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Abstract

We investigate a thermodynamic cycle using a Bose—Einstein condensate (BEC) with nonlinear
interactions as the working medium. Exploiting Feshbach resonances to change the interaction
strength of the BEC allows us to produce work by expanding and compressing the gas. To ensure a
large power output from this engine these strokes must be performed on a short timescale, however
such non-adiabatic strokes can create irreversible work which degrades the engine’s efficiency. To
combat this, we design a shortcut to adiabaticity which can achieve an adiabatic-like evolution within
a finite time, therefore significantly reducing the out-of-equilibrium excitations in the BEC. We
investigate the effect of the shortcut to adiabaticity on the efficiency and power output of the engine
and show that the tunable nonlinearity strength, modulated by Feshbach resonances, serves as a useful
tool to enhance the system’s performance.

1. Introduction

The ability to accurately control quantum systems using the latest available experimental techniques has opened
the door to thinking about experiments which can study the nature of thermodynamics in the quantum realm
[1-4]. In particular, it is interesting to study conceptual heat engines, which are systems governed by a complex
dynamics and in which the manipulation of quantum states can be used to produce work. Due to the recent
progress in precisely controlling the non-adiabatic dynamics of ultracold atoms and Bose—Finstein condensates
(BECs) [5-9], and the ability to tune many of their system parameters, they offer ideal systems with which to
create quantum heat engines [10-12].

To do work in a heat cycle, the Hamiltonian must be modified as adiabatically as possible to avoid unwanted
excitations. This, however, requires long timescales which can have drawbacks, such as exceeding the life time of
cold atom systems and having a low output power. One method to circumvent this issue is to use a shortcut to
adiabaticity (STA) [13, 14], which allows for fast quantum state manipulation while also suppressing final
excitations [ 15—17]. Techniques such as quantum transitionless driving (or counter-diabatic driving), fast-
foward algorithms, and inverse engineering have been shown to yield states with high fidelity in finite time, see
the recent reviews [18, 19]. While these approaches have often centered around non-interacting systems, STAs
have also been explored in interacting, nonlinear, and other systems [20-25]. Remarkably, STAs have
fundamental implications on quantum speed limits (QSL) [26—30], time-energy uncertainty relations (or energy
cost) [31-38], and the quantification of the third law of thermodynamics in the context of quantum refrigerators
[39, 40], which results in intriguing practical applications in heat engines [41-47].

In this work we analyze a quantum Otto cycle [48-55], (see figure 1) that uses a BEC with attractive nonlinear
interactions, which can be described as a bright soliton, as its working medium. The creation and control of
bright solitons in BECs is well established experimentally [56—61], making it an ideal nonlinear interacting
systemn to investigate. Rather than using the STA to modulate the trapping potential and therefore do work on
the system, as has been investigated previously for example in [41-45], we instead fix the trapping frequency and
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Figure 1. Otto cycle: work is done during the compression (W) and expansion strokes {Wg). Through coupling to an external
reservoir the number of particles, N, can be increased or decreased, thereby dissipating particles (Qy_} and absorbing particles (Qp )
and therefore increasing or decreasing the energy.

compress and expand the soliton by time dependently varying the nonlinear interaction strength. This can be
achieved experimentally by exploiting the Feshbach resonances of the BEC, thereby realizing a form of Feshbach
engine. Feshbach resonances are a powerful tool used in cold atom experiments, which allow to tune the
scattering length of elastic collisions between atoms by using magnetic or optical fields [62]. Such resonances, the
thermodynamics of which were recently studied [63], occur when the energy of a bound state of an interatomic
potential is equal to the energy of a pair of colliding atoms, resulting in the enhancement of interparticle
interactions about the resonace point. To control the time dependence of the interaction, while ensuring
suppressed excitations, we use a recently designed STA for this system [25] and investigate its effectiveness by
comparing the performance with a suitably rescaled adiabatic modulation. We show that the STA approach
leads to higher final target state fidelities and lower irreversible work. We further analyze the engines
performance by calculating the efficiency and output power with respect to the cycle duration and find that while
arbitrarily fast modulations are ineffective, the STA significantly enhances the overall performance on
intermediate timescales. Finally, we highlight the remarkable role that the nonlinear interaction strength plays,
showing that due to the effect it has on the energy spectrum, stronger nonlinear interactions allows for increased
performance.

The remainder of the paper is organized as follows. In section 2 we present the model and define the
thermodynamic quantities used throughout. Section 3 briefly reviews the techniques used to design a STA for
dynamically changing the scattering length for soliton matter waves (as devised in [25]) and in section 4 we
examine the performance of the STA during a compression. The efficiency and power output of the quantum
Otto cycle using the STA is analyzed in section 5 and in section 6 we present our conclusions.

2. Model and figures of merit

We consider the one-dimensional Gross—Pitaevskii equation describing the dynamics of a harmonically
trapped BEC

1 1
[—E#”xx + g@®|Yix, O + Exz]tb(x, t) = p(t)(x, 1), (1)

where 1(x, t)is the wave-function, () is the chemical potential, and g(t) describes the nonlinear interatomic
interaction strength, which can be experimentally tuned by applying a Feshbach resonance. Here, we have
adopted harmonic oscillator units such that all lengths are scaled by / % /mw, time t by 1 /w, and the interaction
strength gby +/ 77w/ m , where m is the mass of the condensate and w is the frequency of the harmonic trapping
potential.

