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Abstract

In diagnostic applications of statistical machine learning methods to brain imaging data,

common problems include data high-dimensionality and co-linearity, which often cause

over-fitting and instability. To overcome these problems, we applied partial least squares

(PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data,

creating a low-dimensional representation that relates symptoms to brain activity and that

predicts clinical measures. Our experimental results, based upon data from clinically

depressed patients and healthy controls, demonstrated that PLS and its kernel variants pro-

vided significantly better prediction of clinical measures than ordinary linear regression. Sub-

sequent classification using predicted clinical scores distinguished depressed patients from

healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled

us to identify brain regions relevant to depression, including the default mode network, the

right superior frontal gyrus, and the superior motor area.

Introduction

Advances in analyzing large datasets with machine learning algorithms promote their applica-

tion in medical diagnosis. In particular, their use in objective diagnosis of psychiatric disorders

using brain imaging and other biological data is now being actively studied [1]. A major chal-

lenge in applying statistical machine learning algorithms to brain imaging or genetic data is

the high dimensionality of the input variables, such as the number of voxels and the number of

possible genetic polymorphisms. Even though algorithms such as support vector machine

(SVM) and L1-regularized classifiers (LASSO) manage the issue of high-dimensionality, the

problem of co-linearity in brain imaging data remains. Neural activities in nearby voxels or in

the same functional network are highly correlated, which makes the results of commonly used

PLOS ONE | https://doi.org/10.1371/journal.pone.0179638 July 12, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Yoshida K, Shimizu Y, Yoshimoto J,

Takamura M, Okada G, Okamoto Y, et al. (2017)

Prediction of clinical depression scores and

detection of changes in whole-brain using resting-

state functional MRI data with partial least squares

regression. PLoS ONE 12(7): e0179638. https://

doi.org/10.1371/journal.pone.0179638

Editor: Dewen Hu, National University of Defense

Technology College of Mechatronic Engineering

and Automation, CHINA

Received: December 19, 2016

Accepted: June 1, 2017

Published: July 12, 2017

Copyright: © 2017 Yoshida et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The original data for

this study is confidential due to the involvement of

patient data. It can be obtained upon request to the

Department of Psychiatry and Neurosciences,

Hiroshima University, Japan (primary contact:

Shigeto Yamawaki, PhD, MD,

yamawaki@hiroshima-u.ac.jp). IRB imposing these

restrictions on our data is Ethical Committee for

Epidemiology of Hiroshima University (contact:

Shoji Karatsu kasumi-kenkyu@office.hiroshima-u.

https://doi.org/10.1371/journal.pone.0179638
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179638&domain=pdf&date_stamp=2017-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179638&domain=pdf&date_stamp=2017-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179638&domain=pdf&date_stamp=2017-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179638&domain=pdf&date_stamp=2017-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179638&domain=pdf&date_stamp=2017-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179638&domain=pdf&date_stamp=2017-07-12
https://doi.org/10.1371/journal.pone.0179638
https://doi.org/10.1371/journal.pone.0179638
http://creativecommons.org/licenses/by/4.0/
mailto:yamawaki@hiroshima-u.ac.jp
mailto:kasumi-kenkyu@office.hiroshima-u.ac.jp


regression or classification tools unreliable. In this paper, we propose the use of partial least

squares (PLS) regression [2–7] with multiple clinical measures to address this problem. We

use resting-state functional magnetic resonance imaging (rs-fMRI) data and clinical measures

from clinically depressed patients and healthy control subjects to obtain low-dimensional rep-

resentations of symptoms and brain activities, and we use them to predict depression-related

clinical measures and thereafter, to classify subjects.

Use of rs-fMRI is gaining attention in diagnosis of psychiatric disorders because it makes

few cognitive demands in measurements and because it can be applied to multiple disorders

[8]. In depressed patients, functional connectivities (FCs) between brain areas estimated using

rs-fMRI show distributed changes throughout the entire brain [9–12]. Zeng et al. (2012) [13]

demonstrated that *94% of 53 subjects could be correctly classified as patients or healthy con-

trols using FCs and linear SVM, and they reported that the majority of discriminating FCs

were distributed within or across the default mode network, the affective network, visual corti-

cal areas, and the cerebellum. While the aforementioned study sought to discern differences

between patients and healthy controls in a binary manner, Zhang et al. (2011) [14] tried to pre-

dict clinical measures of the Beck Depression Inventory II (BDI-II) [15] by regressing fMRI

signals acquired during a face-watching task. They showed that true and predicted BDI-II

were significantly correlated (r = 0.55) and using the standard threshold of 14 for the predicted

BDI-II, 89% of the automated diagnoses agreed with those of psychiatrists.

