is more advantageous depends on the problem to be solved. In most

scenarios, the goal is to optimize the average reward over the steps of all episodes. The AR-
IGE can only guarantee to optimize this goal if the start state is the same for all episodes
(Theorem 16). For such problems the AR-IGE is able to yield a better performance
compared to the average-adjusted algorithms as the experimental results for the two
problem domains showed. However, for problems where the initial state changes according
to a distribution Pr(s0), the AR-IGE cannot guarantee optimality by using the optimal
average reward policy per episode. The example in Fig. 5.10 shows such a case. Thus,
only the average adjusted algorithms are guaranteed to converge to the overall optimal
policy.
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Figure 5.10: An example where the optimal average reward per episode does not op-
timize the average reward over the steps of all episodes. The MDP consists of two state
sets. The initial state of the episodes alternate between s1 and s2. The policy to update
the average reward per episode is to go up in state set A and down in set B. Nonetheless,
the optimal policy to learn the average reward over the steps of all episode is to go down
in A and B. The AR-IGE cannot find this policy in such MDPs.

Nonetheless, the AR-IGE might still be favorable for such tasks under certain condi-
tions. The average-adjusted methods need an estimation of the average reward ρ to learn
the value function. In contrast, the AR-IGE does not need such an estimation. This
could be beneficial in scenarios where the estimation is difficult to compute, for example
in cases where the distribution over the start states change over time. Another case would
be where the distribution is not i.i.d., such as if the initial state changes only after several
episodes. In such cases, the learning of the expected average reward ρ might not converge
or is slow. The AR-IGE would not be prone to such problems. Thus, the approximation
of the AR-IGE to optimize the overall average reward by learning the optimal average
reward per episode could be beneficial. However, further investigations are necessary to
identify the possible conditions and scenarios for such cases.

Another advantage of the AR-IGE is that it opens new possibilities that are not
available with traditional algorithms. For example, in a multi-agent scenario where the
agents operate in the same environment, but have different start locations, the AR-IGE
allows them to learn a single shared value function. The value-functions of the IGE
depend only on the future expected discounted reward. In contrast, the value function of
the average-adjusted agents depends on the average reward that an individual agent gains.
Thus, the values differ between the agents for the same state and action pair, because
of their different expected average rewards. The sharing of a common value function is
therefore not possible with average-adjusted algorithms.

5.6.2 Relationship between Number of γ-Modules and Perfor-
mance

The AR-IGE is guaranteed to learn the optimal average-reward policy per episodes. For
MDPs with choices that have up to N steps, at least one module must exist in the γ
regions defined by n−1

n
< γ < n

n+1
for each number of steps n = (1, . . . , N) (Theorem 17).

Depending on the size of the state space, the number of modules to guarantee optimality
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might be memory intensive and using less modules would be preferable. It can be shown
the that number of modules can be significantly reduced while still having a lower bound
on the final performance of the AR-IGE. The next section introduces this relationship
and how the γ-modules need to be distributed. It is followed by a numerical evaluation
of the performance bound in randomly generated MDPs.

The Performance Bound

Given the minimal performance that should be guaranteed for the policy to which an
AR-IGE converges, the number of needed γ-modules can be reduced. The performance is
measured by the expected average reward that the AR-IGE achieves after all its modules
have converged to the optimal values:

J = Eπ∗Γ

[
1

T

T−1∑
t=0

rt

]
,

where π∗Γ is the optimal policy for an AR-IGE with a set of Γ = (γ1, . . . , γM) modules. The
optimal performance is given by the average reward of the optimal choice c∗ = (r∗, n∗) in
the MDP with J∗ = r∗

n∗
.

Theorem 17 defines the minimal γ-region Γ(n∗) = (n
∗−1
n∗ < γ < n∗

n∗+1
) in which modules

are guaranteed to learn the optimal choice if it has n∗ steps, i.e. the average reward of its
choice is larger than any other: ∀c = (r, n) : r∗

n∗
≥ r

n
. The γ-regions for different steps

do not overlap under this average reward criteria (Theorem 18). At least one module
per region is therefore needed to cover all regions. The average reward criteria can be
relaxed so that the modules in a region only guarantees to learn a choice c′ with an average
reward by a factor κ smaller than any other average reward choice, including the optimal
choice: κ r′

n′
≥ r∗

n∗
. As a result, the AR-IGE can only guarantee a lower bound on the

average-reward performance:

J ≥ κ
r∗

n∗
.

However, the γ-regions Γ(κ, n′) that use this criteria are wider and overlap with each other.
This allows to represent several regions by a single module, reducing the number of needed
modules to cover all regions. Theorem 21 defines the upper and lower boundaries of such
regions. It is a generalization of Theorem 17.

Theorem 21. For any deterministic, goal-only-reward MDP exists a γ-region Γ(κ, n′)
for which all its discount factors γκ are guaranteed to encode the choice c′ = (r′, n′) if its
average reward is at most by a factor κ smaller than the optimal average reward:

κ
r′

n′
≥ r∗

n∗
,

with κ ∈ [0 1]. The region is defined by:

Γ(κ, n′) = {γL(κ, n′) < γκ < γU(κ, n′)} ,

where γL(κ, n′) and γU(κ, n′) are the lower and upper border of the region, defined by

γL(κ, n′) = max
n

(
κ(n)

n′

) 1
n′−n

s.t. 1 ≤ n < n′ (5.30)
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and

γU(κ, n′) = min
n

(
n′

κn

) 1
n−n′

s.t. n′ < n . (5.31)

Proof. Because Theorem 21 is a generalization of Theorem 17, the proof follows the same
steps. The γ region for which the choice c′ is the solution given all other possible choices
in the MDP is defined by:

γL(κ, n′) = max
∀ci<c′

γE(ci, c
′) < γκ < γU(κ, n′) = min

∀cj>c′
γE(c′, cj) ,

where γE(cx, cy) is the discount factor for which the choices cx and cy have the same value
(Eq. 2.6, page 38). The lower bound can be solved by following the steps of Eq. 5.7 to
Eq. 5.9 of the proof for Theorem 17:

γL(κ, n′) = max∀ci<c′ γE(ci, c
′) s.t. ni < n′, κ r

′

n′
≥ ri

ni
, ni, n

′ ∈ N+

= maxr′,ri,ni
(
ri
r′

) 1
n′−ni

= maxr′,ni

(
κni

r′
n′

r′

) 1
n′−ni

= maxni
(
κni
n′

) 1
n′−ni s.t. ni < n′, ni, n

′ ∈ N+ .

