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Abstract

The current paper examines how a recurrent neural network (RNN) model us-
ing a dynamic predictive coding scheme can cope with fluctuations in temporal
patterns through generalization in learning. The conjecture driving this present
inquiry is that a RNN model with multiple timescales (MTRNN) learns by
extracting patterns of change from observed temporal patterns, developing an
internal dynamic structure such that variance in initial internal states account
for modulations in corresponding observed patterns. We trained a MTRNN
with low-dimensional temporal patterns, and assessed performance on an imita-
tion task employing these patterns. Analysis reveals that imitating fluctuated
patterns consists in inferring optimal internal states by error regression. The
model was then tested through humanoid robotic experiments requiring imita-
tive interaction with human subjects. Results show that spontaneous and lively
interaction can be achieved as the model successfully copes with fluctuations
naturally occurring in human movement patterns.

Keywords: neuro-robotics, predictive coding, recurrent neural networks,
synchronized imitation, time-warping, error regression

1. Introduction

The principle of predictive coding suggests that organisms become able to
predict perceptual outcomes due to current intentions for acting on the ex-
ternal environment, and to infer intentions behind perceptions themselves, via
accumulated learning of perceptual experience through an agents own actions,5

the actions of other agents, and the consequences of these actions over time
[1, 2, 3]. Predictive coding can be implemented in particular types of recurrent
neural networks (RNNs) including the RNN with parametric biases (RNNPB)
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[4] and multiple timescale RNN (MTRNN) [5] models. By optimizing synaptic
weights for minimizing error, these types of RNN learn to predict future per-10

ceptual input sequences based on current intention states, represented by either
the parametric bias (PB) in the RNNPB or the initial state values of the con-
text units in the MTRNN. After learning, they are able to predict perceptual
sequences corresponding to given intention states, for example proprioception
and visual input sequences anticipated in the successful exercise of an intention.15

In the other direction, they can infer optimal intention states for given target
perceptual sequences. These capacities, including the abilities to reconstruct ac-
tion sequences and so to look for intentions behind perceptual outcomes, have
interesting implications for social robotics and philosophy of mind. Ito and Tani
[6] showed that a RNNPB driven humanoid robot can learn to imitate multiple20

movement patterns as demonstrated by human experimenters. The robot was
able to imitate and to synchronize its own actions with demonstrated patterns
by inferring corresponding intentional states as represented by PB units. And,
a RNNPB inspired by the deterministic predictive coding principle [1] has also
been shown to account for mirror neural functions [7] pairing generation and25

recognition of movement patterns with their intention and reconstruction.
That aside, these RNN-based deterministic predictive coding models have

demonstrated di�culties in dealing with fluctuated sequential patterns. Es-
pecially, time-warping[8] (temporal expansion and contraction) causes severe
problems in learning and recognizing sequence patterns because it tends to30

generate large amounts of accumulated error as processing of sequences pro-
ceeds. Although conventional schemes such as Dynamic Programming and Hid-
den Markov Models (HMM) can deal with this problem e�ciently, they are
incapable of fully autonomous learning because they require predefined labels
and graph structures. Murata and colleagues [9, 10] have attempted to over-35

come this limitation with the stochastic RNN (S-RNN), inspired by the Bayesian
predictive coding scheme proposed by Friston [2, 11, 12]. The essential char-
acteristic of this model is that the output predicts the estimated mean and
variance of the target value statistically instead of predicting its exact value
deterministically. This characteristic allows s-RNN to deal with observational40

noise in the outputs. However, it cannot deal with noise in the internal states,
which is why this model is limited in coping with the time-warping problem.
The current paper investigates the possibility that a dynamic predictive coding
scheme implemented in a MTRNN model can deal with the problem e↵ectively,
and how it develops this potential through learning.45

The MTRNN model is composed of multiple levels, each containing internal
neural units (context units). The context units in the lower sub-network are
constrained by fast, and those in the higher level by slow time constants. Cur-
rent intention states for generating future sequence patterns are represented by
the current dynamic states of the context units in all sub-networks. Our main50

conjecture is that a MTRNN model based on deterministic dynamics can learn
to extract dimensions of modulation latent in observed temporal patterns with
generalization, and so manage time warping type problems. We test this conjec-
ture with varying internal state trajectories, especially in the slower dynamics
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sub-network. These variant trajectories account for possible modulations in par-55

ticular dimensions (such as speed or amplitude in target patterns) by specifying
dynamic structures sensitive to given inputs. And, all learned fluctuated tempo-
ral patterns can be reconstructed by inferring the set of the initial state values
for the corresponding sequence of internal states. So, if dynamic structures ac-
counting for fluctuations are adequately developed via learning, test patterns60

belonging to the same dimensions of fluctuation should be recognized and regen-
erated in the same ways. At the same time, variations in the higher level of the
deterministic MTRNN should be able to account not only for switching among
a set of learned prototypical patterns, but also for their fluctuation in particular
dimensions. The present work investigates both whether and how this happens65

through a series of simulations and humanoid robotics experiments.
In the MTRNN, memory of a set of prototypical patterns develops in terms

of invariant sets of corresponding local attractors, with fluctuations in these pro-
totypical patterns evident in the vector flow in the transient region surrounding
the invariant sets. First, the following section sets out simulation experiments70

using low dimensional simple patterns in order to examine how particular di-
mensions of fluctuation can be extracted from training exemplars and how the
acquired internal structure can be utilized e↵ectively in a test of synchronized
imitation of given target patterns characterized by the same dimension of fluc-
tuation. After that, the paper details a second simulation experiment using75

naturally fluctuating human movement patterns in order to investigate struc-
tures of attractor dynamics developed through the course of learning multiple
categories of movement patterns with certain degrees of fluctuation. Analysis
shows that the developed attractor structure contributes to increasing robust-
ness in tests of synchronized imitation performed by using error regression.80

Finally, the model was tested on a task of imitative interaction between a hu-
manoid robot and human subjects in order to examine how well it copes with
fluctuations in perceived temporal patterns. Results here show that the model
a↵ords spontaneous and lively interactions with human partners.

