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Abstract: In order to observe deep regions of the brain, we propose the use of a fiber bundle for
microendoscopy. Fiber bundles allow for the excitation and collection of fluorescence as well
as wide field imaging while remaining largely impervious to image distortions brought on by
bending. Furthermore, their thin diameter, from 200-500 µm, means their impact on living tissue,
though not absent, is minimal. Although wide field imaging with a bundle allows for a high
temporal resolution since no scanning is involved, the largest criticism of bundle imaging is the
drastically lowered spatial resolution. In this paper, we make use of sparsity in the object being
imaged to up sample the low resolution images from the fiber bundle with compressive sensing.
We take each image in a single shot by using a measurement basis dictated by the quasi-crystalline
arrangement of the bundle’s cores. We find that this technique allows us to increase the resolution
of a typical image taken through a fiber bundle.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

1.1. Motivation

In the mid 2000s, optically-responsive proteins showed their use in in-vivo neuronal research.
These proteins had the ability to indicate cell activity, as is the case for genetically encoded
calcium indicators (GECI) [2], as well as to permit controlled neuronal excitation, as is the case
for channel rhodopsins (ChR) [3]. The development of these molecular indicators and actuators
opened an avenue of neuronal research which can be mediated entirely by light. Although this
meant that the invasiveness of previous procedures could be greatly reduced, the ability to
look at specific neural pathways remained limited to shallow regions of the brain no more than
approximately 200 µm below the surface [4]. Highly scattering cortical tissue prevented deep
probing by occluding and distorting light [5]. For this reason optically mediated research in deep
nuclei, such as the basal ganglia, has been limited [1].

Since two photon microscopy offers cellular resolution at a maximum depth of approximately 1
mm [4, 6], implants have been suggested to enable deeper probing [7–12]. To ensure cell vitality,
these implants are required to have widths within a few hundred micrometers yet they must also
maintain a high information bandwidth so that high temporal and spatial resolution images can
be transmitted. For this reason, multimode fiber endoscopes have been developed for minimally
invasive imaging [9–13]. Images, however, are not directly transmitted through the multimode
fiber as is, but rather each image pixel is expressed as a superposition of fiber modes which, due
to their differing propagation constants, interfere in a manner which gives a distorted image at the
proximal end of the fiber. To mitigate this, phase shaping techniques have been used to account
for modal dispersion and allow for high resolution imaging [10–13]. These techniques can offer
diffraction limited spatial resolution yet they require scanning, thus making them considerably
slow. When multimode fiber imaging is performed with acousto-optic deflectors (AOD) or digital
micro-mirror devices (DMD) the temporal resolution is greatly increased to rates which can be
suitable for functional imaging provided the spatial sampling rate is kept relatively low [13,14].
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However, there remains another inherent problem in that multimode fiber endoscopes are highly
sensitive to the fiber shape [15, 16]. This results in a need for recalibration of the fiber endoscope
every time its conformation changes.

Fiber bundles transmit an image through several cores with each core acting as a single pixel.
As such, when imaging with incoherent light, they are impervious to bending. Furthermore,
since the bundle acts simply as an image conduit, wide field microscopy can be performed
making image acquisition fast. To minimize cross talk, however, the cores must be sufficiently
far apart [17]. This intercore spacing dictates not only the highest spatial frequency detectable
but also the number of sampling points for a given implant size which could be 10 to 50 times
lower than for a multimode fiber of comparable size [18, 19]. Low spatial resolution is the most
common criticism of fiber bundles in the field of microendoscopy. As such, in this article, we
present a method to overcome this low resolution problem by up-sampling fiber bundle images
with compressive sensing (CS).