The upper bound can be proven in a similar way following the steps of Eq. 5.10 to Eq. 5.11:

γL(κ, n′) = min∀cj>c′ γE(c′, cj) s.t. nj > n′, κ r
′

n′
≥ rj

nj
, nj, n

′ ∈ N+

= minr′,rj ,nj

(
r′

rj

) 1
nj−n′

= minr′,nj

(
r′

κnj
r′
n′

) 1
nj−n′

= minnj

(
n′

κni

) 1
nj−n′ s.t. nj > n′, nj, n

′ ∈ N+ .

The lower (Eq. 5.30) and the upper bound (Eq. 5.31) of a region Γ(κ, n′) can be
solved numerically by defining a maximum number of steps N in an MDP and identifying
the maximum or minimum over all possible steps n = (0, . . . , N − 1). Theorem 22 in
Appendix C provides the analytical solution for the boundaries, but its proof is incomplete.

If the performance boundary parameter κ is smaller than 1, then the γ-regions that
learn the optimal choice for a certain number of steps n′, begin to overlap (Fig. 5.11). The
smaller κ is, the more regions overlap. γ-Modules in an overlapping region are guaranteed
to learn the optimal choice with the number of steps n′ of all the overlapping regions.
This allows a reduction of the number of needed modules to guarantee that every choice
according to the lower bound can be learned in an MDP. Algorithm 5.5 is used to identify
the reduced set of γ-regions Γ̂ in which γ-modules are needed. At first the set of all
regions Γ(κ) =

(
(γL(κ, 1), γU(κ, 2)), . . . , (γL(κ,N), γU(κ,N))

)
for each possible n′ is

sorted according to its upper boundaries. Then, starting with the first region, all other
regions in Γ(κ) are identified which overlap with it, i.e. their lower bounds are smaller
than γU1 , and their upper bounds are larger than γU1 . For all of these regions, a new
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κ = 1
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Figure 5.11: The minimum γ-regions that are guaranteed to learn the optimal average
reward choice with different number of steps n′ and for different performance bound
parameters κ. The regions are shown as horizontal, black lines. For κ = 1, the regions do
not overlap (Theorem 18). For κ < 1 the regions are larger and overlap which results in
a smaller number of modules that are needed to cover all of them. The colored, vertical
lines show the minimal number of γ-modules, needed to cover all regions.
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Figure 5.12: The number of γ-modules needed to guarantee a performance bound of
J ≥ κ r

∗

n∗
decreases strongly for κ < 1. The example is for MDPs with up to 20 steps.
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Algorithm 5.5: Identification of the reduced set of γ-regions Γ̂

Input:
γ regions for each number of steps up to N :
Γ(κ) =

((
γL(κ, 1), γU(κ, 2)

)
, . . . ,

(
γL(κ,N), γU(κ,N)

))
sort regions Γn according to upper borders γU
initialize Γ̂ empty
while Γ(κ) is not empty do

// identify overlapping region
i← first region in Γ(κ)

K ← all regions in Γ(κ) with γL < γUi and γU ≥ γUi

// make a new region that encloses all overlapping regions
add region (maxk∈K γLk , γUi) to Γ̂

// remove overlapping regions from Γ(κ)

remove regions i and K from Γ(κ)

end
return Γ̂

region is added to the reduced set of regions with γL = maxk∈K γLk and γU = γU1 . All
overlapping regions are removed from Γ(κ) and the next region in it is used to identify
all other regions that overlap with it, until all regions are removed from Γ(κ).

By introducing a performance bound J ≥ κ r
∗

n∗
with κ < 1, significantly fewer γ-

modules are needed to guarantee it (Fig. 5.12). For example, in MDPs with up to 20
steps for its optimal choices, 20 modules are needed to guarantee the learning of the
optimal average reward choice (Fig. 5.11, top). If a performance bound of κ = 0.99
is introduced, only 7 modules are needed (Fig. 5.11, middle). The number of modules
reduces to 4 for κ = 0.95 (Fig. 5.11, bottom).

Numerical Evaluation

With γ-modules distributed according to Theorem 21, the AR-IGE can guarantee the
lower performance bound of J ≥ κ r

∗

n∗
on its final performance. Nonetheless, for many

MDPs the reachable performance might be better than the guaranteed lower bound. The
final performance of randomly generated MDPs were evaluated to test how strong the
final performance of the DAR-IGE and the VQAR-IGE is affected by using a reduced set
of γ-modules.

The MDPs were represented by their choice sets that define all possible choices in
an MDP. 10,000,000 choice sets where randomly generated. Each choice set had 4 to 6
choices. The reward and the number of steps of each choice were uniformly sampled with
r ∼ U(0, 100) ∈ R and n ∼ U(1, 20) ∈ N. The choices are sampled to be non-dominated
(Theorem 4, page 39) by first drawing all rewards and steps and then sorting them. For
each MDP, the optimal value function for its start state can be computed based on the
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choice set by:
V ∗γ = max

c
γnc−1rc .

