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Abstract

Venoms are among the most biologically active secretions known, and are commonly believed to evolve under extreme positive

selection. Many venom gene families, however, have undergone duplication, and are often deployed in doses vastly exceeding the

LD50 for most prey species, which should reduce the strength of positive selection. Here, we contrast these selective regimes using

snake venoms, which consist of rapidly evolving protein formulations. Though decades of extensive studies have found that snake

venom proteins are subject to strong positive selection, the greater action of drift has been hypothesized, but never tested. Using a

combinationofdenovogenomesequencing,populationgenomics, transcriptomics,andproteomics,wecomparethetwomodesof

evolution in the pitviper, Protobothrops mucrosquamatus. By partitioning selective constraints and adaptive evolution in a

McDonald–Kreitman-type framework, we find support for both hypotheses: venom proteins indeed experience both stronger

positive selection, and lower selective constraint than other genes in the genome. Furthermore, the strength of selection may be

modulated by expression level, with more abundant proteins experiencing weaker selective constraint, leading to the accumulation

of more deleterious mutations. These findings show that snake venoms evolve by a combination of adaptive and neutral mecha-

nisms, both of which explain their extraordinarily high rates of molecular evolution. In addition to positive selection, which optimizes

efficacy of the venom in the short term, relaxed selective constraints for deleterious mutations can lead to more rapid turnover of

individual proteins, and potentially to exploration of a larger venom phenotypic space.
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Introduction

Understanding how natural selection leads to adaptation

requires a mechanistic explanation of how alternative geno-

types lead to fitness differences (Storz and Wheat 2010).

Venoms, particularly proteinaceous venoms of snakes, pro-

vide an excellent model system for the study of adaptation,

because venom secretions represent quantifiable phenotypes,

which are under control of easily characterizable genomic loci.

Venom proteins often evolve rapidly (Casewell et al. 2013;

Aird et al. 2015), and phenotypic studies have shown that

they are more efficacious against prey types typically encoun-

tered and consumed (Mackessy 1996; Jorge da Silva and Aird

2001; Gibbs and Mackessy 2009). The study of snake venom

protein evolution, like that of many adaptive traits, has em-

phasized the role of positive selection on protein structure

(Sunagar et al. 2014, 2015). The role of drift for protein

evolution has not been explicitly considered, except as a hy-

pothesis to be rejected, a view that may fail to capture the

complexity of selective regimes.

The strike of a snake initiates complex biochemical cas-

cades within the prey organism that have immediate life

and death consequences (Aird 2002). The venom cocktail

must act quickly to immobilize the prey before it escapes or

has a chance to injure the snake. Protein chemistry mediates

the outcome of envenomation, and venom genes show ex-

traordinarily high rates of evolution (Nakashima et al. 1995;

Deshimaru et al. 1996). Yet, despite decades of interest in this

phenomenon, still no consensus exists about the dominant

forces driving venom protein sequence changes. On one

hand, a large body of molecular evidence argues that venom

components are subject to strong positive selection (i.e., “the

adaptive hypothesis;” Nakashima et al. 1995; Kordis and
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Gubensek 2000; Zupunski et al. 2003; Zhu et al. 2004; Lynch

2007; St Pierre et al. 2008; Barghi et al. 2015; Pedroso et al.

2015). On the other hand, the complexity of venoms entails

pharmacological redundancy, with more venom components

injected than minimally necessary to kill or otherwise immo-

bilize the prey (i.e., the “overkill hypothesis”), predicting re-

laxed functional constraints upon individual venom

components (Mebs 2001).

The overkill hypothesis relies on the empirical observation

that some individual snakes can carry enough venom to kill up

to thousands of lab mice (Broad et al. 1979). However, it has

generally been dismissed as an oversimplified model of the

envenomation process (Casewell et al. 2013), and in the face

of strong molecular data supporting positive selection on

venom components (Blumstein 2006; Barlow et al. 2009). In

addition, the overkill hypothesis may not hold for a number of

species of specialized snake prey or predators that have

evolved resistance to venom (Perez et al. 1978; Poran et al.

1987; Heatwole and Poran 1995; Weissenberg et al. 1997;

Jansa and Voss 2011; Drabeck et al. 2015; Holding, Biardi,

et al. 2016; Holding, Drabeck, et al. 2016). However, the

overkill hypothesis has never been empirically tested, since

merely detecting positive selection on a gene does not pre-

clude its also being subject to more relaxed selection. In ad-

dition to the overkill hypothesis, there could be other reasons

for high rates of drift in venom genes following from birth-

and-death evolutionary models (Nei and Rooney 2005).