Clinical depression is characterized by multiple, related symptoms [16]. There are various

clinical measures for assessing symptoms, such as the Snaith-Hamilton Pleasure Scale

(SHAPS) [17] for anhedonia and Positive and Negative Affect Schedule (PANAS) [18] for

altered mood. In addition, the age of subjects is important for diagnosis since aging increases

the risk of depression in general [19].

Here, we consider a two-step approach which predicts multiple measures of clinical depres-

sion from rs-fMRI in the first step, and then uses results of the first step for diagnosis. For the

first step, we train a regression model to predict BDI-II, SHAPS, PANAS(n), and age from

functional connectivity data. Although this could be done using ordinary least squares regres-

sion, in order to tackle the issue of high-dimensionality and co-linearity of the input, we

explore the use of partial least squares (PLS) regression [2–7], which maps input and output

variables to low-dimensional spaces so that the covariance of data in the latent spaces is maxi-

mized. We compare the classification performance of the two-step approach using PLS regres-

sion with other classification methods. Thereafter, we consider the use of subject age by testing

(i) a model with age as a response variable (output-age model), (ii) a model with age as a pre-

dictor (input-age model), and (iii) a model that does not consider age (no-age model).

This paper further develops the basic idea presented in [20] to overcome limitations of lin-

ear methods and perform objective diagnosis. In section 2, we illustrate the details of rs-fMRI

and clinical measures for subjects. Section 3 provides the mathematical basis of PLS and its

kernel variants. In addition, it is extended to classification models for the purpose of objective

diagnosis. In section 4, we illustrate the efficacy of our application in predicting clinical mea-

sures, discriminating between patients and healthy controls, and interpreting derived coeffi-

cients. Finally, we offer our conclusions and discuss future work in section 5.

Data set

This study was approved by the Human Subjects Research Review Committee at the Okinawa

Institute of Science of Technology, as well as the Research Ethics Committee of Hiroshima

University (permission nr. 172). Written and informed consent was obtained from all subjects

participating in the study.
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Subjects

58 patients (age 26–73, average 42.8 ± 11.9, 33 female) with major depression disorder were

recruited by the Psychiatry Department of Hiroshima University and collaborating medical

institutions, based on the Mini-international neuropsychiatric interview (M.I.N.I [21]), which

enables doctors to identify psychiatric disorders, according to the Diagnostic and Statistical

Manual of Mental Disorders, Fourth Edition (DSM-IV [22]). As a healthy control group, 65

subjects (ages 20–66, average 34.8 ± 13.0, 28 female) with no history of mental or neurological

disease, were recruited via advertisements in local newspapers.

Clinical measures

The following interview- and questionnaire-based measures are used for determination of dis-

ease presence and quantification of the severity of two primary symptoms we wish to predict,

namely, anhedonia (loss of motivation, loss of pleasure, etc.) and negative mood (low mood,

guilty feelings, suicidal thoughts, etc.).

Beck Depression Inventory II (BDI-II). This measure evaluates the presence and severity

of depression based on a self-report questionnaire [15]. Subjects are asked to answer 21 ques-

tions about feelings of punishment or guilt, suicidal thoughts, etc. Each answer is scored with a

value between 0 and 3, with 3 being the most serious. High scores indicate severe symptoms.

The standardized score of�14 indicates that a subject is suffering from depression.

Snaith-Hamilton Pleasure Scale (SHAPS). This measure was developed to evaluate the

level of anhedonia [17]. Subjects are asked to answer 14 questions about hedonic capacity,

with scores between 1 and 4. High scores indicate more severe anhedonia.

Positive and Negative Affect Schedule (PANAS). This widely used measure evaluates

positive and negative moods of subjects [18, 23]. In this study, we considered only scores

related to negative mood items. This measure is generally known as PANAS(n). Subjects are

asked to respond to 10 questions about their moods, with answers between 0 and 5. The sum

of all scores indicates the strength of their negative moods. Due to an evaluation issue, one sub-

ject’s response could not be assessed, so that score was replaced with the mean of the remain-

ing subjects.