Based on the optimal value function, it was evaluated which module each algorithm
would choose as active module γ̃. The average reward of the active module’s choice
c̃ = argmaxc γ̃

nc−1rc was compared to the optimal average reward for the MDP:

κ̃ =
r̄(c̃)

r̄(c∗)
,with r̄(c) =

rc
nc

,

showing the factor κ̃ by which its is smaller.
Both algorithms were tested with γ-modules based on three different performance

bounds with κ = (1, 0.99, 0.95) (Fig. 5.11). For the DAR-IGE three modules were used
per γ-region Γ̂(κ) identified by Algorithm 5.5. The VQAR-IGE used only one module

Results for the DAR-IGE
60 modules (κ = 1)

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1
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1

21 modules (κ = 0.99)

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1
0
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12 modules (κ = 0.95)
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Figure 5.13: The DAR-IGE does not violate the performance bound κ r∗
n∗

used for decid-
ing the number of modules. Furthermore, the majority of MDPs can be optimally solved.
(n = 10,000,000, binsize = 0.005)
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per region. The results show that both algorithms kept for most MDPs the lower per-
formance bounds (Figs. 5.13 and 5.14). Moreover, for the majority of generated MDPs
both algorithms guaranteed a performance with κ̃ ≥ 0.9995. For κ = 1, both algorithms
guaranteed the optimal performance for all MDPs. In the case of κ = 0.99, the DAR-
IGE guaranteed a performance with κ̃ ≥ 0.9995 in 99.98% of all generated MDPs. The
VQAR-IGE guaranteed it in 98.7% of all MDPs. In the case of κ = 0.95, the DAR-IGE
guaranteed optimal performance in 99.32% of all MDPs, and the VQAR-IGE in 94.05%.

For a few MDPs, the algorithms could not keep the bound κ r
∗

n∗
. In the case of the

DAR-IGE, the reached performance was lower than the bound for 119 MDPs for κ = 0.99,
and 646 MDPs for κ = 0.95. In these MDPs several choices exist that fulfill the boundary.
As a result, some of the three modules in the γ-region that is guaranteed to learn them
learns one choice and other modules the other choice. Because the DAR-IGE needs that

Results for the VQAR-IGE
20 modules (κ = 1)
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Figure 5.14: The VQAR-IGE does not violate the performance bound κ r
∗

n∗
used for

deciding the number of modules. Furthermore, the majority of MDPs can be optimally
solved . (n = 10,000,000, binsize = 0.005)
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all three modules learn the same choice to identify its properties, it can not identify those
choices and selects therefore another module that results in a lower average reward. The
VQAR-IGE reaches a lower performance than the given bound in 8 MDPs for κ = 0.99,
and 23 MDPs for κ = 0.95. It performs generally more poorly compared to the DAR-IGE
in cases with κ < 1, because its minimum value quotient FV is defined based on the
assumption that the optimal number of modules (κ = 1) is used. Therefore, it sometimes
fails to identify the best policy its γ-modules have learned. Nonetheless, the cases where
both algorithms fail to ensure the performance bound are minuscule in relation to the
10, 000, 000 tested MDPs.

Conclusion

Based on Theorem 21 the number of γ-modules can be reduced while still guaranteeing
that one module learns a policy that fulfills the minimum performance bound J ≥ κ r

∗

n∗
.

For MDPs with a maximum of 20 steps for the optimal choice, the number can be reduced
from 20 modules to 7 modules with a performance guarantee of achieving at least 99% of
the optimal average reward. The numerical evaluation showed that even in these cases,
for 99% of the uniformly sampled MDPs, the optimal performance can still be reached.
This allows a reduction of the number of modules in cases of high memory demands, with
a minimal loss of performance.

5.7 Conclusion

The AR-IGE optimizes average reward in deterministic, goal-only-reward MDPs. It uses
a different approach compared to the existing model-free, value-based algorithms. These
algorithms learn an average-adjusted value function, similar to the discounted value func-
tion. In contrast to the AR-IGE, average-adjusted algorithms need to learn an extra
estimate for the average reward of the current policy.

The AR-IGE optimizes the average reward based on its ensemble of γ-modules that
use discounted value functions. Two variants of the AR-IGE exist, the DAR-IGE and
the VQAR-IGE. The DAR-IGE decodes for each of its learned γ-policies the expected
reward and number of steps required to reach their goal states. This information allows
the calculation of the expected average reward per episode for each policy, and selection
of the best one. The VQAR-IGE identifies the policy resulting in the maximum average
reward by comparing the values of the γ-modules directly. The quotient between the
module, that is guaranteed to learn the optimal policy if the trajectory has a certain
number of steps, and all other modules has a lower bound. The lower bound is only
fulfilled by the module that learned the optimal average-reward policy.

Both AR-IGE variants are guaranteed to learn the optimal policy if they distribute
the γ factors of their modules in a specific way. In MDPs where the optimal trajectory
has up to N steps, the IGE needs a module in each γ-region with n−1

n
< γ < n

n+1
for

all n = (1, . . . , N). If the optimal trajectory has n steps, all modules in the associated
γ-region are guaranteed to learn it. As a result, the DAR-IGE needs 3N modules because
it requires three modules that learned the same policy to guarantee its average reward
can be decoded. The VQAR-IGE needs only N modules. However, the DAR-IGE allows
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the decoding of the average reward for all of its policies, which can be used to improve,
for example, the exploration. The experimental results showed the DAR-IGE generally
has a better performance than the VQAR-IGE.

The number of modules needed can be reduced if a lower bound on the performance
of the AR-IGE is accepted. Given the final average-reward performance J is bounded by
J ≥ κ r

∗

n∗
, where r∗

n∗
is the optimal average reward in the MDP, then fewer modules are

needed to guarantee this performance. With κ < 1 the γ-regions that guarantee to learn
the best policy enlarge and overlap with each other. This makes it possible to represent
several regions by a single γ-module. In tasks with a maximum of N = 20 steps and
κ = 0.99 the number of modules can be reduced by a factor of three.