Consequently, most discussions of venom structure focus

on adaptive explanations, whereas the extent to which neu-

tral forces actually shape it remains unknown.

Although both the adaptive and overkill hypotheses make

clear-cut predictions, it has been difficult to test them com-

prehensively in the same analytical framework until now.

Previous studies have typically employed ratios of nonsynon-

ymous and synonymous substitutions (dn/ds) to study selec-

tion. This ratio results from the joint action of both neutral (ds)

and selective forces (dn), making it difficult to partition and to

examine them separately. The advent of population genomics

introduced a wide array of other proxies for detecting selec-

tion acting on genes and genomic regions (Stinchcombe and

Hoekstra 2008; Ekblom and Galindo 2011). However, few

approaches quantify selection and drift within the same

framework. Exceptionally, McDonald–Kreitman-type tests

use population-level data to examine rates of fixation of syn-

onymous and nonsynonymous mutations between two di-

verging lineages, allowing additional parameters to be

estimated (McDonald and Kreitman 1991; Smith and Eyre-

Walker 2002). Methods based on the MK test are the only

ones that can, in principle, yield an unbiased quantitative as-

sessment of the contribution of positive selection (Eyre-

Walker 2006) to venom evolution.

In addition, this framework can simultaneously infer the

proportion of substitutions driven by positive selection (a)

and the selective constraint for each gene, that is, the rate at

which deleterious mutations accumulate. These values are of

key importance for assessing the merits of the adaptive and

overkill hypotheses, which make contrasting predictions.

Namely, under adaptive evolution, venom genes should accu-

mulate adaptive substitutions at greater rates, compared with

nonvenom genes. By contrast, if venom genes are tolerant of

deleterious mutations, they would experience weaker

selective constraint. In addition, the McDonald–Kreitman-

type framework can also estimate other parameters, such as

mutation rates (H¼ 4Nel) for each gene. Higher mutation

rates have been proposed as an alternative explanation for

the more rapid evolutionary rates of venom proteins, but this

hypothesis has never been comprehensively tested in a

genome-wide analysis (Kini and Chan 1999; Kini and

Chinnasamy 2010).

In the present study, we examined the relative contribu-

tions of adaptive selection and genetic drift to evolution of

venom and housekeeping genes, the latter defined as genes

expressed in the venom gland, but not secreted into the

venom proteome. We focused on the elaborated venom sys-

tem of a pitviper, the Taiwan habu (Protobothrops mucros-

quamatus), comparing it with its sister species, the Sakishima

habu (Protobothrops elegans), from which it split approxi-

mately 2.9 Ma (Guo et al. 2007; Hedges et al. 2015). We

find that both positive selection and genetic drift play a role

in the rapid sequence changes seen in venom genes.

However, expression levels of individual venom proteins

may modulate this relationship, with the most abundant

proteins experiencing stronger drift.

Materials and Methods

Sample Collection

Thirty specimens of Protobothrops mucrosquamatus were

collected at various localities throughout Okinawa, Japan: in

Nago City (28) and Nakijin Village (1) in the Motobu Peninsula

and in Onna Village (1), south of Nago. Venom was extracted

from all specimens at Day 0 and venom glands were har-

vested at Days 1, 2, 4, and 8. Internal organs were also re-

moved and frozen in liquid nitrogen, after which they were

maintained at�80 �C until use. Venom gland transcriptomes

were created for all specimens and a reference transcriptome

was created from eight specimens, with two specimens se-

lected randomly from each of the gland harvest days (Day 1:

Pm_2, Pm_5; Day 2: Pm_8, Pm_11; Day 4: Pm_30, Pm_17;

Day 8: Pm_23, Pm_27) (supplementary table S1,

Supplementary Material online). The experimental protocols

used for handling animals in this study have been approved by

the Animal Resources Section of OIST.

Genome Assembly

The reference genome was assembled from liver tissue from

samplePm_15.WepreparedPCR-free IlluminaTruSeq libraries
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size-selected to 450 6 25 bp, which were sequenced on a

HiSeq 2500 instrument to a mean depth of 69�. Scaffolds

were then assembled using DISCOVAR (Weisenfeld et al.