1.2. Compressive sensing

Compressive sensing is a numerical technique for reconstructing signals when they are sampled
significantly below their Nyquist limit. It relies on the assumed sparsity of the acquired signal
in a predefined representation basis [20]. The process can be thought of geometrically as is
shown in Fig. 1, where a 2-pixel image is reconstructed from a single measurement. Let the
point, labeled x, in Fig. 1(a) represent the true object in R2, in this case a 2-pixel image. In Fig.
1(b) the point, y, is measured in the basis vector shown by ψ1. This gives us the information that
the solution lies along the perpendicular orange line. This line is simply the null space of our
incomplete measurement basis, Ψ, in this case a single vector in R2, offset from the origin by
the measurement, y. In Fig. 1(c) the space undergoes a linear transformation, which is known to
represent the original image in a sparse or quasi-sparse manner. This is shown by the Φ basis. The
solution to the reconstruction problem, signified by the black point, x̂, in Fig. 1(d). This is the
intersection of the null space (orange line) and the smallest l1-sphere in the representation basis
(shaded diamond) which has an intersection with the null space. The l1-norm is used as it seeks
out sparse solutions while remaining computationally simple. Ideally, the l0-quasi-norm should
be used as it gives a count of non-zero elements. Using the l0, however, gives a computationally
difficult problem, therefore this constraint is typically relaxed [21]. For the general case where,

Fig. 1. Geometric depiction of compressive sensing reconstruction. a) Target in R2. b)
Incomplete measurement of target in arbitrary basis. c) Space transformation to a sparsifying
basis. d) Reconstruction by l1 minimization

instead of a two dimensional object reconstructed from a single measurement, an N dimensional
object is reconstructed from M measurements (where M � N), the reconstruction accuracy is
dependent on the decay rate of the sorted coefficients in the representation basis. The problem
above could be stated as

argmin
x
‖ Φx ‖1 s.t. Ψx = y, (1)
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where x is the object to be reconstructed, y is the measured data, Φ is an Rn×n representation
basis, and Ψ is the incomplete measurement basis in Rm×n. In Fig. 1(d) the object is quasi-sparse
in the representation basis as the value of φ2 is small compared with φ1 but not exactly zero.
Hence, the reconstruction yields an approximate solution rather than finding the exact point. This
is often the case when dealing with real images where the sorted coefficient magnitudes in the
representation basis decay rapidly but are never exactly equal to zero. Furthermore, the presence
of noise in real measurements makes having coefficients which are exactly zero in any basis very
unlikely. We can therefore modify the conditions in Eq. (1) to reflect this as follows

argmin
x
‖ Φx ‖1 s.t . ‖ Ψx − y ‖2 ≤ ε, (2)

where ε reflects the noise level. This can be cast as a second order cone program which is
convex and easily solved with an iterative solver [20]. We predominantly apply this denoising
reconstruction to fiber bundle images.

2. Simulations

To apply CS to wide field fiber bundle imaging we must first know the measurement basis of
our system. Since we are aiming for high resolution reconstructions of fiber bundle images, the
basis is dictated entirely by the bundle structure. To ascertain this, we imaged the end face of a

Fig. 2. Simulated fiber bundle image reconstruction. a) Mean relative error at varying
compression (N/M) ratios over 29 images of cortical and striatal cells. Shaded regions
give the 95% confidence intervals. b) Sample red fluorescent protein (RFP) stained cortical
neuron image. c) Image simulated through 160 µm diameter fiber. d)-g) Image reconstruction
examples at a compression ratio of 95 by d) Fourier domain filtering, e) Interpolation, f)
Compressive sensing with the DCT as a representation basis, and g) Compressive sensing
with TV minimisation.
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Fujikura FIGH-016-160S fiber bundle under uniform white light illumination. We then used a
segmentation algorithm to determine the centers and diameters of each of the cores in the bundle.
Making the assumption that a lensless bundle has a zero working distance, and that each core
couples light in proportion to its area, we formed the theoretical M × N measurement matrix, Ψ.
The number of measurements, M , was 1461 given by the number of cores and N was the number
of pixels in the image to be reconstructed, which was varied to assess the performance of the
reconstructions under different compression ratios. The whole-image discrete cosine transform
(DCT) and total variation (TV) were used as representation bases, Φ, as their coefficients decay
rapidly when imaging cells, thereby lending themselves to sparse reconstruction. Reconstructions
were performed using the basis pursuit algorithm developed by Zhang et al. which solves Eq. (1)
iteratively [22]. Results are summarized in Fig. 2.
Image reconstruction through CS was compared to two common techniques for removing