The main difference between the AR-IGE and the average-adjusted algorithms is their
objectives. The AR-IGE optimizes the average reward per episode. The average-adjusted
algorithms optimize the average reward over the steps of all episodes. Only for the class
of deterministic, goal-only-reward MDPs, where each episode starts in the same initial
state, result both objectives in the same optimal policy. Generally, the average reward
over the steps of all episodes is the objective that should be optimized. Nonetheless,
there are cases where the solution of the AR-IGE might be of benefit. These could be
in tasks where the estimate of the average reward of the current policy, as needed by the
average-adjusted algorithms, might be difficult to obtain. However, further investigations
are necessary to identify such cases and their characteristics.

A limitation of the AR-IGE is that it can guarantee optimality only for deterministic,
goal-only-reward MDPs. This is a strong restriction on the type of tasks the framework
can solve. The AR-IGE could be applied to the general MDPs by learning predictions for
the expected average reward and number of steps of each policy, as done by the Objective-
Adaptive IGE (Section 4.4). Nonetheless, in this case it cannot be guaranteed that the
optimal policy will be learned by γ-modules.

Although the AR-IGE has limitations, it provides an interesting new perspective to
the optimization of average reward. One advantage over average-adjusted algorithms is
that the AR-IGE does not need to learn an estimate for the average reward ρ of its current
policy. This reduces the complexity of the algorithm and makes it unnecessary to find a
good learning rate parameter αρ for the estimate. Moreover, the AR-IGE learns not only
one policy but several, between which the agent can choose. This proved to be useful in
MDPs where the optimal goal changes, because the AR-IGE can quickly adapt by using
one of its γ-policies. It can also obtain detailed information about the different policies,
i.e. the expected reward sum and number of steps. This is useful if the average reward
should be optimized under some restrictions, for example if at least a certain reward
per episode should be reached, as shown in Section 4.4. The experimental results also
showed that the AR-IGE performs better compared to the average-adjusted algorithms in
deterministic, goal-only-reward MDPs in the domain of decision-tree tasks and grid-world
tasks.
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The Independent γ-Ensemble (IGE) is a brain-inspired reinforcement learning framework.
It allows artificial systems to be more adaptive to changes in tasks and objectives. The
IGE is composed of several γ-modules representing independent learning agents. Each
module learns a policy to optimize the discounted expected reward (

∑∞
t=0 γ

trt) with a
different discount factor γ.

The IGE is not the first framework based on modules with different discount factors.
The Horde architecture uses the same idea to predict future events and sensor values on
different time-scales (White, Modayil, & Sutton 2012). Another approach, the Depen-
dent γ-Ensemble, models hyperbolic discounting as observed in human decision-making
with help of the modules (Kurth-Nelson & Redish 2009). However, the IGE is the first
framework based on different discounting modules, that uses their abilities to adapt to
different task contexts and objectives.

The IGE modules learn different policies, called γ-policies, which represent different
solutions to the trade-off between the amount of reward that can be gained and the
time to acquire it. Large γ’s optimize long-term reward, preferring policies that yield a
high reward sum, even though the agent may need more time to collect it. Smaller γ’s
optimize short-term reward, maximizing reward on a short timescale, leading to behaviors
that provide reward with a short delay. Each module uses Q-learning as its learning
algorithm. Because Q-learning is an off-policy algorithm, the IGE learns its policies in
parallel based on the same observations. Additionally, the IGE can decode the expected
reward and the number of steps to gain it for its policies in deterministic, goal-only-reward
MDPs. Decoding is possible from values of two modules that learned the same policy, i.e.
to reach the same goal state in an MDP.

Learning different policies and decoding their properties allows the IGE to adapt to
different task contexts and objectives. It also allows optimization of the average reward.
The following sections summarize the application of the IGE to these scenarios and dis-
cuss open questions and limitations. Future research directions, and decision-making in
humans are discussed at the end of the section.

Transfer Learning between Different Task Contexts

The IGE is used to transfer knowledge between different tasks contexts (Chapter 3). In
a certain task context, the IGE learns not only the optimal policy for that context, but
also several other policies. If the task context changes, the agent can select the most
appropriate policy for the new context. Given a context signal, a γ-map from the context
signal to the module with the most appropriate policy can be constructed. For example,
in an energy foraging task, the agent has to collect energy from different sources in its
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surroundings, but it also expends energy moving around. The agent’s energy level restricts
the distance it can travel. If it has a high energy level, it can travel long distances to
reach high energy sources. With a small energy-level, it has to secure a nearby energy
sources before it runs out of energy, even though these energy sources might not have as
much energy as the more distant ones. The context for the agent is its energy level. A
γ-map can be constructed that selects policies preferring nearby energy sources (small γ)
if the agent’s energy level is low, and distant high-energy sources (large γ) if the agent’s
energy level is high.

Three tasks have been introduced for which an optimal γ-map can be analytically
constructed. Interruption Risk MDPs (IR-MDPs) have a constant risk that the agent
gets interrupted during the task, meaning it can not get the reward. Reward Risk MDPs
(RR-MDPs) are similar. They have the constant risk that all future rewards becomes
zero. The context in these MDPs is the risk of interruption or loss of future reward. In
Constant Punishment MDPs (CP-MDPs), a constant punishment is given for each step.
The strength of the punishment is the context. For all three MDPs, a mapping from the
risk or punishment level to the optimal γ-module can be constructed. It is proven that
the maps select the optimal module for any MDP of these types.