2014). We also prepared 5 and 15 kb mate-pair libraries using

Illumina’s Nextera protocol and sequenced them on an

Illumina HiSeq 2000 to a depth of approximately 100� each.

Reads from mate-paired libraries were trimmed and filtered

using NextClip (Leggett et al. 2014) and used to scaffold con-

tigs using SSPACE (Boetzer et al. 2011).

Transcriptomic and Proteomic Analyses

Venom gland RNA seq libraries were prepared as described

previously (Aird et al. 2013), except that ERCC92 synthetic

spike-ins were added to the RNA extracts as described by Aird

et al (2015) for quality control. In addition, pooled libraries

were normalized using the Evrogen Trimmer-2 cDNA normal-

ization kit and sequenced to improve genome annotation for

nonvenom transcripts. Reads were mapped to predicted cod-

ing sequences using Bowtie2 (Langmead and Salzberg 2012)

within the RSEM package (Li and Dewey 2011). Though ex-

pression data doesn’t accurately always reflect protein levels

in the venom (Casewell et al. 2014), it does in Protobothrops

(Aird et al. 2013, 2015). Therefore, we used the number of

fragments per kilobase mapped (FPKM) as a measure of pro-

tein abundance. Mapped read counts for each sample, as

estimated by RSEM, can be found in supplementary table

S1, Supplementary Material online. Proteomic analysis was

conducted as described previously (Aird et al. 2013, 2015).

Variant Calling

Variants in the coding sequences were called using four sepa-

rate algorithms: GATK, freebayes, platypus, and samtools (Li

et al. 2009; McKenna et al. 2010; Garrison and Marth 2012;

Rimmer et al. 2014). Variants were converted to allelic primi-

tives using GATK, and a consensus set was called by BAYSIC

using a 0.80 posterior probability (Cantarel et al. 2014).

Finally, indels, variants with >10% missing data in the

ingroup samples, and variants with more than two alleles

were filtered out. We then classified variants as synonymous

or nonsynonymous using SnpEff (Cingolani et al. 2012), and

noted which were fixed versus polymorphic with respect to

the outgroup.

Resequencing

Twenty P. mucrosquamatus samples used for RNA-seq and

one P. elegans were selected for whole-genome

resequencing. Library construction and sequencing was per-

formed by BGI (Shenzhen, China) on a HiSeq 2000 instru-

ment in PE150 mode, using Illumina TruSeq libraries. BGI

then trimmed sequencing adaptors using in-house scripts.

Raw reads were then mapped to the reference assembly

using NextGenMap (Sedlazeck et al. 2013). Sample

coverages computed by GATK can be found in supplemen-

tary table S1, Supplementary Material online. Copy number

variation was assessed with CNV-seq using default param-

eters (Xie and Tammi 2009). A gene was considered to have

copy number variation if a CNV-seq window with a signifi-

cant signature of copy number variation intersected an exon

of the gene model.

Population Genomics

A table of fixed or polymorphic replacement and silent sub-

stitutions was used to infer population genomic parameters

using two approaches: a Bayesian approach (SnIPRE)

(Eilertson et al. 2012), and a maximum likelihood approach

(MKTest) (Welch 2006). The two packages compute parallel

measures of selection for every gene. Both of them model

mutational constraint, although it is defined differently. In

SnIPRE it is a regression model coefficient, with more negative

values indicating that polymorphic mutations are either being

fixed or eliminated at a higher rate than synonymous muta-

tions, whereas the MKtest estimates a fraction where 1-f of

the mutants are under strong purifying selection. In either

case, larger estimated values indicate relaxed selective pres-

sure. The overall results were qualitatively similar for the two

estimates of selective constraint, but gave radically different

results for serine proteases, with SnIPRE estimating relatively

relaxed constraint for this gene family, and MKTest estimating

stronger selective constraint than experienced by the average

gene in the genome. Almost all of the MKTest’s estimates of f

lay on boundary values (0, 1), suggesting a relatively poor fit

to the model. We include them for completeness, but are

inclined to trust them less than those of SnIPRE.

Both packages also estimate mutation rates as H (¼Ne*l).