Table 1 summarizes scores exhibited for each measure by each group in our study [20].

Although most patients showed both anhedonia and negative mood, some exhibited only one

trait. Correspondingly, the scores of the BDI-II, SHAPS, and PANAS(n) are highly, but not

completely correlated. As decreased mental function results from aging, the age of the subjects

is expected to correlate with BDI-II, SHAPS, and PANAS(n) as well.

We verified these correlations by calculating the correlation coefficients (Table 2) [20].

Strong correlations between clinical measures are reflected in coefficients above 0.7. Weaker

correlations between age and individual clinical measures were around 0.3. In our regression

model, BDI-II, SHAPS, PANAS(n), and age of each subject are considered as responses in

Table 1. Mean (± standard deviation) of clinical measures [20].

Controls Patients

Number of subjects 65 58

Age 34.8 (±13.0) 42.8 (±11.9)

BDI-II 6.92 (±5.9) 30.9 (±9.0)

SHAPS 23.3 (±6.2) 37.8 (±5.5)

PANAS(n) 8.5 (±6.4) 25.1 (±7.9)

https://doi.org/10.1371/journal.pone.0179638.t001

Prediction of clinical depression scores

PLOS ONE | https://doi.org/10.1371/journal.pone.0179638 July 12, 2017 3 / 21

https://doi.org/10.1371/journal.pone.0179638.t001
https://doi.org/10.1371/journal.pone.0179638


order to correct for their natural correlation, resulting from functional connectivity. We will

show that the introduction of subject age as an output rather than as an input is beneficial with

respect to classification accuracy.

Functional connectivity of resting-state fMRI

Functional MRI measurements were acquired on a 3T GE Signa HDx scanner with a 2D EP/

GR (TR = 3s, TE = 27ms, FA = 90deg, matrix size 64x64x32, voxel size 4x4x4 mm, no gap,

interleaved). Subjects were instructed to lie with their eyes open, to think of nothing in particu-

lar, and to remain awake. They are also instructed to refrain from taking caffeine, nicotine,

and alcohol in the day of experiment.

For each subject, acquired images were processed with SPM8 (Wellcome Trust Centre for

Neuroimaging, UCL, London) following standard procedures. We first perform slice timing

correction, motion correction, co-registration to anatomical MRI, normalization with stan-

dard brain and smoothing (Gaussian of full-width at half-maximum 8mm). We confirmed

that there were no significant differences in six motion parameters between two diagnostic

groups in order to reject a possible effect of spurious functional connectivity due to head

motion [24, 25]. Voxels were assigned to 116 brain regions, according to the automatic ana-

tomical labeling atlas (AAL) [26]. Mean activation time series in each brain region were

obtained by averaging MRI signal time series over all voxels assigned to each region. Finally,

functional connectivity between each pair of regions was computed as the cross correlation of

the corresponding time-series.

Methods

Partial least squares (PLS) regression is a method for modeling a relationship between two sets

of multivariate data via a latent space, and of performing least squares regression in that space.

PLS can handle high-dimensional co-linear datasets because of its underlying assumption that

the two datasets are generated by a small number of latent components. In this process, latent

components are formed by maximizing the covariance between the two datasets.

Partial Least Squares Regression (PLS)

PLS models a linear relationship between two blocks of variables fxig
n
i¼1
2 Rp and

fyig
n
i¼1
2 Rq. In the following parts, X = (x1, . . ., xn)T represents the (n × p) predictor matrix

and Y = (y1, . . ., yn)T represents the (n × q) response matrix. This procedure obtains L latent

components as ftig
L
i¼1

and fuig
L
i¼1

. This technique assumes following decomposition:

X ¼ TPT þ Fx ð1Þ

Y ¼ UQT þ Fy; ð2Þ

where both T = (t1, . . ., tL) and U = (u1, . . ., uL) are the (n × L) matrices of L latent components

corresponding to X and Y, respectively. The (p × L) matrix P and the (q × L) matrix Q are

Table 2. The Pearson’s correlation coefficients between the clinical measures and the subjects’ age [20].