For general MDPs, the γ-map has to be learned. Given a new task context, the agent
has to learn which of its γ-policies is the most appropriate under the new context. The
learning of the map is a reinforcement learning problem by itself and can be solved by
various methods. Policy-based (PGPE, EPHE) and value-based (Q-learning) methods
have been introduced. They were able to successfully learn γ-mappings for several energy
foraging tasks. The IGE had a significantly higher learning speed compared to agents
that have to adapt to new task contexts without prior knowledge.

One of the critical points for the transfer is that the task stays similar enough between
contexts to allow a successful transfer of policies. In the analyzed tasks, only the reward
function changed between the contexts. Moreover, the reward function used to learn the
policies of modules should be invariant to changes in the context. Otherwise, modules
would unlearn and relearn their policies depending on the context. To avoid this, policies
are only learned under one context, or the reward function was decomposed in a part
that is invariant to context changes. Further investigation into methods that can cope
with reward functions that change over task contexts is necessary in order for the IGE
to be applied to a wider range of tasks. Such methods could include selective learning,
where the agent does not include certain observations from certain contexts that would
destroy its learned policies. Although the question about when a transfer can be helpful
remains open. The IGE showed, as the first approach in the field of transfer learning,
that policies based on different discounting factors can be successfully transferred between
task contexts.

Zero-shot Learning of Different Task Objectives

Beside the adaptation to different task contexts, the IGE is also able to adapt to different
task objectives (Chapter 4). In this case, the IGE can immediately adapt without learning
a γ-map, as in the case of context adaptation. This form of learning is also known as
zero-shot learning.

Task objectives are formulated as functions f that should be maximized. They take
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as input the reward sum r the agent gains in an MDP, and the time steps n that the
agent needs, such as f(r, n) = r − 1

2
n. An example scenario is an agent that should

find the best way to a restaurant, where the reward strength describes the food quality
of the restaurant. In this case, the objective might change from day to day. One day
the restaurant with the best food should be visited. Another day there is some time
restriction, and the agent should take the best restaurant that can be reached within a
certain time limit. Again, the IGE can adapt to changes in the objective by using different
γ-policies. The IGE selects the most appropriate policy according to its resulting expected
reward sum, and the time needed to obtain the rewards.

For deterministic, goal-only-reward MDPs, the IGE can decode this information di-
rectly from its learned Q-functions. For general MDPs, the IGE uses an approach inspired
by the Horde architecture. For each module, it learns a prediction of the reward sum that
the module’s policy achieves, and the number of steps needed to acquire the rewards.
Based on this prediction, the IGE selects the most appropriate policy to maximize a
given objective.

However, the approach has a limitation in regard to the selection of the most appro-
priate policy. The aim is to optimize the expectation over the outcome of an objective:
argmaxγ Eπγ [f(r, n)]. But, the IGE learns the expectation only over the reward sum
Eπγ [r] and the number of steps Eπγ [n], and not over the objective. It can only approx-
imate the expected outcome of the objective by E[f(r, n)] ≈ f(E[r],E[n])]. For some
types of environments and objectives, such as deterministic MDPs, the correctness of the
approximation can be guaranteed, but not for MDPs and objectives in general. Nonethe-
less, the IGE showed that it could immediately adapt to a new objective, in contrast to
a classical algorithm that needed several hundred episodes before it could reach the same
performance as the IGE.

Average Reward Optimization

One objective that the IGE is guaranteed to solve is the optimization of average reward per
episode in deterministic, goal-only-reward MDPs (Chapter 5). Optimization of average
reward is especially important in tasks that are repeated in a loop, because it results in
the highest reward for the invested time. In MDPs where each episode starts at the same
initial state, the IGE also optimizes the average reward over the steps of all episodes.

The IGE provides a new way to optimize average reward, compared to existing model-
free, value-based methods. Instead of learning only a single policy, it learns several, which
can be helpful to adapt the agent to changes in the task. Furthermore, the IGE does not
need to learn an approximation of the average reward ρ of the agent’s policy, as existing
methods have to do to learn their value functions. This reduces learning complexity and
the number of learning parameters. The IGE outperformed existing methods in decision-
tree and grid-world tasks.

The convergence of the IGE to the optimal average-reward policy could be proven.
Furthermore, which modules, i.e. which γ factors are needed guarantee that the IGE is
optimal, can be defined exactly. If the MDP has a maximum of N steps for its optimal
trajectory, then the IGE needs eitherN or 3N modules to guarantee optimality, depending
on the IGE variant used. Nonetheless, the number of modules needed can be reduced while
still guaranteeing a lower bound for the final performance.
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General Limitations

The IGE in its current form has two major limitations. The first is with respect to the
policies it is able to learn. Its modules can learn a subset of policies that optimize the
discounted reward sum (

∑∞
t=1 γ

trt) for different γ’s. These γ-policies form the behavioral
repertoire that the IGE uses to adapt to different task contexts and objectives. However,
generally it cannot guarantee that the γ-policies represent the optimal solution for each
context or objective.

This can be analyzed in more depth in the class of deterministic, goal-only-reward
MDPs, where the policies and trajectories the IGE can learn are represented as choices.
The IGE learns to reach nearby choices with modules that have small γ’s and more distant
choices that give more reward with larger γ’s. However, the IGE is not guaranteed to learn
every possible choice. For one thing, the IGE does not learn dominated choices, which
give less reward and need longer to reach than other choices in the MDP (Theorem 4).
Nonetheless, such choices are not important because generally only choices in the set of
non-dominated choices are solutions for different task contexts or objectives. However,
the IGE does not learn the whole set of non-dominated choices. As shown by Theorem 7
some non-dominated choices are excluded.

However, for some task contexts and objectives, the IGE is guaranteed to learn the
optimal policy. It is guaranteed to learn the path to the choice with the fewest steps and
to the choice with the highest reward. Most interesting, it can guarantee learning the
choice with the highest average reward in an episode (Theorem 17). In terms of tasks,
the IGE is guaranteed to learn optimal policies for IR-MDPs, RR-MDPs, and CP-MDPs.