In addition, MKTest estimates the proportion of nonsynony-

mous divergence driven by positive natural selection, a mea-

sure of true adaptive evolution (a) (Smith and Eyre-Walker

2002). In addition, both approaches model divergence times

(SnIPRE: a coefficient called s; MKTest: expected neutral di-

vergence per site: l*t) and, and weakly selected beneficial

mutations resulting from mildly deleterious substitutions

(c¼ 4Nes). These are not presented here because they lack

testable predictions and straightforward biological interpreta-

tions in this context.

We then used the R statistical package (R core team 2015)

to conduct a range of statistical analyses on the population

genomic coefficient estimates. Given the relatively small num-

ber of venom genes, and the frequently nonnormal distribu-

tion of the coefficient estimates, we used nonparametric

statistics, namely Spearman’s rank correlation, and Kruskal–

Wallis test adjusted for multiple comparisons using the

method of Siegel and Castellan (Siegel and Castellan 1988).

When comparing the fraction of adaptive substitutions acting

on gene classes, we eliminated any genes with negative val-

ues of a, which is defined only for the range between 0 and 1,
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and negative values are produced by sampling error or viola-

tions of the model (Eyre-Walker 2002).

Mapping Evolutionary Changes in Structure of
Phospholipases A2 and Serine Proteases

For each analysis, sequences of venom components from the

reference genome were codon-aligned using MAFFT (Katoh

et al. 2002), and sites under selection were analyzed using the

REL algorithm implemented in the HyPhy package on the

DataMonkey server (Kosakovsky Pond and Frost 2005; Pond

and Frost 2005).

A consensus sequence of amino acids was formed from

the codon alignment and used as input for developing a PLA2

model in SWISS-MODEL (Arnold et al. 2006; Kiefer et al.

2009). The suitable model was selected and edited using

PyMOL (Delano 2002). Sites on the protein structure were

color-coded based on the REL results, where a Bayes Factor

of 50 or more for dN> dS, representing negative selection,

was colored blue, whereas a Bayes Factor of 50 or more for

dN< dS, representing positive selection, was colored red.

Data Accessibility

Genome annotation is available on NCBI (Protobothrops

mucrosquamatus Annotation Release 100). Raw genomic

reads and RNA-seq are available under NCBI accessions

PRJNA313429 and PRJDB4386, respectively. Snakemake files

(Köster and Rahmann 2012) for genome assembly and variant

calling, as well as a script for R-based analysis and intermedi-

ate data are in a MySQL database available at https://github.

com/mikheyev/mucrosquamatus-selection, last accessed

September 29, 2017. A virtual machine necessary to repro-

duce the R-based analyses is provided at http://mybinder.org/

repo/mikheyev/mucrosquamatus-selection, last accessed

September 29, 2017. Note: the virtual machine relies on a

third-party service, and its availability is not guaranteed.

Therefore, we include a Dockerfile necessary to build such a

virtual machine locally using the Docker platform. Finally, a

human-readable version of the analysis leading to the principal

results and generating draft versions of all the figures is avail-

able at https://mikheyev.github.io/mucrosquamatus-selection/,

last accessed September 29, 2017.

Results

Genome Assembly

We produced the first genome assembly of a pitviper, P.

mucrosquamatus. It was 1.63 gigabases long (contig and

scaffold N50, 22 and 424 kb, respectively). The genome

was annotated using RNA-seq data from 32 individual snakes,

producing an annotation with 20,122 protein-coding genes.

We also resequenced 20 additional individual P. mucrosqua-

matus genomes and a P. elegans genome as an outgroup

(supplementary table S1, Supplementary Material online).

These data were used to calculate the number of fixed and

replacement synonymous and nonsynonymous substitutions

between the two species, which were used to compute esti-

mates of selective constraint and positive selection for every

polymorphic gene.

Venom Composition

We detected 76 proteins in the venom of P. mucrosquamatus

using mass spectrometry. However, these venoms were dom-

inated by a few phospholipase A2, serine protease, and metal-

loprotease genes (fig. 1), with the rest of the proteins,

including other members of these three families, playing mi-

nor roles. Both snakes had strongly correlated patterns of

gene expression, suggesting conservation of their regulatory

machinery (rs¼ 0.73, N¼ 55, P< 2*10�16, supplementary,

fig. S1, Supplementary Material online). Thus, both species

should experience similar effects of gene expression on selec-

tion. To the best of our knowledge, there have been no for-

mal dietary studies of either species; however, anecdotal

reports and our own field observations suggest that both

are dietary generalists, preying upon frogs, lizards, birds,

rodents, and shrews. That being said, percentages of each

prey type may vary locally with availability, making it is impos-

sible to draw any firm conclusions about how venom compo-

sition in either species may be related to diet.