2. MTRNN model85

2.1. Overview

A MTRNN is a type of RNN that consists of input units, output units, and
multiple levels of sub-networks containing context units operating on the leaky
integrator neuron model [13] with specified time constants. Leaky integrator
units within each sub-network employ time constants specific and unique to that90

sub-network, i.e. neural activation dynamics in the higher level are slower with
a larger time constant, and the lower level is faster with smaller time constant.
Input units receive current percepts, and prediction of the next steps perceptual
state is generated in the output units. This prediction is significantly a↵ected
by the current internal state of the MTRNN, represented by the activation state95

of all context units in all levels in the model network. Basically, the prediction
is made based on the current intention, which is dynamically represented by the
internal states of the model network.
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Figure 1: Schemes for (A) open-loop output generation (B) closed-loop output generation
(C) closed-loop output generation while inferring the internal states by the error regression.
Parameter l represents the number of predicted steps. In (A), by giving current external input,
MTRNN generates l look-ahead prediction steps as outputs. In (B) and (C), by giving the
current output prediction (yt), MTRNN generates l look-ahead prediction steps as outputs
(yt+l).

Prediction outputs can be generated in three di↵erent ways. The first called
sensory entrainment or open loop generation is a scheme whereby the feeding of100

perceptual inputs to the network model entrains its internal neural dynamics,
enabling predictive outputs. The second way is called closed-loop generation in
which the output prediction sequence is generated by copying the current step
perceptual prediction in the output units into the next step perceptual inputs.
This operation can be used to generate mental simulation [14, 15] of possible105

perceptual sequences based on the current intention without using the real per-
ceptual inputs from the environment. Schematics of open-loop and closed-loop
operations are shown in Figures 1(A) and 1(B). Parameter l in Figure 1 rep-
resents the number of predicted steps, i.e. given current input, the MTRNN
generates l look-ahead prediction steps as output. Parameter l was set as 5 in110

our simulation experiments and 7 in the robot experiments.
The third way is called closed-loop output generation while inferring the

internal states by error regression. This is the main scheme employed in the
current paper, enabling on-line action generation via predictive coding. Action
is generated along with the top-down prediction of the perceptual sequence in115

the closed-loop way based on the current internal state representing the intention
of the model network. In the other direction, prediction error is generated
from the perceived action outcome and the internal state is modified in the
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direction of minimizing prediction error via error regression in the bottom-up
manner. Further actions are generated based on the modified intention while120

the top-down and the bottom-up processes iterate in an on-line manner. A
schematic of closed-loop output generation while inferring the internal state by
error regression can be seen in Figure 1(C).

The learning process of a MTRNN involves the optimization of the ini-
tial context states corresponding to all exemplar sequences for the purpose of125

minimizing prediction/reconstruction error. Variations in initial context states
account for di↵erent classes of patterns to be learned and for fluctuations within
each class.

2.2. Generation and training methods

Neural unit activation dynamics are those of the leaky integrator neuron as130

shown in Equation 1.
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where ut

i
is the internal state value of the ith neural unit at time t, wij is the

connectivity weight from the ith context unit to the jth context unit, wik is
the connectivity weight from the ith neural unit to the kth input unit, ct

j
is the

context unit activation value of the jth neural unit at time t, xt

k
is the external135

input of the kth input unit at time t, bi is the bias of the ith neural unit, and ⌧i
is the time constant of the ith neural unit. If the neural unit does not belong
to the lowest level sub-network, the second summation term does not exist,
since there are no connections to the input units. The context units inside the
lowest level sub-network are referred to as Fast Context (FC) units while the140

ones inside the highest level sub-network are referred to as Slow Context (SC)
units. If there are sub-networks between the highest and lowest sub-networks,
context units inside them are referred as Middle Context (MC) units. Similar
to [5], input and output units are only connected to FC neurons. All output
units have a time constant of 1 in this paper.145

The context unit output values are found with the following activation func-
tion as recommended by [16, 17] for faster convergence.

ct
i
= (1.7159) tanh(

2

3
ut

i
) (2)

The connection weights between context units (wij) are bidirectional (wij 6=
wji). If a MTRNN consists of only two sub-networks, all neural units are con-
nected to each other. If a MTRNN consists of three sub-networks, no connec-150

tions between FC and SC units exist (see Figure 1). A softmax transformation
is used to remap each input xt

i
into a higher dimensional space xt

ij
according to
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receptive fields of adjacent intervals of equal length, as follows [18]:
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where kij represents the jth dimension of the reference vector for the ith dimen-
sion of the real input value before transformation at time t, xt

i
is the real input155

value at time t, � is a constant value that specifies the shape of the distribution
(set as 0.05 in our all experiments), Z is the dimension of the reference vector
and xt

ij
is the transformed vector. Z is set 11 in all experiments and it is found

heuristically. Sparse encoding of input data is achieved by using the softmax
transformation and it can reduce the overlaps of input sequences[5]. In this160

paper, variables including inputs and outputs before mapping by the softmax
transformation or after mapping by inverse softmax transformation are called
the real variables and the variables that are mapped by the softmax transforma-
tion are called the softmax variables (softmax inputs or outputs). The reference
vectors are computed by the equation below:165

kij = BMin
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Z � 1
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where BMin

i
, BMax

i
, and Z represent the minimum value for the ith dimension

of the real input data, the maximum value for ith dimension of the real input
data, and the dimension of the reference vector, respectively.