pixelation during fiber bundle imaging, filtering, and linear interpolation. Whereas interpolation
was found to perform slightly better than spatial filtering, both were outperformed by CS at all
compression ratios. As the compression ratio increased, higher spatial frequencies, which cannot
be recovered either by filtering or interpolation, became more vital in reconstruction, leading
to a greater difference between CS and these techniques. We note, however, that anomalies
in the dead space between the cores cannot be recovered with any of these methods as the
zero-working-distance assumption dictates that each core accesses only the region of the image
directly beneath itself, leaving the dead space between the cores unsampled. The merit of CS,
however, lies in our prior knowledge of a sparse representation for our input images. To gauge
the sparsity of the images in the DCT representation the errors were plotted alongside the best
M-Term DCT approximation of the original image in Fig. 2(b). This error gives some indication
of how sparsely the image is represented in Φ, as well as a minimum possible error at the given
sampling rate. This was not done for TV-CS as the TV is not expressed as an invertible transform
and does not lend itself to this analysis.

3. Image reconstruction

3.1. Theoretical measurement basis

For reconstruction of images through the fiber we first determined the theoretical measurement
basis by computationally segmenting the end face of a Fujikura FIGH-10-350S fiber bundle. For
this the same assumptions as those stated in the section above were used. To avoid being in direct
contact with our sample we used a 500 µm diameter graded index rod lens at the end of the fiber.
To determine resolvable features of each of the image reconstruction techniques we imaged a
high resolution USAF 1951 resolution target under wide field transmission illumination. The
results of the reconstructions are summarized in Fig. 3.
In Fig. 3(e) a line trace with three peaks, corresponding to the three bars on the target, is

clearly visible when using DCT-CS reconstruction. This is not the case for either interpolation
or Fourier domain filtering. For TV-CS we see three levels however there are not three distinct
peaks. This illustrates that the reconstruction quality relies on a selection of appropriate basis for
sparse representation. Here the wave-like nature of the DCT works well to sparsely represent the
similarly wave-like lines of the target. In the original image in Fig. 3, distortions are caused by
core-to-core cross talk, fiber imperfections, and scattering particles, such as dust, on the fiber
end face. These are generally minor imperfections, however; their effects are carried through
the reconstructions. Hence, we cannot justify the assumption that the cores are completely
homogeneous in the way in which they couple light. Furthermore, the introduction of a rod lens
invalidates the assumption of zero working distance, meaning that a single point source at the
object can, in fact, couple to multiple cores. We address this in the following subsection.
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Fig. 3.Wide field image reconstruction with a theoretical measurement basis at a compression
ratio of 10.46. a) Line traces shown in red in c), d), e), and f). b) Original image as seen
through the fiber. Image reconstruction by c) filtered back projection, d) interpolation, e)
DCT compressed sensing, and f) TV compressed sensing.

3.2. Observed measurement basis

To address the issues mentioned in the earlier section we determined the true fiber measurement
basis. To do this, the segmentation algorithm was used to separate an image of the fiber face
into 9,200 intensity values, one for each core in the bundle. Next, the distal end of the fiber was
raster scanned across a point source in a 300×300 square grid, which covered the 115 µm field
of view. After background subtraction and thresholding, the values were recorded in a sparse
measurement matrix, Ψ, which mapped each of the 90,000 object points at the distal end of the
fiber to 9,200 core intensities at the proximal end. To perform this calibration a 1 µm pinhole
was used as a point source. This was placed on the stage S2, shown in Fig. 4(a) while the mirror
was moved from position M(1) to M(2) to provide illumination. Figure 4(b) shows the image
of the pinhole through the fiber when in focus. Once the calibration was completed the mirror
was moved back to M(1) for fluorescence imaging. The fiber was used both for fluorescence
excitation and collection. An example image of cells taken through the fiber with this method is
shown in Fig. 4(c).
After the measurement matrix Ψ was determined, it was preprocessed to account for the