Age BDI-II SHAPS PANAS(n)

BDI-II 0.2451 - 0.7883 0.8005

SHAPS 0.3221 0.7883 - 0.7497

PANAS(n) 0.2480 0.8005 0.7497 -

https://doi.org/10.1371/journal.pone.0179638.t002
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loadings and the (n × p) matrix Fx and the (n × q) matrix Fy are the matrices of residuals. Since

our objective is to perform least squares regression in a low-dimensional latent space, the

underlying assumption is that the latent component ui can be well predicted from ti from a

relation such as:

U ¼ TD; ð3Þ

where D is the (L × L) matrix. We need to maximize the covariance between ti and ui to satisfy

the above assumption.

Our objective criterion is

max
t;u

covðt;uÞ ¼ max
w;c

covðXw;YcÞ; ð4Þ

where w 2 Rp and c 2 Rq are weight vectors for projection into the latent components.

After extracting the latent component, the observation matrices X and Y are deflated by

subtracting their rank-one approximation. It is important to stress the asymmetry scheme, i.e.

that Y is deflated based on t, in the case of regression. By repeating the above procedures L
times, we obtain the weight matrices W = (w1, . . ., wL) and C = (c1, . . ., cL).

Finally, the relation in the original data space is expressed by

Y ¼ XBþ E; ð5Þ

where B is the (p × q) matrix of regression coefficients and E is the (n × q) matrix of residuals.

Plugging the relationship B = W(PT W)−1CT [27, 28] into Eq (5), we obtain a different repre-

sentation of Y as:

Ŷ ¼ XB ð6Þ

¼ XWðPTWÞ� 1CT ð7Þ

¼ XXTUðTTXXTUÞ� 1TTY: ð8Þ

The final transformation is derived from the following equalities [29],

W ¼ XTU; ð9Þ

P ¼ XTT; ð10Þ

C ¼ YTT: ð11Þ

Note that tT
i tj ¼ dij (the Kronecher delta) takes the values 1 for i = j and 0 for i 6¼ j as a conse-

quence of the algorithm.

In general, B is obtained from a centered training dataset. The response ynew for a new sub-

ject xnew, referred to as test dataset, is then estimated as follows:

ynew ¼ �y þ BTðxnew � �xÞ; ð12Þ

where �y and �x represent the mean predictor and response in the training dataset, respectively.

A schematic outline of PLS is illustrated in Fig 1 and S1 Appendix.

Kernel Partial Least Squares Regression (KPLS)

Linear PLS is easily extended to nonlinear regression using a kernel trick [28, 30].
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Let � : Rp ! H be a nonlinear transformation of the predictor, x 2 Rp, into a feature vec-

tor, �ðxÞ 2 H, where H is a high-dimensional feature space. Define a Gram matrix K as inner

products of points in feature space, i.e., K = FFT, where F = (f(x1), . . ., f(xn))T represents the

predictor matrix in feature space. In general, the number of columns of F is so large that with

the explicit form of F, we can not perform the same procedure as in the linear case. However,

due to the kernel trick, the explicit form of F becomes unnecessary.

The deflation procedure is performed as follows:

K  ðIn � ttTÞKðIn � ttTÞ ð13Þ

Y  Y � ttTY; ð14Þ

where In represents an n-dimensional identity matrix.

Fig 1. Schematic illustration of partial least squares regression. Two blocks of data, X and Y, are

projected by w and c onto latent components, t and u, and least squares regression is performed. p and q

represent loading vectors.

https://doi.org/10.1371/journal.pone.0179638.g001
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We obtain the prediction on the training data from:

Ŷ ¼ FB ð15Þ

¼ FFTUðTTFFTUÞ� 1TTY ð16Þ

¼ KUðTTKUÞ� 1TTY: ð17Þ

To exclude the bias term, we assume that the responses and the predictors are set to have

zero mean in the feature space by applying the following procedure to test kernel Kt and train-

ing kernel K [31]:

Kt  Kt �
1

n
1nt

1T
n K

� �

In �
1

n
1n1

T
n

� �

ð18Þ

K  In �
1

n
1n1

T
n

� �

K In �
1

n
1n1

T
n

� �

; ð19Þ

where 1n represents the n-length vector whose n elements are 1. Note that n and nt represent

the number of training and test samples, respectively.

In the following section of this paper, we investigate three kernel functions: 1) a second

order polynomial kernel k(x, x0) = (xTx0 + 1)2, referred to as KPLS-Poly(2), 2) a third order

polynomial kernel k(x, x0) = (xTx0 + 1)3, referred to as KPLS-Poly(3), 3) a Gaussian kernel k(x,

x0) = exp(−γ||x − x0||)2), referred to as KPLS-Gauss, where γ is a hyper parameter and set to the

inverse of the median of the Euclidian distance of data points.