The activations of the output units are computed as follows:
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where ut

ij
is the internal state of the jth softmax output unit corresponding to

the ith real output unit, wijl is the connectivity weight from the lth neuron in170

the FC units to the jth softmax output unit corresponding to the ith real output
unit, ct

l
is the context output of the lth neuron in the FC units, bij is the bias of

the jth softmax output unit corresponding to the ith real output unit, and yt
ij

is the jth softmax output unit corresponding to the ith real output unit at time
t. The inverse of the softmax transformation described in Eq. (7) calculates the175

ith dimension of the real output units (yt
i
) at time t. In other words, Eq. (7)

maps the softmax outputs to their original dimensions (real outputs).

yt
i
=

X

j2Z

yt
ij
kij (7)

A conventional back-propagation through time (BPTT) scheme is used for the
network training [19, 20]. The learnable parameters are optimized in the direc-
tion of minimization of the Kullback-Leibler divergence (noted as E) between180
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desired (target) and real activation values of softmax output units (ȳt
i
and yt

i
,

respectively), according to Equation 8 [5]:
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Where T is the length of a sequence. All learnable parameters, shown as ✓, are
weights and biases and initial states that approach their optimal values in the
opposite direction of the gradient @E

@✓
, and they are updated as follows:185

r✓(n+ 1) = µr✓(n)� ↵
@E

@✓
(9)

✓(n+ 1) = ✓(n) +r✓(n+ 1) (10)

where ↵ is the learning rate, set as 0.00003 in all of our experiments, and µ is
the momentum term which is set as 0.9 in all experiments. These values were
found heuristically. The weight and bias gradients for all training sequences (s)
can be obtained as follows:
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where C is context units, I is input units, and O is the output units. @E

@ut
i
can

be computed using Equation 13:
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where c0(ut

i
) is the derivative of ct

i
at time t, and � is Kronecker delta function.

As learning begins, synaptic weights (wij) are set randomly from a uniform
distribution on the interval [�1

NI
, 1
NI

] (if j 2 I) and [ �1
NC

, 1
NC

] (otherwise), where
NI and NC are the number of input and context units, respectively, and biases
and initial states are set to 0. The open-loop approach was used in the learning190

phase in all experiments, i.e. the MTRNN receives current inputs and generates
one or multiple look-ahead prediction steps as outputs. Training ran for 50000
epochs in all experiments, and average mean square error (MSE) of closed-loop
generation was computed in each training epoch. The learnable parameters
obtained from the training epoch with minimum average MSE of closed-loop195

generation were used in test phases. It should be noted that the closed-loop
generation did not a↵ect updating of the learnable parameters.
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2.3. Inferring internal states by error regression during synchronized imitation

After the learning process, the MTRNN model was tested on a synchronized
imitation task. Given target temporal patterns were structurally the same as200

learned ones, but with modulations in speed and amplitude. During synchro-
nized imitation, the model has to imitate the target pattern without delay by
predicting next step input by inferring the prototypical patterns to be generated
as well as their modulations. The MTRNN does this by using error regression
to infer the intention. Closed-loop prediction of target patterns is accomplished205

by backpropagating prediction error through time (within a temporal window
(W) of the immediate past) from the output through the internal states of the
MTRNN in a bottom-up manner, thereby modifying internal states in order to
minimize the current prediction error. In greater detail, by means of the BPTT
scheme the prediction errors from the t-W time step to the current t time step210

can be used to update the internal states of the t-W time step, which result in
changes to all context units and prediction outputs inside the temporal window.
It should be noted that the connectivity weights and biases obtained during the
learning phase are fixed in the error regression during synchronized imitation
testing.215

Equations used in updating the internal states (activation states of all con-
text units in the whole network) at the onset of a temporal window are same as
equations 9 and 10. However, we use a di↵erent term for the learning rate (↵)
in the error regression scheme. This is called the error regression adaptation
rate (↵ER), and was set as 0.001 in all of the present experiments except for the220

last robotic experiment. Also, we do not use the momentum here (we set the
value to zero). In all present experiments, the temporal window length was set
to 15 and error regression was performed for 100 regression steps. All former
internal states were overwritten from the t-15 time step to the current t time
step at each time step within the temporal window. By inferring the internal225

states inside the temporal window, the prediction of internal states and output
values after this window (future plans) can be also modified (see Figure 10 for
details).

3. Simulation experiments

Two simulation experiments investigated the basic mechanism of the model230

network in coping with temporally fluctuating patterns. The first experiment
examined how the proposed model learns to extract essential dimensions of fluc-
tuations latent in exemplar patterns, and how the error regression can utilize
the learned structures in successfully performing synchronized imitation. The
second experiment examined what sorts of dynamic structures develop in the235

model during learning naturally fluctuated low dimensional patterns generated
by human subjects using a drawing tablet. Analysis suggests that error re-
gression with fluctuated patterns employs both the transient and steady state
regions. Note that these simulation experiments employed relatively simple
patterns without compositionality or hierarchy. Our focus was testing the ex-240

pectation that the slow dynamics of the higher level of the MTRNN would play
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a crucial role in coping with fluctuations in exemplar patterns as well as in the
test patterns, so more complex patterns were not necessary.

3.1. A sine-curve pattern with two dimensions of fluctuation

This section reviews a simple experiment using a one-dimensional sine curve245

as shown in the following equation

y = Asin(B
⇡

p
t), (t � 0) (14)

where A, B are variables that modulate the amplitude and period of the sine
curves, and p is set to 30. Training sequences were made in two forms. In the first
case, periodicity fluctuation, 5 sine-curve patterns were generated in which each
signal had 5 cycles. Only the periodicity of sine-curve patterns was fluctuated250

(time warped signals). Values of A were set to 1 for all sequences but B values
were chosen randomly each cycle from a normal distribution with a mean value
(µ) of 1 and standard deviations (�) of 0.2. This means that 25 B values were
chosen randomly (each cycle had a di↵erent value). In the second case known as
amplitude fluctuation, we generated 5 di↵erent sine-curve patterns by setting B255

as 1 and choosing A values randomly, meaning that only the amplitude of each
cycle was fluctuated. One MTRNN referred to as MTRNN-P was trained in
order to reconstruct the 5 training patterns with fluctuation in their periodicity
whereas MTRNN-A was trained in order to reconstruct the 5 training patterns
with amplitude fluctuation. Both MTRNNs consisted of 20 FC, 10 SC, 11260

softmax input and 11 softmax output units. The time constants of FC and SC
units were set to 2 and 50, respectively. Training ran for 50000 epochs in each
case.

After training, both MTRNN-P and MTRNN-A successfully regenerated all
training patterns in a closed-loop manner by using corresponding initial states,265

with average mean square error (MSE) of 0.0456 for MTRNN-P and 0.0108 for
MTRNN-A. In the test phase, we generated two test patterns using Equation 14
in the same way that we generated training patterns, but with the standard
deviations (�) of these two test patterns set at 0.3. The first test pattern
had fluctuations only in its periods while the other had fluctuations only in its270

amplitudes. The error regression results of MTRNN-P and A are given for the
two test patterns in Figures 2 and 3. The first and second rows in both figures
show prediction outputs and Mean Square Errors (MSEs), respectively.