Although the IGE is not guaranteed to learn optimal policies with regard to objectives
with arbitrary temporal weighting, it can still improve the learning performance under
a new task context or objective by using its most appropriate policy. The experimental
results in Chapters 3 and 4 show that this helps to adapt faster to a new situation than
a standard agent that learns the new situation without any prior information. In some
cases, this standard agent finally achieved a higher performance, but it usually needed
hundreds or thousands of episodes to do so. The IGE could also be allowed to find the
optimal policy if it is combined with a general reinforcement learning agent. In such a
case, the IGE could be used to jump-start or inform the general learner in a new task
context or objective by providing a good initial policy. Similar methods have been already
explored in the field of transfer learning (Fernández & Veloso 2006; Mehta et al. 2008).
In contrast to the IGE, they used policies that were solutions for previous tasks, and not
alternative solutions for the current task.

A second general limitation of the IGE exists in regard to decoding extra information
for its policies. Theoretically, if the IGE has several modules that learned the same or
a similar policy, its resulting expected reward trajectory could be decoded. Decoding is
based on the value function from all these modules, using the inverse of a Vandermonde
matrix, constructed from the modules discount factors. Unfortunately, this method has
problems, such as that the inverse of the Vandermonde matrix is ill-conditioned, making
it difficult to apply in practice.

Nonetheless, decoding can be successfully done in deterministic, goal-only-reward
MDPs. Unfortunately, such MDPs represent only a very restricted class of problems.
However, a similar approach as used by the Horde architecture, with its control and
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prediction demons (Sutton, Modayil, et al. 2011), can be applied to predict information
needed about the policies. For example, it is possible to predict the expected reward sum
and number of steps until a goal state is reached for any γ-policy in general MDPs. This
knowledge has been successfully applied to identify an appropriate policy for new task
objectives (Chapter 4).

Future Research

In addition to future research into approaches to overcome current limitations of the IGE,
several other research directions have been opened by the IGE. The following section lists
some of these potential research directions.

The basic idea of the IGE is to have an ensemble of individual reinforcement learning
modules, each optimizing discounted reward with a different discount factor. There is no
restriction on how to implement the modules, making the IGE a very general framework
that can be combined with many approaches. In this work, Q-learning was used as the
learning algorithm for modules. It allowed learning in a model-free approach, requiring
no model of the environment. Moreover, in contrast to policy-based algorithms, it learns
value functions that can be used to decode further information about trajectories resulting
from policies. Q-learning is also a off-policy method, allowing all modules to learn their
optimal value function from any observations.

However, the IGE can be combined with any reinforcement learning algorithm that
optimizes the discounted reward sum. It could be combined with model-based algorithms
to improve the learning of the value function. In this case, the IGE needs only a single
model for all modules. Each module learns its individual value function based on the
shared model. The IGE could also be combined with policy-based methods, such as
policy gradient approaches. This allows the application of the IGE to domains where
such methods are successfully used, for example for the control of robots (Deisenroth,
Neumann, & Peters 2011). A problem is that policy gradient approaches are usually on-
policy methods. Thus, modules cannot learn in parallel from observations produced by
the policy of another module. A potential solution would be to use importance sampling
(Rubinstein & Kroese 2016) to allow off-policy updates of modules in parallel (Uchibe &
Doya 2004). Future research should identify how resilient such methods are if used with
the IGE.

The general nature of the IGE also allows use of different model-free, value-based
algorithms and techniques. In this first study of the IGE, only basic Q-learning with a
tabular value function was used. Nonetheless, the IGE could be combined with more
sophisticated approaches such as eligibility traces (Precup, Sutton, & Singh 2000) to
improve its learning speed, or function approximation to allow continuous state spaces
and generalization over states (Sutton & Barto 1998). In particular, the combination
with deep neural networks (Goodfellow, Bengio, & Courville 2016) to represent the value
function seems promising. Deep Q-learning has been recently successfully applied to
different complex tasks, such as video games (Mnih et al. 2015), Go (Silver, Schrittwieser,
et al. 2017), or other board games (Silver, Hubert, et al. 2017). The IGE can be combined
with such methods. All modules could share the same first layers of a deep neural network
to allow learning of shared low-level features. Higher layers could then differentiate into
separate modules, each learning a value function based on a different discount factor. This
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would allow to use the IGE for complex tasks, based on high-dimensional state spaces,
such as screen images from computer games. In summary, the IGE is a very general
framework that can be combined with many approaches. Future research should identify
which combinations are useful, and should determine whether the unique structure of the
IGE might provide special synergy with specific approaches.

A further research direction is to identify further task types in which the IGE can be
successfully applied. The IGE learns policies that represent different strategies for the
trade-off between the amount of reward and the time to acquire it. In this work, it was
mainly applied to MDPs with several goal states that give different reward amounts and
that have different distances. This allows the IGE to learn policies to reach some of these
goal states. However, the IGE is not restricted to this scenario. It can also learn different
policies in tasks in which rewards are distributed over the MDP. This includes the maze
example from the introduction, where an agent has to collect coins in a maze and find
the exit. Finding the exit gives a large reward, whereas coins give smaller rewards. A
module with a large γ that optimizes long-term reward will learn to collect many coins
and then go to the exit, whereas for a module with stronger discounting, the higher reward
of reaching the exit would be strongly discounted if it is too far in the future. For these
modules the reward sum would be higher if the reward for the exit is reached as rapidly
as possible. Future investigations should explore the types of tasks in which the IGE can
be advantageous, and how these tasks have to be formalized, for example, in respect to
reward functions that allow the IGE to learn benefical behaviors.