Classification

In addition to predicting clinical measures, our aim is to classify subjects into depressed

patients and healthy controls using the predicted value of clinical measures for objective diag-

nosis. We evaluate generalization of binary classifiers using linear discriminant analysis

(LDA). Given the training data Dtr ¼ fxtr; ytr; ztrg and test data Dte ¼ fxte; yte; zteg, x 2 R
p,

y 2 Rq, and z 2 {0, 1} represent functional connectivity as predictors, clinical measures as

responses, and binary labels (i.e. 0 is patients and 1 is healthy controls), respectively. In the pre-

diction phase, our objective is to learn the function fB : Rp ! Rq, which, given predictors, xtr,

and responses, ytr, assigns predictors to the most probable values of y. The prediction on the

training dataset is ŷ tr ¼ fBðxtrÞ. In the next classification phase, our objective is to learn the

classifier gw : Rq ! f0; 1g, which, given predicted responses, ŷ tr, and binary labels, ztr, assigns

predicted responses to the most probable labels. Assigned labels on the test dataset are

obtained as ẑte ¼ gwðŷ teÞ ¼ gwðfBðx̂ teÞÞ. It is important to stress that the binary classifier is not

trained on actual clinical measures, ytr, but on predicted values of ŷ tr.

In a previous study [13], the authors only identified the binary classifier g 0w : Rp ! 0; 1,

which, given functional connectivity, xtr, and binary labels, ztr, assigns functional connectivity

directly to binary labels. By exploiting the predicted result of clinical measures, it may be possi-

ble to improve classification performance. We compared two scenarios, i.e. i) classification of

patients and healthy controls using LDA from predicted clinical measures with KPLS (with

KPLS-Gauss, KPLS-Poly(3), and KPLS-Poly(2)), PLS, and ordinary least squares regression

(OLS), ii) classification of patients and healthy controls by means of LDA and SVM from func-

tional connectivity directly. Note that we perform feature selection before scenario 2) by calcu-

lating connection-wise t-tests to determine the connections with different group means,
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represented by t-scores. We select the M functional connections with the highest absolute t-

scores. M is optimized by cross validations.

Pre-screening

Even though PLS can cope with high-dimensional, co-linear datasets, we prescreened variables

depending on their relevance to responses in the following way.

Based on Pearson correlation coefficients, ρrl, between the r-th functional connection and

the l-th clinical measures, we define the empirical relevance of the r-th functional connection

as

Rr ¼
X4

l¼1

r2

rl; r ¼ 1; . . . ; p; ð20Þ

where p is the total number of functional connections.

These functional connections are ranked according to their empirical relevance, fRrg
p
r¼1

,

and only M relevant functional connections are used in following procedure. The optimal

number for M was determined through nested leave-one-out cross-validation.

Nested leave-one-out cross validation

Conventionally, cross validation is employed to assure generalization ability of a model or to

evaluate optimal parameters. Since we have to account for both generalization ability and

parameter optimization, we made use of nested leave-one-out cross validation (LOOCV),

which consisted of outer and inner LOOCV. The outer LOOCV repeats iterations that split

the whole set of samples into a single outer validation sample used to evaluate the generaliza-

tion ability, and an outer training set for model estimation. The inner loop of LOOCV is per-

formed on the outer training set to optimize two parameters, M and L, the number of selected

predictor variables and the number of components, respectively. The pair of parameters that

achieves the lowest root mean squared error based on the inner validation sample are adopted

as optimal parameters and used to evaluate the model using the outer LOOCV. These steps are

repeated until each sample has served as the validation sample.

Age

Age is significantly correlated with three clinical measures (Table 2). In general, age matching

performed on different diagnostic groups reduces sample size, causing poor performance. To

avoid this problem, we investigated three models, i.e. (i) a model with age as a response

(denoted by output-age), (ii) a model with age as a predictor (denoted by input-age), and (iii) a

model without age (denoted by no-age). By incorporating age into our model, we can cope

with age differences among subjects and can fairly evaluate prediction performance.