Looking at these figures, we can see that both networks show good perfor-
mance when they are tested with same dimension of fluctuations as that with275

which they were trained, while they both generate large errors when they are
tested with dimensions of fluctuation di↵erent from their training patterns. In
other words, the MTRNN can perform synchronized imitation by minimizing er-
ror only with target patterns sharing the same fluctuation structures as learned
ones. And thus, error regression enables the network to infer internal states280

corresponding to currently perceived fluctuations in patterns by way of these
prior learned structures.
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Figure 2: Closed-loop output generations with the error regression and MSE of MTRNN-P
that was trained using time warped teaching sequences when (A) A test pattern with only
fluctuations in its periods (time warped) was used in the test phase and (B) A test pattern
with only fluctuations in its amplitudes was used in the test phase.

Figure 3: Closed-loop output generations with the error regressions and MSE of MTRNN-A
trained using teaching patterns with only fluctuations in amplitude when: (A) A test pattern
with only fluctuations in its periods (time warped) was used in the test phase, and (B) A test
pattern with only fluctuations in its amplitudes was used in the test phase.
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3.2. Naturally fluctuated pattern

The next simulation experiment involves naturally fluctuating patterns in-
stead of the computer-generated patterns of the previous experiment. Here,285

model performance in learning and in synchronized imitation by error regres-
sion is demonstrated using low-dimensional temporal patterns, one made by a
computer without perturbation, and the other made by a human attempting
to mimic the computer generated patterns using a tablet input device. The
first type of training pattern was generated using equations for a circle and for290

Lissajous curves as follows:

(
y1 = rcos(t) + a1, (0  t  2⇡)

y2 = rsin(t) + b1, (0  t  2⇡)
(15)

(
y1 = A1sin(a2t+ �1), (0  t  2⇡)

y2 = B1sin(b2t), (0  t  2⇡)
(16)

where, in Equation 15, r, a1, and b1 were set as 0.4, 0, and -0.2, and in Equa-
tion 16, A1, B1, a2, b2 and �1 were set as 0.5, 0.5, 1, 2, and ⇡

2 , respectively.
Each training pattern consisted of 5 full cycles (t goes from 0 to 2⇡ in one full
cycle) of circle and Lissajous figures. It should be noted that these two training295

patterns exhibited no fluctuation. They were perfectly regular.
The second type of training pattern was generated by humans attempting

to draw the same circle and Lissajous-curve patterns on a drawing tablet. As
in the first type, patterns were generated for 5 full cycles for each figure. Two
dimensions of fluctuation were naturally generated, both time-warping and am-300

plitude shifting, as illustrated in tablet generated training pattern 1 and 2 in
Figure 4(A) and Figure 4(B), respectively. The first and second rows show the
first dimension (y1) and second dimension (y2) of training patterns over time.
Their phase plots appear in the third row. The 5 Lissajous-curve patterns shown
in Figure 4(A) di↵er in periodicity and amplitude. The same is evident in the305

circle-curve patterns in Figure 4(B). See Figure in Appendix B for computer
generated patterns.

One MTRNN referred to as MTRNN-C (using computer generated patterns)
was trained to reconstruct the 2 computer-generated training patterns (as in the
first experiment) and another MTRNN referred to as MTRNN-H (using human310

generated patterns) was trained to reconstruct 10 naturally generated training
patterns. Both MTRNNs consisted of 30 FC, 15 SC, 22 softmax input and 22
softmax output units. The time constants of FC and SC units were set to 2 and
50, respectively. The training was successfully done for 50000 epochs for both
cases.315

In the test phase, the two test patterns, one Lissajous-curve pattern (test
pattern 1) and one circle-curve pattern (test pattern 2), were generated by
drawing tablet. Then, we looked at how the error regression exploits the learned
structures in performing synchronized imitation with these two target patterns.
Error regression results are depicted in Figure 5. The first and second rows320

show the first (y1) dimension of the error regression outputs and target patterns
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Figure 4: Training patterns generated by a human using a drawing tablet when (A) 5
Lissajous-curve patterns were produced and (B) 5 circle-curve patterns were produced. The
first and second rows illustrate the first (y1) and second (y2) dimensions of the patterns,
respectively. The last row shows the phase plots of training patterns 1 and 2.
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Figure 5: Comparison of closed-loop output generations with the error regression and MSEs
for MTRNN-C that was trained using computer generated patterns with no fluctuations and
for MTRNN-H that was trained using naturally fluctuated patterns given (A) Lissajous-curve
pattern (test pattern 1) and (B) Circle-curve pattern (test pattern 2). ER MTRNN-C and
ER MTRNN-H are abbreviations for the error regression outputs of MTRNN-C and the error
regression outputs of MTRNN-H, respectively. The first and second rows show the first di-
mension of ER outputs and target patterns for MTRNN-C and MTRNN-H, respectively, while
the third and fourth rows illustrate the second dimension of ER outputs and target patterns
for MTRNN-C and MTRNN-H, respectively. The green, red, and blue lines correspond to
test target, ER MTRNN-C and ER MTRNN-H, respectively.
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for MTRNN-C and MTRNN-H, respectively, and the third and fourth rows
illustrate the second (y2) dimensions of the error regression outputs and target
patterns for MTRNN-C and MTRNN-H. The red and blue lines in the last row
represent MSEs for MTRNN-C and MTRNN-H, respectively. This figure shows325

that MTRNN-H outperforms MTRNN-C. It can be also seen that the proposed
model can deal with time-warping and amplitude shifting which were naturally
generated inside the test patterns.