Structural Organization of Venom Gene Clusters

Protobothrops mucrosquamatus venom includes four highly

diversified gene families: C-type lectin-like proteins (CTLs),

FIG. 1.—A small number of genes, belonging to just three families,

dominates the venom of P. mucrosquamatus. Transcript proportions are

correlated with proteomic abundance (Aird et al. 2013, 2015).

Abbreviations: 50NT 50-nucleotidase, AChE acetylcholinesterase, CRISP cys-

teine-rich secretory proteins, CTL C-type lectin-like proteins, HYAL hyal-

uronidase, LAO L-amino acid oxidase, MP metalloprotease, NATR C-type

natriuretic peptide, NGF nerve growth factor, PDE phosphodiesterase,

PLA2 phospholipase A2, PLB Phospholipase B, PLCl phospholipase A2 in-

hibitor, QC glutaminyl cyclase, SP serine protease, VEGF vascular endothe-

lial growth factor.

Population Genomic Analysis of a Pitviper GBE

Genome Biol. Evol. 9(10):2640–2649 doi:10.1093/gbe/evx199 Advance Access publication September 27, 2017 2643

Deleted Text: . 
Deleted Text: il
Deleted Text: . 
https://github.com/mikheyev/mucrosquamatus-selection
https://github.com/mikheyev/mucrosquamatus-selection
http://mybinder.org/repo/mikheyev/mucrosquamatus-selection
http://mybinder.org/repo/mikheyev/mucrosquamatus-selection
https://mikheyev.github.io/mucrosquamatus-selection/
Deleted Text: . 
Deleted Text: &thinsp;kb
Deleted Text:  
Deleted Text: -
Deleted Text: . 
Deleted Text: . 


metalloproteases, serine proteases, and phospholipases A2.

The latter two families are located in tandem arrays of dupli-

cated genes, each on its own scaffold (NW_015386730.1 and

NW_015387341.1). Whether CTLs and metalloproteases

have similar organization is not certain, given the fragmented

nature of the assembly, but half of the genes in each family

reside on just a few scaffolds. Previous work has shown that

phospholipases A2 in the Okinawa habu (Protobothrops fla-

voviridis) also occur in a single gene cluster (Ikeda et al. 2010),

though the copy number and orientation of genes differs

from that reconstructed by the present study for P. mucros-

quamatus. Two phospholipase A2 genes found in P. mucros-

quamatus (LOC107291353 and LOC107291356) appear to

be missing from the closely related P. elegans genome. There

also appears to be copy number variation within many P.

mucrosquamatus venom genes (supplementary fig. S2,

Supplementary Material online). These findings suggest that

venom gene clusters may be structurally polymorphic, with

genes being duplicated and lost both within a species and

between closely related species.

Do Venom Genes Mutate More Rapidly?

Differences in evolutionary rates can also potentially result

from unequal rates of background mutation (Kini and

Chinnasamy 2010). However, we found no difference in mu-

tation rates (H) between venom and nonvenom genes

(SnIPRE P¼ 0.059, MKTest P¼ 0.73), suggesting that drift

and selection are the major forces behind venom protein se-

quence change.

Effects of Gene Expression on Venom Protein Evolution

There was no effect of average expression level of venom pro-

teins on the proportion of substitutions driven by positive

selection (rs¼ 0.017, P¼ 0.92). However, there was evidence

that selective constraints on the most abundant toxins are di-

minished (SnIPRE rs¼ 0.016, P¼ 0.016; MKTest rs¼ 0.28,

P¼ 0.075; fig. 3). Relaxed constraints lead to accumulation of

deleterious mutations, and an observed increase in the dn/ds

ratio.

Discussion

Selective Forces Acting on Venom

Adaptive Evolution

The role of adaptive selection in snake venom evolution is

uncontroversial, and we also find that venom genes have a

greater proportion of substitutions driven by positive selection

(a), than the rest of the genome (fig. 2A). Overall, there was

weaker support for selection acting on individual venom pro-

tein classes (supplementary fig. S2, Supplementary Material

online), largely because per-class sample sizes are significantly

smaller. Sequence-based analysis of the dominant venom

components, the phospholipases A2 and serine proteases,

identified multiple sites under positive selection, particularly

on the exteriors of these proteins, which suggest accelerated

evolution of functional components (Kini and Chan 1999)

(supplementary fig. S3, Supplementary Material online).