Interpretation

Interpretation of each latent component projected from input and output data gives novel

insights into the relationship between functional connectivity and clinical measures. In the

framework of PLS, loading matrices, P and C, indicate contributions from predictor variables

and response variables to each latent component (see Eqs (10) and (11)). The (i, j)-element of

the loading matrix, P, represents the contribution of the i-th functional connection to the j-th

latent component. Similarly, the (i, j)-element of the loading matrix, C, represents the contri-

bution of the i-th clinical measure to the j-th latent component. Note that due to subject vari-

ability, values of Pij and Cij vary depending on the training set used.
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Results

Regression performance

We compared the prediction performance of PLS, its kernel variants, and other methods by

means of the root mean squared error (RMSE) of the predicted clinical measures in nested

leave-one-out cross validation (see Methods). Kernel PLS with a second-order polynomial ker-

nel (KPLS-Poly(2)) achieved the lowest RMSE (9.56 for BDI-II, 6.11 for SHAPS, and 7.29 for

PANAS(n)) (Fig 2). This performance was significantly better than that of ordinary least

squares regression (OLS) (11.6 for BDI-II, 7.33 for SHAPS, and 8.91 for PANAS(n)) and com-

parable to that of other variants of PLS applied in our study, suggesting that projection of data

into a low-dimensional space was beneficial to regression performance. All statistical compari-

sons were adjusted for multiplicity using the Bonferroni-Holm method with significance level,

α = 0.05.

Next, to evaluate the best way of incorporating age into our regression models, we com-

pared RMSE of the output-age, input-age, and no-age models. In our study, incorporating age

into our regression model as a response (output-age) achieved significantly better performance

than that of the input-age and no-age models (Fig 3). The details were listed in Supporting

Information (S1, S2 and S3 Tables). All statistical comparisons were adjusted for multiplicity

using the Bonferroni-Holm method with significance level, α = 0.05.

The correlation coefficient of actual and predicted values for BDI-II, SHAPS, and PANAS

(n) in the case of KPLS-Poly(2) were r = 0.541, 0.591, 0.563, respectively. The relationship

between predicted and actual values of BDI-II for KPLS-Poly(2) was exemplified (Fig 4). This

Fig 2. Comparison of predicted performance by means of the root mean squared errors. Linear and kernel variants of PLS

achieved significantly better performance than did OLS in all clinical scores. Subject age was used as the output along with clinical

scores (output-age model).

https://doi.org/10.1371/journal.pone.0179638.g002
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Fig 3. Root mean squared errors in KPLS-Poly(2). KPLS-Poly(2) achieved significantly better performance in output-age model

than in other models.

https://doi.org/10.1371/journal.pone.0179638.g003

Fig 4. Actual and predicted values of BDI-II. BDI-II were well predicted by KPLS-Poly(2) with RMSE = 9.56 and r = 0.541

(p < 10−10). Red and blue points represent patients and healthy controls, respectively.

https://doi.org/10.1371/journal.pone.0179638.g004
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result was comparable to that of Zhang et al. (2011) [14]; however, the number of subjects in

our study was larger than in theirs, reconfirming validity of the results.

The optimal number of retained features M� identified by pre-screening and using the

latent component L� identified with nested LOOCV were 40 and 3, respectively, suggesting

that reduction of feature size was relevant for improvement of PLS prediction accuracy.

Classification performance

Projecting the original data onto a low-dimensional space was expected to improve classifica-

tion accuracy. To verify the benefit of projection, several classification methods were per-

formed and evaluated using accuracy, sensitivity, and specificity (Fig 5). The details were listed

in Supporting Information (S4 and S5 Tables). In our study, KPLS-Poly(2) followed by LDA

achieved the best accuracy 80.5% (sensitivity 81.0% and specificity 80.0%), which is signifi-

cantly better than the 57.7% accuracy of direct LDA (sensitivity 53.4%, and specificity 61.5%)

and 69.1% accuracy of direct SVM (sensitivity 69.0%, and specificity 69.2%). This result indi-

cates that it was beneficial to exploit the prediction model for clinical measures in order to

build a classification model. In addition, KPLS-Poly(2) followed by LDA also achieved signifi-

cantly better accuracy than the 62.6% accuracy of OLS followed by LDA (sensitivity 62.1% and

specificity 63.1%), indicating that considering a latent space in a regression model was benefi-

cial to final classification. Accuracy did not differ significantly between PLS and kernel vari-

ants. All statistical tests were based on approximation with the normal and adjusted for

multiplicity using the Bonferroni-Holm method with significance level α = 0.05.