As explained earlier, for each training pattern, the MTRNN learned initial
context states during the leaning phase. By using the initial states correspond-330

ing to 2 training patterns of MTRNN-C, closed-loop output generations were
computed for 50000 time steps. Likewise, by using initial states corresponding
to 10 training patterns, MTRNN-H closed-loop output generations were com-
puted for 50000 time steps. The phase plots for the first and last 4-cycle of the
closed-loop output generations of MTRNN-C for the first pattern (Lissajous-335

curve pattern) are shown in Figure 6(A) and Figure 6(C), respectively. Sim-
ilarly, the phase plots for the first and last 4-cycle of the closed-loop output
generation of MTRNN-H for the first patterns (Lissajous-curve patterns) are
depicted in Figure 6(B) and Figure 6(D), respectively. The first and last 4-cycle
responses are referred to as transient and steady-state responses, respectively.340

It should be noted that in both Figure 6(A) and Figure 6(C), the transient and
steady-state closed-loop output for only one pattern are shown because only one
Lissajous-curve pattern was included in the training phase of MTRNN-C. Fig-
ure 6(B) and Figure 6(D) illustrate the transient and steady-state closed-loop
output generated for 5 patterns because there were 5 Lissajous curve patterns345

in the training phase of MTRNN-H. It is also worth noting that the same results
were obtained for circle-curve patterns that are not shown here.

In Figure 6, it can be seen that MTRNN-C learns a given target pattern as a
global attractor, and the transition from the adapted initial states is quite short
when compared to that of MTRNN-H. MTRNN-H encodes the trajectory of an350

averaged target pattern among multiple fluctuated patterns as a global attrac-
tor, and fluctuated patterns outside of the averaged pattern are reconstructed
in the larger transient region.

Principle Component Analysis (PCA) was used to visualize the slow context
activities of MTRNN-H in both training and test phases. PCA was applied on355

the corresponding slow context activities of the closed-loop output generations
shown in Figures 6(B), and 6(D), and the first and second principle components
are shown in Figure 7(A). The 5 patterns have di↵erent slow context activities
in the transient region, but they all have the same activities in the steady-
state region, consistent with results shown in Figures 6(B) and 6(D). PCA was360

also used to visualize the slow context activities of the error regression with
test pattern 1 (corresponding to ER MTRNN-H in Figure 5(A)), and the first
and second principle components are shown in Figure 7(B). The same steady-
state figure shown in Figure 7(A) is repeated in Figure 7(B) to facilitate the
visualization.365

Figure 7(B) shows that the error regression moves between the steady state
and transient regions, with most activity within the transient region. Comparing
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Figure 6: This figure illustrates the transient closed-loop output generations of (A) MTRNN-C
and (B) MTRNN-H and also the steady-state closed-loop output generations of (C) MTRNN-
C and (D) MTRNN-H for all Lissajous-curve training patterns. The closed-loop output gen-
erations were computed for 50000 time steps by using the initial states of all training patterns
that were obtained in the learning phase. The first row (transient response) show the phase
plot of the closed-loop output generation in the first 4 cycles, which are almost the same as
corresponding training patterns shown in the last row of Figure 4. The second row shows the
phase plot of the closed-loop output generations in the last 4 cycles (from time step 49500 to
50000) referred as the steady-state response.
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Figures 7(B), 6(B) and 6(D), it can be seen that fluctuated patterns are learned
in the transient region, and that the error regression can infer both this transient
region and steady-state regions through modulation of internal states.370

4. Robot experiments

Imitation learning, which is called also learning by observation, has been
widely studied in di↵erent fields of research. In robotics, imitation learning
has been approached in terms of symbolic reasoning [21, 22, 23] and non-
symbolic learning tools such as fuzzy logic [24], the Active Intermodal Matching375

(AIM) mechanism [25], Dynamical Recurrent Associative Memory Architecture
(DRAMA) [26], and the MTRNN [27]. These models have allowed robots to
follow and to learn multiple skills and actions from their tutors. For example, in
an imitation game between a human and robot using a RNNPB model without
hierarchy [6], the model was first trained to memorize multiple cyclic movement380

patterns of a human subject and was then used to control a robot in the re-
generation of the memorized patterns. However, this study did not examine
the problems introduced with pattern fluctuation. Many graphical probabilistic
models such as hidden Markov models have been used to overcome the problem
of fluctuation in temporal patterns such as the time-warping problem [28, 29, 30].385

The present study attempts to show that the proposed RNN models can also
deal with this problem by using its dynamical systems characteristics. In fact,
RNNs work better for storing and accessing information over long periods of
time than conventional sequential pattern learning algorithms such as hidden
Markov models [31].390

As explained in previous sections, the MTRNN is able to cope with fluctua-
tions such as time warping and amplitude shifting during simple tasks. To test
our model in more realistic situations, we conducted two robotic experiments
involving imitative interaction between a humanoid robot and human subjects.
These experiments examined how the proposed model can support spontaneous395

interaction between robots and human subjects while dealing with possible fluc-
tuations in perceived temporal patterns. The first experiment follows human
subjects in acquiring a set of cyclic patterns also learned by the robot during an
imitation game. Synchronized imitation can be achieved on the robot side by
using the on-line error regression of the internal states within the window of the400

immediate past. Natural interaction forces the robot to deal with more naturally
fluctuated patterns. The second experiment examined how the balance between
the top-down intentional process from the higher level and the bottom-up recog-
nition processes from the lower level can a↵ect spontaneous interaction between
the robot and the human subjects by changing the error regression adaptation405

rate (↵ER). These robotic experiments employed a larger MTRNN than those
used in the previous experiments consisting of three sub-networks, one with
fast dynamics, one with intermediate dynamics and one with slow dynamics for
the purpose of coping with more complex patterns (such as the hierarchically
organized movement patterns used in the second robotic experiment).410
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Figure 7: Slow context activities in a 2 dimensional space based on the results of PCA
analysis. (A) Shows the slow context activities of the transient and steady-state closed-loop
output generations of 5 training patterns corresponding to Figures 6(B), and 6(D). (B) shows
the slow context activities of the error regression for test pattern 1 corresponding to ER
MTRNN-H in Figure 5(A). Transient responses of slow context activities (the first 4 cycles) of
the training patterns 1 to 5 are indicated by transient1 to 5 (dotted lines) in (A). The steady-
state dotted line (pink dotted line) in (A) shows the steady-state responses of slow context
activities (the last 4 cycles) of training patterns 1 to 5. Only one line appears because all 5
steady-state responses are the same and so perfectly overlap. In (B), test pattern 1 shows the
slow context activities of the error regression with test pattern 1 and the same steady-state
results shown in (A) is repeated here again in order to aid visualization.
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Figure 8: (A) Schematics of the direct method and (B) three cyclic movement patterns. MP
is the abbreviation for movement pattern. The direct method is used during training and
the MTRNN is not used for controlling the NAO. With the direct method, three movement
patterns shown in (B) were generated.