This work concentrated on the ability of the IGE to learn policies that represent differ-
ent strategies, and that can be reused in different task contexts and objectives. However,
the choice of the discount factor can also affect the learning speed and quality of policies in
regular single-task settings. For example, using a smaller γ usually results in faster learn-
ing speed. François-Lavet, Fonteneau, & Ernst (2015) used this effect and increased the
discount factor slowly during the learning of a deep Q-learning approach. This resulted in
improved learning performance compared to using only a constant discount factor. More-
over, Jiang, Kulesza, et al. (2015) proved that if learning is based on an inaccurate model,
such as is the case during on-line learning in a stochastic environment, then learning a
policy to optimize a specific γtarget can be improved by learning it with values based on a
smaller γ. The discount factor γ controls the complexity of the learnable policy class, i.e.
the number of possible policies that can be learned, because γ controls the time time-scale
on which optimal policies are searched. A smaller discount factor reduces the number of
potential policies, because it only regards policies that can be optimal on a short time-
scale. This makes the learning problem less complex and less prone to overfitting to an
inaccurate model. In both cases, the choice of the optimal γ needs to be experimentally
observed, by testing several options. The IGE uses different discount factors in parallel.
Predicting their performance might help to determine which of the discount factors is
best for a task. Future research should investigate whether the IGE might be useful to
improve learning speed in regular tasks, and not only in transfer learning settings.

Relationship to Models of Human Decision-Making

Besides being a new framework for adaptive reinforcement learning, the IGE may pro-
vide further insight into learning and decision-making processes in humans and animals.
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The inspiration for the IGE came from findings about inter-temporal decision-making in
humans. Tanaka, Doya, et al. (2004) and Tanaka, Schweighofer, et al. (2007) found evi-
dence for a modular structure in the brain. Different brain areas seem to encode values for
choices computed with area-specific discount factors. The IGE might help to understand
the function of this brain structure.

An existing model by Kurth-Nelson & Redish (2009), the Dependent γ-Ensemble
(DGE), proposed that this brain structure might be responsible for hyperbolic discounting,
observed during human decision-making. They showed that hyperbolic discounting can
be replicated using the integral over the values of an ensemble of exponentially discounted
value functions. In their model, functions depend upon each other by learning values for
a single policy. The IGE differs from this model by learning individual policies for each
module. This allows the IGE to adapt to different situations, by having a behavioral
repertoire from which it can select the most appropriate policy for a given situation.
This idea provides an alternative hypothesis about the potential function of the modular
structure in the brain. Instead of being responsible for learning hyperbolic discounting,
it can learn different behaviors in parallel.

The brain structure in question is the striatum. It has been linked to model-free
decision-making in humans and animals (Section 1.4.2). Such model-free processes have
been linked to habitual behavior (Daw, Niv, & Dayan 2005). The IGE can be understood
as a framework that learns different behaviors for the same environment. In the same way,
the striatum can learn several habitual behaviors in parallel. Depending on the situation,
the habitual behavior that is most appropriate is then activated.

Tanaka, Schweighofer, et al. (2007) and Schweighofer et al. (2008) showed that sero-
tonin, a neurotransmitter, control the overall behavior. In participants that had higher
serotonin levels, induced by a tryptophan-rich diet, brain activities correlated with values
using large γ’s were increased in the dorsal striatum. Participants also showed a higher
preference for long-term, high-reward choices. Whereas, in participants with reduced sero-
tonin levels, brain activities correlated with values using small γ factors were increased
in the ventral striatum, and the choice preference shifted toward short-term, low-reward
choices. This suggests that serotonin controls which areas are more active and control
the behavior. This is analogous to the γ-map used to select the active γ-module depen-
dent on a context signal. Serotonin can be understood as such a context signal. It has
been linked to stress and depression, varying under stressful situations. Stress is a useful
indicator to switch between habits. Under low stress it makes sense to opt for long-term,
high-reward choices, whereas under high stress, it may be more beneficial to seek a more
readily achievable reward target. A modular system similar to the IGE would have the
advantage of not needing to relearn habits if its stress level and therefore the context
changes. Instead, the agent could learn a repertoire of habits useful for different stress
levels.

In summary, the IGE not only provides a brain-inspired framework to adapt rein-
forcement learning between different task contexts and objectives. It also provides a new
hypothesis about the learning of habits in the brain, in the form of an ensemble that
learns habits in parallel for different stress levels.
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Supplementary Data for the Context
Adaptive Energy Foraging Task