Fig 5. Classification accuracy, sensitivity, and specificity. KPLS-Poly(2) followed by LDA achieves the best performance

(accuracy = 80.5%, sensitivity = 81.0%, and specificity = 80.0%).

https://doi.org/10.1371/journal.pone.0179638.g005

Prediction of clinical depression scores

PLOS ONE | https://doi.org/10.1371/journal.pone.0179638 July 12, 2017 11 / 21

https://doi.org/10.1371/journal.pone.0179638.g005
https://doi.org/10.1371/journal.pone.0179638


Interpretation

In our study, three clinical scores showed almost equally positive influences on the first com-

ponent, and age also had a positive influence as well. However, age showed a strong negative

influence on the second component, in contrast to the clinical scores (Fig 6).

Latent space representation of subjects showed that the first component explained most

depression severity in comparison with the second component (Fig 7). This is consistent with

the results of loading matrix C. Note that since the optimal number of latent components, in

terms of minimizing regression error, was 3, the second and the third components are thought

to contain some information about scores.

In order to validate the effect of age, especially in the second component, all subjects were

grouped into young (age 20–31, 41 subjects), middle (age 31–43, 41 subjects), and old (age 44–

73, 41 subjects) groups. Note we simply divided the subjects in three equal-sized groups for

convenience, “young”, “middle”, and “old”. They are relative, not absolute age classes. Latent

variables of old subjects in the second component were significantly lower than those of young

Fig 6. Loading matrix C. The matrix indicates contributions of each clinical measure to the first two latent components. Age has a negative

influence on the second latent component. Error bars indicate the standard deviation.

https://doi.org/10.1371/journal.pone.0179638.g006
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and middle subjects (p< 10−5 by Wilcoxon Rank-Sum Test), suggesting that old patients have

distinctive patterns in the second latent space [5] (Fig 8).

Evaluation of loading matrix, P, reveals functional connections relevant to each latent com-

ponent. Especially, the first column of P, corresponding to the first component responsible for

discrimination of each diagnostic group, is expected to reveal useful insights about the effect of

functional connections on depression symptoms. Even though the performance of KPLS-Poly

(2) in prediction and classification was comparable to or better than that of linear PLS, patterns

of significant loadings were consistent in our experiments. For reasons of interpretation, we

therefore focus on the loading matrix of the linear terms in following sections.

BrainNet Viewer [32] (http://www.nitrc.org/projects/bnv/) was used to visualize the top 10

connections with positive and negative loadings for the first component (Figs 9 and 10). In

this figure, many regions involved in the default mode network (DMN), as well as the left sup-
plementary motor area, the right superior frontal gyrus, and the insula, were relevant. In addi-

tion, some functional connectivity between the right cuneus and regions involved in the
cerebellum were negatively correlated with the first component.

Discussion

MacIntosh et al. (1996) first introduced PLS analysis into the field of neuroimaging in order to

extract common information between brain activity and exogenous information, such as

experimental or behavioral data [3, 4]. In particular, behavioral data are increasingly used to

extract associated brain activity patterns for various types of psychological diseases, such as

Alzheimer’s disease [33], obsessive-compulsive disorder [34], and schizophrenia [35]. In these

studies, neuropsychological test scores are used as behavioral data, in addition to the labels

Fig 7. Scatter plot of the latent variables in the first two latent components generated from KPLS-Poly(2). Red and blue

dots represent patients and healthy controls, respectively. The two groups are separated mainly by the first latent component.

https://doi.org/10.1371/journal.pone.0179638.g007
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that represent diagnostic groups and age. To the best of our knowledge, this is the first study to

investigate associations between functional connectivity in the whole brain and multiple clini-

cal measures for depressed patients, using PLS and its kernel variants.

Diagnosis based on resting-state functional connectivity is a challenging task due to the

high-dimensionality and co-linearity of data. Recent studies have demonstrated that depressed

patients can be distinguished from healthy controls by means of their functional connectivity

by applying conventional methods, such as support vector machine [9, 13]. Since binary labels

are ultimately abstracted information about depression that ignores the severity of symptoms,

it is worth considering more detailed information, such as BDI-II, SHAPS, and PANAS(n) to

build more sophisticated models. Our study demonstrated that projecting functional connec-

tivity data into a low-dimensional latent space, can predict clinical measures, and can also

improve depression diagnostic accuracy.