Strong adaptive selection is consistent with a wide suite of

ecological observations, further supporting the adaptive value

of snake venoms. For example, snake venoms tend to be

more effective for subduing their preferred prey (Silva Jr and

Aird 2001; Gibbs and Mackessy 2009) and even closely re-

lated taxa with divergent diets employ strongly divergent ven-

oms (Sanz et al. 2006). Perhaps most dramatically, the

adoption of a fish egg-only diet by the sea snake, Aipysurus

eydouxii, has led to relaxed selection on its venom, and a

FIG. 2.—Venom proteins show higher rates of adaptive evolution (A), and relaxed selective constraint (B, C) compared with housekeeping genes. Violin

plots summarize the distributions of the parameter estimates, with means given by red dots. Statistical significance is computed using Kruskal–Wallis tests.

The proportion of adaptive substitutions fixed by natural selection refers to those in relatively recent evolutionary time, since the divergence of the

P. mucrosquamatus and P. elegans, without distinguishing between the possible modes of natural selection (e.g., episodic vs. continuous). Selective

constraint was estimated with two software packages that use different values for their coefficients, but in both cases higher values mean lower selective

constraint. These data sets support both adaptive and overkill hypotheses, respectively.
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variety of dysfunctional mutations in its phospholipase A2

genes (Li et al. 2005). It is therefore likely that positive selec-

tion is the dominant driver of snake venom evolution.

The Overkill Hypothesis and the Role of Drift in Venom
Proteome Evolution

We likewise find that venom components experience less se-

lective constraint than housekeeping genes (fig. 2B and C and

supplementary fig. S4, Supplementary Material online).

Although this finding may, at first, seem to contradict the

higher levels of adaptive evolution, it is important to remem-

ber that selective pressures may vary across the secondary and

tertiary structure of a given protein (supplementary fig. S5,

Supplementary Material online), and that, in principle, some

parts of the protein can experience positive selection, whereas

other parts are free to evolve neutrally. Consequently, relaxed

selective constraints do not imply the absence of positive se-

lection, but rather its relative strength. Indeed, numerous

studies, and our data from P. mucrosquamatus, show that

major venom components in snakes are under strong selec-

tion (Kordis et al. 1998; Kordis and Gubensek 2000; Zupunski

et al. 2003; Ju�arez et al. 2008; Barlow et al. 2009; Casewell

et al. 2011; Vonk et al. 2013; Malhotra et al. 2015).

That being said, reduced selective constraint on venom pro-

teins supports predictions of the overkill hypothesis, and in

turn, has three interesting and underexplored consequences

for venom proteins: 1) increased rates of pseudogenization,

2) higher levels of standing variation, and 3) venom evolution

may happen neutrally during vicariant speciation.

First, accumulation of deleterious mutations could lead to

pseudogenization. Indeed, there is evidence that this has oc-

curred in the phospholipase A2 cluster of P. flavoviridis, which

contains two pseudogenes and three active genes (Ikeda et al.

2010). Furthermore, allopatrically isolated populations of this

species differ in the presence or absence of pseudogenes

(Chijiwa et al. 2000; Ikeda et al. 2010). Although the authors

attribute such interisland variability to selection, based on our

findings, it also seems possible that at least some of the var-

iation is due to neutral mutation and drift, which would be

particularly strong in small isolated populations. Furthermore,

as pseudogenized genes no longer produce functional pro-

teins, their expression should be strongly selected against,

ultimately eliminating them from the venom, whereas other

proteins take their place. Consequently, drift, possibly fol-

lowed by negative selection on pseudogenized genes, can

lead to accelerated turnover of individual venom compo-

nents. Indeed, gene loss was found to be a key factor in

the evolution of phospholipase A2 genes in rattlesnakes

(Dowell et al. 2016).