4.1. Robot experiment design

We employed a NAO humanoid robot (developed by Aldebaran Robotics)
and a Kinect sensor (developed by Microsoft) for imitative interaction tasks.
The Kinect SDK and OpenNI framework were used to track the 3-D (X, Y,
Z) coordinates of a humans arm joints. The 3-D positions of human-user arms415

were mapped to the 3-D positions of the NAO’s arms with respect to the robot
coordinate system. Next, the 3-D positions of the NAO were mapped to its joint
angles (shoulder roll, and pitch and elbow roll, and yaw) by applying inverse
kinematics.

4.2. Imitative interaction game420

We designed an imitative interaction game between a robot and human
subjects in order to investigate how well the model could cope with naturally
fluctuated patterns generated by human subjects.

First, training data were collected by the experimenter who interacted with
the NAO using the direct method. The direct method refers to the situation425

where a MTRNN is not used to control the NAO as shown in Figure 8(A).
The three cyclic movement patterns shown in Figure 8(B) were generated using
only the shoulder roll and pitch of both arms. Other joint angles remained fixed.
Similar to Section 3.2, 5 sequences of training data were collected for each cyclic
movement pattern. The final 15 training patterns had average time lengths of430

232 steps with each time step length lasting 75 ms. There was around 520 ms
delay between actual human movement patterns and perceiving them by the
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Figure 9: Schematic of the imitative interaction game. ST and IST are the abbreviation for
softmax transformation and inverse softmax transformation, respectively. The 4 joint angles
that are obtained after the inverse kinematic are mapped by softmax transform to be used as
targets in the error regression process. The softmax outputs are then mapped to real outputs
(joint angles) through inverse softmax transformation.

Kinect sensor. To overcome this delay, the prediction step l was set to 7 in all
robotic experiments (7*75=525 ms).

A MTRNN consisting of 30 FC, 20 MC, 10 SC, 44 softmax input and 44 soft-435

max output units was trained to reconstruct these 15 cyclic movement patterns.
The time constants of FC, MC, and SC units were set to 5, 25, and 150, respec-
tively. The training was successfully performed for 50000 epochs. The trained
MTRNN was used in an imitative interaction game using the error regression
approach as shown in Figure 9. 10 university students participated in the ex-440

periment, in which they interacted with the NAO without any prior knowledge
about the cyclic movement patterns and experiments. Their first task was to
figure out all of the movement patterns memorized by the MTRNN while achiev-
ing synchronized imitation with the NAO. This was a challenging task because
human subjects tried so many di↵erent patterns with di↵erent periodicities and445

amplitudes in order to figure out the memorized patterns. They were given
10 minutes for the first trial, but if they failed to figure out all 3 movement
patterns, they could have another trial with duration of 5 minutes. If again the
human subject failed, he/she was given another 5 minutes. It turned out that
all participants were able to interact with the NAO successfully. However, two450

of them could not figure out one of the movement patterns.
The second task for the human subjects was to synchronize with the robot.

First, they had to repeat movement pattern 1 until they felt that they were
well synchronized with the NAO, then they could switch to movement pattern
2 and do the same, and finally they could synchronize movement pattern 3.455

All subjects synchronized successfully with the NAO. Previous and current task
results show that the network deals with time warping and amplitude shifting
even in such a noisy natural environment.

Figure 10 displays the detailed dynamic of the error regression approach
for one of the participants during the synchronization stage. In Figure 10(A),460
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Figure 10: Detailed dynamic of the error regression scheme for one of the participants during
the synchronization stage. Plot (A) illustrates error regression results during a large period of
time (from 0 to 500). (B) shows error regression results during a shorter period of time (from
300 to 400) and the regression dynamic is shown for three di↵erent current (Now) time steps;
347, 355, and 363 referred to as the pre-modification, modification and post-modification
phases, respectively. The gray areas are the temporal windows of the immediate past in
which the internal neural states are modified to minimize the error. Changing states inside the
temporal window can also a↵ect future states, but states before the temporal window cannot
be changed. As shown in left panels of (B), the plan is di↵erent from the sensory target, which
is why a large MSE is generated in the pre-modification phase. The slow and fast context
states are modified by error regression, and the plan is changed in the modification phase
(MP3). As a result, MSE decreases significantly and sensory predictions follow the target
in the post-modification phase. The blue, red, green, and cyan lines correspond to right
shoulder pitch, right shoulder roll, left shoulder pitch, and left shoulder roll, respectively. A
video corresponding to this figure can be seen in Appendix A
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transitions from movement patterns 1 to 2 (MP1 ! MP2) and from 2 to
3 (MP2 ! MP3) are shown at the top of the sensory prediction (sensory
output) panel. The temporal windows of the error regression at a particular
moment of switching from movement pattern 2 to 3 are depicted by gray areas
in all panels, with the current time (labeled as now in Figure 10(B)) indicated465

in the right line of the windows. Internal states cannot be modified before the
temporal window, but they can be revised within it to minimize prediction error
by means of BPTT. Predicted states after this temporal window (the plan) are
obtained by continuing closed loop generation to the end for each time step.

The error regression procedure can be seen more clearly in Figure 10(B).470

Sensory inputs, their prediction and the internal states change from the time
step 300 to 400. The states for the current time steps (now) of 347, 355, and 363
are so-called pre-modification, modification, and post-modification phases, re-
spectively. In the pre-modification phase depicted in the left panels, the human
subject starts to change the movement patterns from 2 to 3 and MSE increases.475

The plan is still the movement pattern 2 (MP2) at this point. During the modi-
fication phase shown in the center panels, neural internal states in both SC and
FC units are revised by error regression in order to reduce prediction error, and
change the intention state. The immediate past of states is changed inside the
temporal window and the plan is changed to movement pattern 3 (MP3), and480

remains movement pattern 3 in the post-modification phase displayed on the
right panels. The MSE decreases significantly in the post-modification phase
and the sensory prediction follows the target. Pre-modification, modification,
and post-modification phases demonstrate that both future predicted states and
the record of past states di↵er from each other during the same time steps. This485

is because during each time step, immediate past states within the temporal
window can be overwritten by means of error regression, thereby modulating
internal neural states. Past states outside of the temporal window are constant
and cannot be changed by error regression, however.