motor backlash error which occurs during scanning. Next the columns were normalized so that
Ψ formed a unit-basis dictionary with which we can solve the problem stated in Eq. (2). This
was solved by the L1/L2 model algorithm developed by Zhang et al. [22]. The normalization
factors of the columns of Ψ were taken into account when performing the reconstruction. Using
incoherent 532 nm excitation we acquired images of 1 µm fluorescent polystyrene beads. When
reconstructing these images three compressed sensing methods were attempted and compared
with results from filtering and interpolation. The difference in the three methods was in the
selection of the representation basis. The first method used the DCT as described above, whereas
the second method used the point (canonical) basis, and the third the total variation (TV). Both
the point basis and total variation basis had been shown to be successful for compressed imaging
of beads [23, 24]. This is because a sparse sample of beads often leaves much of the image
dark making these bases suitably sparse representations. For TV reconstruction an algorithm
developed by Li et al. was used [25]. The results are summarized in Fig. 5.
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Fig. 4. Imaging set up and example fiber images. a) Set up arranged for fluorescent imaging.
M(1) and M(2) are calibration and imaging mirror positions, respectively. ExF and EmF
are excitation and emission filters. DC is a dichroic mirror. S1 is a 3-axis motorized stage
whereas S2 and S3 are mechanical stages. O1 and O2 are objectives and TL is a tube lens.
The flip mirror, FM, is used to verify the fiber images by imaging through O2 directly. b) An
image taken during calibration of a point source through the fiber. c) Example of ex-vivo
fluorescent cell imaging through the fiber with mouse motor thalamus neurons labelled by
hSyn-mCherry-AAV1 viral injection.

Fig. 5. Imaging 1 µm fluorescent beads. a) Image as seen through the fiber bundle. b) Image
of beads as seen through the epifluorescence microscope (O2 in Fig. 4(a)). Reconstructions
through c) filtering, d) interpolation, e) DCT compressed sensing, f) point compressed
sensing, and g) TV compressed sensing. h) Line traces for each reconstruction method. The
trace is taken across two beads shown by the location of the red line in b).
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Although there is a significant overlap, the line trace in Fig. 5(b) shows two distinct peaks for
the two beads in the reference epifluorescence image. For the measurements on the distinction of
the two beads, all the CS based methods showed two distinct features, whereas other methods
did not. This reconstruction would not have been possible with the measurement matrix based
on the assumptions made in the previous section. Since the spacing between the beads is very
small, both beads would be detected within a single core or one bead would be in the intercore
dead-space. The introduction of a rod lens and high resolution raster scanning ensures there
are no blind spots, of size 1µm or greater, while also ensuring any two features 1µm or greater
could be distinguished. In order to do this, knowledge of how light couples to and transmits
through the fiber is necessary and this is exactly what is coded into the measurement matrix Ψ.
The reconstructions with interpolation and filtering do not make use of this knowledge nor any
predefined notions of sparsity and hence do not perform as well.
For reconstructing beads, which can be considered as point sources, the point basis is,

theoretically, a very suitable representation basis. As can be seen in Fig. 5, the point basis works
well to identify and localize the beads. This method, however, is very prone to type 1 errors (false
positives) in the presence of noise, often resulting in an overestimation of the number of beads
present in a sample. The relative unsuitability of this basis stems from the fiber structure itself.
The Ψ matrix is dependent on the bundle arrangement and coupling, and, as such, it is completely
constrained. In contrast, for the Φ matrix we are somewhat free to choose what represents the
sample sparsely. There is, however, another constraint on Φ imposed by the already constrained
Ψ. It has been shown that in order to ensure high probability of successful reconstruction for an
S-sparse image, that is an image with S non-zero coefficients, the number of measurements, M ,
must scale with µ2Slog(N) [26]. Here, µ is a measure of coherence between bases and is defined
as