The appendix lists additional results of the energy foraging task discussed in Section 3.4.3.
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Figure A.1: The CA-IGE variants have a better learning rate than classical Q-learning.
Q-learning is only in the simple, deterministic task better. The average reward per episode
was measured for the greedy policy after every 100 episodes of learning. The greedy policy
was evaluated for 200 episodes. Learning was stopped during the evaluation. The lines
show the mean of the average over 100 independent runs. The shaded area shows the
standard deviation. Only the CA-IGE variants are shown that learn their modules values
under a sub-context.
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Simple Tasks Moderate Tasks Complex Tasks
1) Deterministic tasks (η = 0, p = −1, p0 = −9)
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Figure A.2: The CA-IGE variants have a better learning rate than classical Q-learning.
Q-learning is only in the simple, deterministic task better. The average reward per episode
was measured for the greedy policy after every 100 episodes of learning. The greedy policy
was evaluated for 200 episodes. Learning was stopped during the evaluation. The lines
show the mean of the average over 100 independent runs. The shaded area shows the
standard deviation. Only the CA-IGE variants are shown that learn their modules values
under all contexts.
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Figure A.3: The CA-IGE variants have a better learning rate than classical Q-learning.
Q-learning is only in the simple, deterministic task better. The average reward per episode
was measured for the greedy policy after every 100 episodes of learning. The greedy policy
was evaluated for 200 episodes. Learning was stopped during the evaluation. The lines
show the mean of the average over 100 independent runs. The shaded area shows the
standard deviation. Only the CA-IGE variants are shown that learn their modules values
under all contexts.
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Figure A.4: The CA-IGE variants have a better cumulative reward compared to classical
Q-learning for all tasks. The cumulative reward was measured over the curse of learning.
The lines show the mean of the cumulative reward over 100 independent runs. The
standard deviations are too small to be plotted. Only the CA-IGE variants are shown
that learn their modules values under a sub-context.
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Figure A.5: The CA-IGE variants have a better cumulative reward compared to classical
Q-learning for all tasks. The cumulative reward was measured over the curse of learning.
The lines show the mean of the cumulative reward over 100 independent runs. The
standard deviations are too small to be plotted. Only the CA-IGE variants are shown
that learn their modules values under all contexts.
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Figure A.6: The CA-IGE variants have a better cumulative reward compared to classical
Q-learning for all tasks. The cumulative reward was measured over the curse of learning.
The lines show the mean of the cumulative reward over 100 independent runs. The
standard deviations are too small to be plotted. Only the CA-IGE variants are shown
that learn their modules values under all contexts.
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Figure A.7: The approach of learning values of γ-modules only for non-zero energy
levels (sC > 0) can not use between 5 to 15 percent of the observations. The bars show
the mean percentage of observations that could be used to update the modules over 100
independent runs. The error bar shows the standard deviation.



Appendix B

Supplementary Data for the Average
Reward Experiments

The appendix lists further results for the experimental comparison between the AR-IGE
and existing average-adjusted algorithms (Section 5.5.2). The results are for the episodic
variants of the average-adjusted algorithms for decision-tree tasks, and the continuous
variants for grid-world tasks.

Figs. B.1 and B.3 show the learning parameters used for the experiments. The results
are shown in Figs. B.2 and B.4.

Learning Parameters for Decision-Tree Tasks
a) Exploration rates

b) AR-IGE Γ-sets c) Remaining parameters
Algorithm Parameters
All αQ = 1
AR-IGE εγ = 0.1
R-Learning(e) αρ = 0.001
rSMART(e) αρ = 0.2
rmSMART(e) αρ = 0.001

Figure B.1: The learning parameters for decision-tree tasks for both AR-IGE variants
and the episodic variants of the average-adjusted algorithms.
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Results for Episodic Average-Adjusted Algorithms in Decision-Tree Tasks

Results for the Average Reward Over All Steps
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Figure B.2: (top) Average reward over all steps of all phases and per individual phase.
The bar shows the mean over the 100 tasks and the error-bar the standard deviation.
(middle) The difference between the average reward per task between the DAR-IGE
and the average-adjusted algorithms. (bottom) The average reward per episode during
the learning. The DAR-IGE could outperform all episodic average-adjusted algorithms
with exception of Condition 2 of Phase 2.
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Learning Parameters for Grid-World Tasks
a) Exploration rates

b) AR-IGE Γ-sets c) Remaining parameters
Algorithm Parameters
All αQ = 1
AR-IGE εγ = 0.025
R-Learning(c) αρ = 0.005
rSMART(c) αρ = 1
rmSMART(c) αρ = 0.05

Figure B.3: The learning parameters for grid-world tasks for both AR-IGE variants and
the continuous variants of the average-adjusted algorithms.
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Results for Continuous Average-Adjusted Algorithms in Grid-World Tasks

Results for the Average Reward Over All Steps
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Figure B.4: (top) Average reward over all steps of all phases and per individual phase.
The bar shows the mean over the 100 tasks and the error-bar the standard deviation.
(middle) The difference between the average reward per task between the DAR-IGE and
the average-adjusted algorithms. (bottom) The average reward per episode during the
learning. The DAR-IGE could consistently outperform all continuous average-adjusted
algorithms.
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Analytical Solution to Theorem 21

To determine the lower and upper bound (γL(κ), γU(κ)) of the γ-region Γ(κ, n∗) that
guarantees to learn the optimal average reward solution in deterministic, goal-only-reward
MDPs according to Theorem 21, several combinations for the number of steps of the
optimal choice n∗ and the number of steps of any other choices n need to be tested. An
analytical solution is given by Theorem 22, but the proof of the theorem is at the moment
incomplete.

Theorem 22. For any deterministic, goal-only-reward MDP exists a γ-region Γ∗(κ, n∗)
for which all its discount factors γ∗ are guaranteed to encode the optimal average reward
choice c∗ = (r∗, n∗) if its average reward is at most by a factor κ smaller than the average
reward of any other choice c = (r, n):

κ
r∗

n∗
≥ r

n
,

with κ ∈ [0 1]. The region is defined by:

Γ∗(κ, n∗) = {γL(κ) < γ∗ < γU(κ)} ,

where γL(κ) and γU(κ) are the lower and upper border of the region. The lower border is
defined by:

γL(κ) = max

((
κ
n′L
n∗

) 1
n∗−n′

L
,

(
κ
n′′L
n∗

) 1
n∗−n′′

L

)
,

with
n′L = min (bnLc, n∗ − 1) and n′′L = min (dnLe, n∗ − 1) ,

and
nL = −n∗ 1

W−1

(
−κ
e

) ,
where W is the Lambert-W, or product log function.

The upper border of the γ-region Γ∗(κ, n∗) is defined by:

γU(κ) = min

((
n∗

κ · n′U

) 1
n′
U
−n∗

,

(
n∗

κ · n′′U

) 1
n′′
U
−n∗
)

,
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with
n′U = max (bnUc, n∗ + 1) and n′′U = max (dnUe, n∗ + 1) ,

and
nU = −n∗ 1

W0

(
−κ
e

) .
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