We also compared the performance of the error regression scheme with that490

of the conventional sensory entrainment scheme (open-loop output generation)
using the same MTRNN. In other words, we did not use the error regression
scheme, instead inputting directly to the sensory inputs of the MTRNN from
the Kinect. The test experiment showed that it was di�cult for the robot to
synchronize with human movement patterns using the entrainment scheme. The495

sensory entrainment scheme is not powerful enough to immediately modify the
internal states in order to minimize prediction error. Also, we tested a case in
which error regression was applied to SC units but not to FC units, analogous
to the on-line adaptation of PB units in previous work [6]. It was again found
that synchronization between the human subjects and the robot was not easily500

achieved.
In order to show quantitative di↵erences between these three schemes, we

conducted an o↵-line synchronized imitation test using a test sensory pattern
containing sequential switching between two trained prototypical patterns. The
test pattern was collected by using the direct method. The simulation results505

are shown in Figure 11. The left panel shows the results of the proposed model.
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Figure 11: The sensory output, sensory target, and MSE results of (A) The error regression
scheme, (B) The error regression scheme when only SC internal neural units are modified,
and (C) Sensory entrainment scheme. The RSPitch, RSRoll, LSPitch, and LSRoll abbreviate
right shoulder pitch, right shoulder roll, left shoulder pitch, and left shoulder roll, respectively.
Joint angles are measured in radians.
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Table 1: MSE for three di↵erent schemes of generating prediction outputs

Di↵erent schemes
ER ER-H SE

0.1329 0.6775 0.3234

The middle and right panels show results of the closed-loop output generation
with error regression applied only to the SC units but not the FC units, and the
sensory entrainment scheme (open-loop output generation). In order to compare
three schemes quantitatively, their MSEs over the whole time steps are shown510

in Table 1. ER, ER-H, SE are abbreviations for the error regression in all layer,
error regression in the higher layer (SC units), and sensory entrainment schemes,
respectively. In summary, the proposed model performs best in minimizing on-
line prediction error.

4.3. E↵ect of balance between the top-down and the bottom-up processes515

We investigated how the balance between the top-down intentional predic-
tion and the bottom-up error regression for modifying the intentional state can
a↵ect natural interaction between the human subjects and the robot in terms
of synchronized imitation by manipulating the error regression adaptation rate
(↵ER). This experiment was conducted with a MTRNN which was trained with520

a concatenated sequence consisting of the prior-learned prototypical patterns.
One sequence of the training data concatenated 3 cycles each of movement pat-
terns 1, 2, and 3 via the direct method. This series was repeated 5 times. This
one sequence of data was given to the MTRNN model (with the same parameter
settings as the network in Section 4.2) during the training phase and all learn-525

able parameters were initialized with the values computed in Section 4.2. Only
the weights and biases of SC units were allowed to change while other learnable
parameters were fixed, according to the expectation that new learning involving
the concatenation of prior-learned prototypical patterns is conducted mainly by
the higher level sub-network.530

After training, one human subject synchronized with the NAO by first gen-
erating movement patterns 1, 2, and 3 (in a series, 3 cycles for each movement
pattern) repeated several times. Then, the subject changed the order of move-
ment patterns by continuing to generate the same movement pattern 1 (MP1)
without shifting to MP2 at the crucial time step at which switching was learned535

(indicated as the transition point in Figure 12). We examined how the robot
reacts to the change of order using three di↵erent error regression adaptation
rates. Results for ↵ER set with 0.00001, 0.0001, and 0.001 are depicted in Fig-
ure 12(A), (B), and (C), respectively. As can be observed in Figure (C), the
robot could follow human movement best, generating the minimum prediction540

error against its learned memory, with the error regression ↵ER set with the
largest value. On the other hand, with of ↵ER set with the smallest value,
the robot attempted to shift to its own prior learned pattern at the transition
point, trying to move to MP2 against the human generated pattern of MP1
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Figure 12: The sensory output generations with the error regression with three ↵ER values of
(A) 0.00001, (B) 0.0001, and (C) 0.001. Sensory targets and MSEs are shown in the second
and third rows. In the sensory output panels, the transition points indicating instances that
the human subject tried to repeat MP1 instead of shifting to MP2 are shown. The movement
patterns (MPs) generated by the human subject are shown in the sensory target panels. The
blue, red, green, and cyan lines correspond to right shoulder pitch, right shoulder roll, left
shoulder pitch, and left shoulder roll, respectively

Table 2: MSE for experiments with three di↵erent error regression adaptation rates

ER Adaptation Rate
Small Middle Large

0.3107 0.1824 0.1445

and thereby generating the largest error as seen in Figure (A). Subtle balance545

between the top-down proactive intention from the learned memory and the
bottom-up error regression of the sensory reality perceived in human subject
movement can be observed in Figure (B) wherein ↵ER was set with an interme-
diate value. After repeated experiments, the human subject reported that he
felt that with a large ↵ER value he could drive the robot at will. On the other550

hand, he felt as if the robot possessed its own will to generate sequential move-
ment patterns with a small ↵ER value. It was reported that the most vivid and
lively interaction emerged with an intermediate ↵ER value. And interestingly,
the subject reported that the robot responded to his movement patterns by gen-
erating unexpected modulations in movement patterns from time to time. The555

MSEs over the whole time steps of three adaptation rates are shown in Table 2.
Small, Middle and Large correspond to ↵ER values of 0.00001. 0.0001, 0.001,
respectively. These results conform to the results illustrated in Figure 12.
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5. Discussion and conclusion