µ =
√

Nmax|〈φ j, ψk〉| ∀ j, k ∈ [1, n]. (3)

Since Ψ is relatively similar to the point basis, µ has a relatively large value when using the
point basis for Φ; therefore, with M and N held constant, the point basis representation would
only work well for reconstructing images in very sparse cases. For cells, however, the situation
is different. The DCT represents them sparsely while remaining largely incoherent with the
fiber-constrained Ψ, thereby driving the value of µ down. We use this to our advantage when
reconstructing images of cells. Finally, this technique was used to reconstruct images taken,

Fig. 6. Reconstruction of fluorescently labeled striatal interneurons. a) Image of an interneuron
as seen through the fiber. b) Reconstructed image of the interneuron with DCT-CS.

through the fiber, of fluorescently labeled cholinergic interneurons. To prepare the slices for
ex-vivo imaging, an anesthetized wild-type C57BL/6J male mouse was perfused intracardially
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using warm phosphate buffer 0.01 M (pH 7.4). This was followed by phosphate buffer perfusion
containing 4% paraformaldehyde and 14% picric acid. The brain was removed after decapitation,
and postfixed in the same solution for 24hrs at 8oC. The brain was then cryoprotected in a
50/50 mixture of fixative and 20% sucrose in 0.01 M phosphate buffered saline (PBS) for at
least 24h or until the brain sunk in the solution. Next, 60 µm coronal sections were cut on a
freezing microtome with a freezing stage (Yamato electrofreeze, MC-802A) and washed in
chilled PBS (4×5min). Afterwards the sections were processed for immunocytochemistry to
visualize cholinergic interneurons (ChIs) in the striatum. Sections were incubated for 4h at
room temperature in 10% normal donkey serum (NDS) diluted in PBS. To identify cholinergic
interneurons, the slices were incubated in antibody against choline-acetyltransferase (Millipore,
California USA, 1:100 dilution) in antibody diluent (Triton0.3%, NaN3 Azide0.05%, PBS) in a
dark room for at least 24h at 4oC on a shaker and washed in PBS (4×5 min). The brain sections
were further incubated in a secondary antibody in a dark room for 12h at 4oC on a shaker (dilution
1:200). The secondary antibody used was Alexa fluor 488-donkey anti-goat (life technologies,
Eugene, OR, USA; 1:200). The sections were washed again in PBS (4×5 min) and the samples
were finally imaged in the fiber bundle setup and reconstructed. An example is shown in Fig. 6.

The reconstruction of the cell in Fig. 6(b) faintly brings into view some dendrites which
are highlighted by the white arrows. The main issue hindering small features from coming
into view is the low signal to background ratio which is further diminished due to the fiber
autofluorescence [27]. Furthermore, there are reconstruction artifacts in the form of vertical
and horizontal lines. These are characteristic of using the DCT as a sparsifying basis, which
favors features aligned with the Cartesian grid. With the appropriate selection of representation
basis, however, this problem could be mitigated. More complex bases have been suggested for
reconstructing cells. For example, the curvelet transform, which can express images sparsely
that are mostly uniform but have rare, yet abrupt, changes of intensity along edges, as is the
case with cells and dendrites [28]. The artifacts, in such cases, would conform to the contours
of the imaged features rather than cross over them as is the case for the DCT. The major draw
backs of using such a representation basis is that it requires much more computational power and,
therefore, reconstruction time. Furthermore it is expected that such a representation basis would
have a higher coherence with the fiber-bundle-basis further increasing the convergence time and
reducing the probability of accurate reconstruction. This remains an avenue to be explored.

4. Conclusion

We have exploited the strengths of fiber bundle micorendoscopy by making use of its flexibility
with incoherent light, its ability to achieve high temporal resolution with wide field imaging, and
its relatively small biological footprint. To overcome the major criticism of fiber bundles, which
is that their spatial sampling is low, we have shown that it is possible to up sample fiber bundle
images with the appropriate choice of basis. We foresee this as a viable technique for in-vivo
wide field fluorescence microendoscopy.
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