To separately identify neural circuits associated with anhedonia and negative mood is a

challenging task. A psychopathological study suggests that these primary symptoms result

from different neural circuits and from alternation of different neurotransmitters [16]. Our

results show that SHAPS and PANAS(n) are highly correlated and contributed quite similarly

to each latent component (Fig 6), suggesting that further investigation and different

approaches may be required to support psychopathological studies from the point of data

driven analysis.

We also evaluated extended AAL generated by subdividing standard AAL into 600 regions

to examine if the finer atlas could be used to improve the prediction of the clinical scores [36].

The performance was significantly worse than that of standard AAL (S6 Table) and the

selected functional connections were inconsistent. Since analysis of brain imaging data with

limited sample size highly depends on the choice of ROI, the finer atlas does not necessarily

Fig 8. Scatter plot of subjects separated on the basis of the two latent components generated from KPLS-Poly(2) for young,

middle, and old subjects. Old subjects have significantly lower values in the second component (p < 10−5 by Wilcoxon Rank-Sum

Test).

https://doi.org/10.1371/journal.pone.0179638.g008
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provide better prediction performance. Therefore, it is fare to note that further research is

required to validate the best atlas.

Contributing brain regions

Identification of relevant brain regions in functional connectivity analysis yielded the follow-

ing three observations: (1) connections between the default mode network and other regions,

such as the right superior frontal gyrus and the left supplementary motor area are relevant (2) the

Fig 9. Contributing functional connectivity in first latent component. Red and blue lines represent positive and negative loadings, respectively. SFGdor.

R: right superior frontal gyrus, INS: insula, SMA.L: left supplementary motor area, CUN.R:right cuneus.

https://doi.org/10.1371/journal.pone.0179638.g009
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left and right insulas in both hemispheres are relevant, (3) connections between the cerebellum
and the right cuneus are relevant.

First, the default mode network (DMN) shows synchronized deactivation during cognitive

tasks and is thought to be related to major depressive disorder [37–40]. Our study supports

these results, indicating that many relevant connections are related to the DMN, such as the
right posterior cingulum, the right precuneus, and the superior parietal gyrus. The DMN contrib-

utes positive connections with the right superior frontal gyrus and the left supplementary motor

Fig 10. Contributing functional connectivity in first latent component. Purple and yellow nodes represent brain areas within the default mode network

and cerebellum, respectively. SFGdor.R: right superior frontal gyrus, INS: insula, SMA.L: left supplementary motor area, CUN.R:right cuneus.

https://doi.org/10.1371/journal.pone.0179638.g010
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area. The superior frontal gyrus, as a critical region in cognitive tasks, was previously reported

to be associated with depression [41]. While the supplementary motor area is known to be

responsible for motor control, it is also reportedly related to some subtype of depression [42].

Our results support these results.

Second, our results suggest that the insula is associated with depression. Some meta-analysis

of PET and fMRI studies revealed that the insula plays an important role in regulation of emo-

tion [43, 44]. Similarly, resting-state fMRI studies have indicated that the insula is directly asso-

ciated with depression [45, 46].

Finally, we showed that three connections between the right cuneus, located in the visual

cortical area, and the cerebellum, negatively influence depression. While visual processing is

believed not to be affected in depression, some previous studies have suggested that it is associ-

ated with bipolar disorder [47]. Moreover, regional homogeneity (ReHo) interpreted as a mea-

sure of localized synchrony in resting-state fMRI was decreased [48]. The cerebellum is usually

considered to be responsible for motion control, but our results indicate that it may also be

involved in regulation of mood and cognitive processing associated with symptoms of depres-

sion. Some fMRI studies demonstrate that this area is responsible for various types of informa-

tion processing [49, 50], and resting-state functional connectivity studies imply that the
cerebellum may be critical for the distinction between depressed patients and healthy controls

[13, 51].

Conclusion

In summary, we employed partial least squares regression and its kernel variants to predict

clinical measures of subjects using resting-state functional connectivity. Diagnosis of depres-

sion based on predicted clinical scores performed better than classification algorithms

attempting diagnoses directly from functional connectivity. Moreover, analysis of latent vari-

ables identified functional networks relevant to the diagnosis of depression. These results sug-

gest that a low-dimensional representation derived using PLS is beneficial for objective

diagnosis. Further investigations are required to separate the two neural circuits associated

with two primary symptoms, anhedonia and negative mood.
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