Second, higher levels of variability associated with relaxed

selectiveconstraintmayexpand thephenotypic spaceavailable

to snake venoms. The concept of phenotypic space is

analogous to Hutchinson’s concept of the niche, as an

N-dimensional hypervolume (Hutchinson 1957). In venomic

phenotypic space, each venom constituent multiplied by its

concentration could be conceptualized as a dimension in N-

dimensional phenotypic space, such that the incorporation or

deletionofvenomconstituents,orchanges in theirabundance,

would add, delete, lengthen, or shorten dimensions. It seems

highly likely that for any given snake species, there could be

multiplebiochemical strategiesthatmightbeequallyefficacious,

particularly if it feeds on multiple prey types. Nonetheless, mem-

bers of a venomous snake species, in essence, represent ele-

ments of a living array that performs what a pharmaceutical

company might call “pharmaceutical lead optimization.” That

is, many toxin variants and their combinations are screened con-

tinuously and simultaneously across populations.

Although positive selection promotes local optima, genetic

drift may allow populations to cross fitness valleys, and poten-

tially leads to new venom compositions (Wright 1932). For ex-

ample, previously dominant toxins could accumulate

deleterious mutations and become less abundant, whereas

more minor components could acquire beneficial mutations

and increase in concentration. This could result from either

changes in their regulatory sequences, or from changes in

copy number (Aird et al. 1991; Malhotra 2015). Although

such evolutionary dynamics would be difficult to conclusively

FIG. 3.—More abundant venom components experience increasingly

relaxed selective constraint. As in figure 2, higher values of the selective

constraint coefficient, indicate less effective elimination of deleterious

mutations. MKTest results were consistent with those of SnIPRE, but mar-

ginally nonsignificant (P¼ 0.075). Because estimates of mutational con-

straint differed widely between SnIPRE and MKTest, they are excluded

from this analysis, though including them does not qualitatively change

results. Abbreviations as in figure 1. These findings suggest that selective

constraint can be modulated by protein expression level.
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demonstrate, relative abundance of venom components can

indeed change relatively rapidly. For instance, a phospholipase

A2 comprising 73.4% of the P. elegans transcriptome, is barely

present in venom of its closest relatives, P. flavoviridis

(<0.05%) (Aird et al. 2015) and also in P. mucrosquamatus

(present study, supplementary fig.S1, Supplementary Material

online). Even within a species, there can be significant geo-

graphic variation in protein abundance (Mebs and Kornalik

1984; Chijiwa et al. 2003), as demonstrated by studies of

venom composition among littermates (Chippaux et al.

1982; Pintor et al. 2011). Future work focused on phylogenetic

reconstruction of ancestral states of proteins, and their expres-

sion levels, should provide important insights into the interplay

between expression, selection, and venom evolution, as has

been done for a range of other animals (Morandin et al. 2016).

Third, the observation that venoms are more susceptible to

the effects of genetic drift than the rest of the genome, has

important implications for venom differences between spe-

cies. Vicariance effects, and in particular founder effects, will

change effective population sizes and further exacerbate the

effects of drift on venom components, possibly leading to

significant amounts of differentiation between populations

or nascent species. Such regional variation is found in

Okinawan Protobothrops, which differs in venom composi-

tion between islands (Chijiwa et al. 2003). Many of these

islands are small and isolated, likely harboring small popula-

tions of snakes. Even more recent work on the eastern dia-

mondback rattlesnake (Crotalus adamanteus) has shown that

populations vary greatly in copy number at toxin-encoding

loci, and that selection for increased expression, rather than

sequence diversity has driven duplications (Margres et al.

2017). Therefore, neutral divergence should be considered

when comparing possible adaptive differences between

species.

Effect of Expression on Venom Evolution

Such an increase has, in fact, recently been documented by us

(Aird et al. 2015). At that time, we interpreted the higher dn/ds

rate as evidence of stronger adaptive selection on the most

abundant proteins, whereas the present analysis suggests that

the opposite is true, highlighting the advantages of the

McDonald–Kreitman framework over traditional dn/ds statistics.

At first glance, the relatively lower strength of selection on

more abundant venom components seems counterintuitive.