The preceding demonstrates how a RNN-based dynamic predictive coding560

model can cope with fluctuations such as time warping and amplitude shifting.
We conducted a set of simulation and robot experiments under di↵erent condi-
tions to examine the performance of a deterministic MTRNN model and also to
investigate the mechanisms enabling the model to cope with fluctuations latent
in perceived temporal patterns. Periodicity or amplitude of a set of sine-curve565

patterns was fluctuated in the first experiment. One MTRNN was trained to
reconstruct time-warped patterns and another MTRNN was trained to recon-
struct amplitude-shifted patterns. Results show that these models are able to
perform synchronized imitation of given test patterns with minimal error if the
test patterns contain fluctuations in the same dimensions as those in which the570

models had been trained.
Computer-generated patterns without perturbations, and patterns gener-

ated by a human mimicking these computer-generated patterns using a drawing
tablet, were used in the second experiment. Human generated patterns include
natural fluctuations in amplitude and periodicity. One MTRNN, MTRNN-575

H, was trained to reconstruct the naturally fluctuating patterns and another,
MTRNN-C, was trained to reconstruct the perfectly regular computer-generated
patterns. During testing, the performance of the error regression during syn-
chronized imitation with fluctuated patterns showed that MTRNN-H outper-
forms MTRNN-C in natural, noisy environments. Analysis of the dynamic struc-580

tures developed during learning revealed that two sets of trained prototypical
patterns emerge as di↵erent invariant sets in both MTRNN-H and MTRNN-
C. The MTRNN-H was able to regenerate fluctuated training patterns in the
transient region outside of the invariant set. Also, error regression could infer
both this transient region and the local attractor for each prototypical pattern585

during the process of synchronized imitation in MTRNN-H. In conclusion, par-
ticular dimensions of fluctuation can be extracted via learning by developing
an adequate dynamical map between the distribution of the initial states of the
context units in all levels and the fluctuated temporal patterns of the exemplar.
Each of the fluctuated training patterns can be reconstructed along with the590

transient trajectory of internal state dynamics which develop over time from
the corresponding initial state. On the other hand, MTRNN-C was trained
only with clean computer generated patterns and was unable to perform syn-
chronized imitation with fluctuated patterns because the model cannot develop
the transient region which can cope with fluctuated input patterns.595

Although it had been established that the MTRNN is capable of learning the
structures underlying naturally fluctuating exemplar temporal patterns [32], the
current study clarifies the underlying mechanism in robotic studies for the first
time. In the first experiment using the NAO humanoid robot, the MTRNN was
trained to regenerate three prototypical cyclic movement patterns. The robot600

was prepared with exemplar patterns exhibiting natural fluctuation through the
direct teaching method. An imitative interaction game was designed wherein
10 human subjects without any prior knowledge about the patterns and exper-
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iments were asked to figure out the three given movement patterns by actively
synchronizing with the robot. 8 out of 10 subjects could figure out the patterns,605

and synchronize by the end of the imitation game. We speculate that success-
ful imitation interaction could be achieved between the robot and the human
subjects for two reasons. One, the structure of the feedback during interaction
with the robot makes sense to human beings due to a similar structure enabling
predictive coding around anticipations due to trained sensitivities to patterns610

present in the immediacy and backpropagated through time in reflection. And
two, the MTRNN was able to cope with fluctuated patterns naturally devel-
oped in the course of the imitative interaction by extracting this fluctuations
in this way. Finally, analyses shows that the error regression scheme applied to
context units in all levels outperformed models which applied error regression615

only to the slow context units, as well as models using the open-loop sensory
entrainment scheme.

The second robot experiment manipulated the error regression adaptation
rate ↵ER in order to examine how balance between the top-down proactive
intention and the bottom-up error regression of the sensory inputs can a↵ect620

natural imitative interaction between robots and human subjects. The MTRNN
model was trained to generate a cyclic sequence concatenating three di↵erent
prototypical movement patterns. With the larger ↵ER value, the human subject
tends to drive the interaction. Set with smaller ↵ER value however, the robot
tends to drive the interaction based on its memory, instead. More natural625

and spontaneous interaction took place with ↵ER tuned to an intermediate
value, with balance achieved between the top-down intentional process and the
bottom-up error regression process.

Compare the imitative interaction of the RNNPB model in [6] and that of
the MTRNN used in the current study. In the former study, the RNNPB learned630

four di↵erent naturally fluctuated prototypical movement patterns. While learn-
ing, the PB vector for each prototypical pattern and the connectivity weights
of the RNNPB were determined using the BPTT scheme. This learning scheme
makes it almost impossible for the RNNPB to extract structures of fluctuations
latent in training patterns because there are no means to account for perceived635

fluctuations - the PB vector is fixed for all steps during each sequence. Al-
though with the PB vector determined, the RNNPB can regenerate the mean
trajectory of each prototypical cyclic pattern, it cannot regenerate fluctuations
apparent in each cycle. On the other hand, the currently proposed MTRNN
model can learn to regenerate fluctuations associated with prototypical exem-640

plar patterns by determining the initial states for the context units in all levels
of sub-networks. By developing particular dynamic structures that can embed
the mean trajectories of the prototypical patterns in local attractors and their
possible fluctuations in adjacent transient regions, the proposed MTRNN model
becomes able to imitate test patterns in so far as test patterns exemplify the645

same class of fluctuation as did trained ones. It does this by means of adequately
modulating internal states in the transient region by way of the error regression
scheme.

For future study, it should be interesting to compare the deterministic pre-
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dictive coding scheme presented here and the Bayesian predictive coding scheme650

proposed by Friston [2]. For this purpose, the aforementioned stochastic MTRNN
[10] may be enabled to manipulate stochasticity not only in the outputs but also
in the context units in all levels of sub-networks. So developed, it should be
worthwhile examining how structures of fluctuation latent in exemplar temporal
patterns can be extracted through the development of an adequate stochastic655

neurodynamics structure. Then, we can compare its performance against that
of the deterministic neurodynamic structure which has been the subject of the
current paper.

Appendix A. Demonstration video of detailed dynamic of the error
regression660

This video is corresponding to Figure 10 and it shows the whole time steps
of detailed dynamic of the error regression.

Appendix B. Figure of training patterns generated by a computer
without perturbation

Training patterns generated by a computer when (A) A Lissajous-curve pat-665

terns was produced and (B) a circle-curve patterns was produced. The first and
second rows illustrate the first (y1) and second (y2) dimensions of the patterns,
respectively. The last row shows the phase plots of training patterns 1 and 2.
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