However, we propose a model to explain this pattern, based

on several additional observations. First, in order to assure

rapid immobilization of prey, snakes inject an optimal amount

of venom, which is several times more than the minimally

necessary dose (Allon and Kochva 1974; Hayes 1995;

Herbert and Hayes 2008). Second, studies of P. flavoviridis

venom found that the venom fraction containing hemor-

rhagic metalloproteases, second only to phospholipases in

abundance (Aird et al. 2013), showed roughly twice the

lethality of crude venom (Ohsaka 1960; Takahashi and

Ohsaka 1970). However, Aird (2002) suggested that immo-

bilization via hypotension and paralysis, rather than lethality, is

the objective of envenomation, and by extension, the trait

upon which selection acts. In envenomated mice, immobili-

zation time is roughly 3–5� shorter than the time to death

(Herbert and Hayes 2008). Therefore, if excess venom is

injected to rapidly immobilize prey, concentrations of the

most abundant venom components may indeed reach ‘over-

kill’ levels. Thus, an excess of the most abundant components

could lead to relaxed selective constraints upon them, since

deleterious mutations could be compensated by higher

concentration.

However, can higher concentrations rescue mutated pro-

teins? Indirect insights into this question come from site-

directed mutagenesis studies that look at the activity of

venom components. Because such studies typically target sites

of likely biochemical importance, and make nonrandom alter-

ations of the protein, they explore the more extreme end of

the protein fitness landscape. However, site-directed muta-

genesis studies generally find that, except for mutations in the

active site, which tend to be strongly deleterious, most other

mutations have either no effect, or relatively mild effects on

enzymatic properties of the venom (e.g., Trémeau et al. 1995;

Dennis et al. 1993; Zhang et al. 1997). Such decreases in

catalytic or noncatalytic activity can, in principle, be rescued

by increased protein concentration. Conversely, if the levels of

the protein were high in the first place, mutations may be

masked as long as the decrease in activity is relatively modest.

Analytical Caveats

Whole-genome inference of population-level parameters is

difficult, and subject to a number of important assumptions.

First, changes in demography may affect parameter esti-

mates. Although this could affect absolute values of the

parameters, our major conclusions should not be affected,

since we are making comparisons within a genome.

Another important assumption is the independence of genes.

Since venom genes are found in large clusters, they may be

effectively linked, possibly biasing results. However, the differ-

ent venom classes are most likely unlinked, and the omnibus

tests presented in figure 2, should be relatively robust.

Unfortunately, linkage at the family level affects all previous

studies of selection acting on venom genes as well. Finally,

copy number variation may affect some parameter estimates

by possibly inflating the extent of polymorphism existing in

some genes. Filtering out any genes that display evidence of

copy number variation still gives a higher overall level of adap-

tive substitution in venom genes (P¼ 0.013), and a signifi-

cantly lower selective constraint by one of the two software

packages (SnIPRE P¼ 0.022; MKTest P¼ 0.76). Thus, while

copy number variation can potentially skew some parameter
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estimates, it is unlikely to be the driving force behind the sta-

tistical signal.

Another point that bears mention, is that the specimens

used in this study came from populations introduced to

Okinawa, and may represent only a subset of genetic diversity

found in the native range populations. This will reduce num-

ber of polymorphic loci in the genome, and introduce a level

of noise due to stochastic sampling from the source popula-

tion. However, while these factors may change the absolute

estimates of selective constraint and adaptive evolution, they

should not affect the relative estimates within a genome, that

is between venom and nonvenom components (fig. 2), or

between different venom components (fig. 3).

Conclusions

An important characteristic of snake venoms is functional re-

dundancy among components, resulting in multiple impacts

upon critical prey systems, such as blood pressure regulation

(Aird 2002; Aird et al. 2016). Redundancy is achieved both by

employment of highly specific toxins that target particular

receptors, ion channels, etc., and also through delivery and

release of secondary messengers and modulators, such as

purine nucleosides and polyamines, that affect multiple sys-

tems (Aird 2002). Individual venom components experience a

wide variety of selective pressures, ranging from positive se-

lection at certain sites, to purifying selection at others, to neu-

trality (supplementary fig. S5, Supplementary Material online).

Our data suggest that selective regimes of venom compo-

nents result from a complex adaptive landscape dominated

by positive and negative selection, but also affected by varying

degrees of genetic drift. In particular, changes in population

size or population substructure, which affect genetic drift,

may also affect trajectories of venom evolution. Although

we have focused on understanding evolutionary forces acting

on venom protein composition since the separation of two

snake species, the increasing availability of genomes and ge-

nomic tools for other species will soon show whether these

patterns may be more broadly applicable to other snakes,

or perhaps even to all venomous organisms that employ

peptidyl/proteinaceous secretions.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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