In this work we will focus on attractive interactions, g (t) < 0, where an exact solution of equation (1) in
the absence of the harmonic trap is given by the well-known hyperbolic secant ansatz for a bright soliton
matter-wave
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WPx, t) = A(t)sech(i]. (2)
a(t)

Here, A(t) is the amplitude and a(¢) is the width of the soliton, and the system is normalized with respect to the
number of particles in the soliton N = 2aA? = fﬂo [ (x, t)*dx with A = /N /(2a). As the width a(t)
depends on the interaction strength, varying g(t) leads to compressions and expansions of the soliton. Even
though equation (2) is the free-space solution, we will in the following assume that it is still a good approximation
in weak trapping potentials.

Varying the interaction strength necessarily implies work being performed on/by the soliton through a
change in its energy. The energy of the soliton is given by

€(t) = fdx[lvmx, HF + L, np — £2
2 2 2

|4 (x, r)“], (3)
where we denote ¢; 1, as its initial (final) energy. It therefore follows that the work done during the process is
given by the change in the energy

W(t) = e(t) — e (4)

Furthermore, for a quasi-static process the average work done, (W), is equal to the adiabatic energy change,
(WAP), which in the case of the system being at zero temperature is simply given by the difference between the
initial and final energies

(W) = (WAP) = ¢ — e

Nonadiabatic processes require (W) = (WAP), thus implying that a degree of irreversibility has been
introduced. This can be quantified through the irreversible work

(Wir) = (W) — (WAD), (3)

which in our case is created when applying the control pulses used to manipulate the soliton, as they transiently
excite the system. We will use the above quantities to assess the performance of a STA applied to the
manipulation of a soliton matter-wave, and its potential use as a small scale engine. For this engine we consider
the well-studied Otto cycle as illustrated in figure 1, however since our description of the soliton relies on solving
the Gross—Pitaevskii equation which only describes the zero-temperature-state of the system, we make an
analogy for the role of temperature in our system. In a physical setting, such a condensed soliton would be
surrounded by thermal atoms which would add to the condensate fraction if subsequently cooled. Similarly the
condensate fraction of the soliton would decrease with increasing temperature, thus removing particles from the
soliton. Situations where quantum bright solitons coexist with free thermal atoms in one-dimensional gases of
attractive bosons have recently been a topic of large interest [64—67]. We therefore envisage a particle engine
where the compression and expansion strokes are controlled by the interaction strength g(f) and do the work
(W) and (W) respectively, and the final two strokes of the cycle are at fixed interaction while being coupled to
external reservoirs which inserts energy (Qy_) or extracts energy (Qy..) by removing or adding particles to the
soliton.,

3. Shortcuts to adiabaticity for soliton matter waves

Compressing or expanding the soliton in a short finite time can create irreversibility in the form out-of-
equilibrium excitations, which will hamper the efficiency of the engine cycle. Therefore we aim to employa STA
which will suppress these excitations and ensure the final state has alarge overlap with the one that would have
been created in a fully adiabatic process. Such a technique was recently developed in [25] and we briefly review it
in this section.

For bright solitons the evolution of the width of the cloud, a(z), is related to the nonlinear interaction
strength through

§ 4 2g ()N
a(t) + alt) = ; (6)
ar?  wal()
which comes from the variational principle with the hyperbolic secant ansatz, equation (2). To obtain the
adiabatic limit, we can solve d = 0 from equation (6), to find the dependence of the soliton width on the
interaction strength
28(H)N
aty - B gy = 2, @)
T T

which gives an adiabatic reference for the soliton width in terms of the nonlinear interaction in the
approximation of a weak trapping potential
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Figure 2. (a) Modulation of the nonlinearity g(t) for a compression stroke, We show the profile as designed by the STA for a finite time
stroke Ty = 0.15 (solid, black) and for a stroke in the adiabatic limit T'»p, (dashed, red). We fix N = 100. (b) Work done during the
compression stroke (f < Ty), when the interaction strength is modulated according to panel (a). We show the STA (solid black) and
the TRA stroke (red dashed). The horizontal gray dotted line is the adiabatic energy change (WAP),

2
a.(t) ~ — . (8)
Ng (1)

The above differential equation has a close analogy with the dynamical equation of motion of a fictitious classic
particle with position x in a perturbed Kepler problem

2N 2
Coma(t)  mai(t)

Ult)

(9)

Itis worthwhile to note that a. () is indistinguishable from a(f) found from equation (9), corresponding to the
minimal energy of Kepler potential, AU (t) /Ja(t) = 0.

Using a polynomial ansatz for a(f) given as a,,(t) = 3.7, a;t', we can fix the boundary conditions for the
start, t = 0,and end, t = Tj, ofthe stroke as [25]

ﬂP(O) =ac(0), ap(Tf} — ac(Tf)>
d,(0) = (0) =0, a,(Tp) = a(T)) =0,
i, (0) = i (0) = 0,  dip(T)) = ie(T)) = 0, (10)

by choosing a smooth adiabatic reference

gD = (g + g)/2 + g — gpcos(nt/Tp/16 + (g — g)cos(3mt/Ty)/16. Solving this set of equations allows us
to determine the coefficients of the polynomial ansatz a,(t). Setting a(t) — a,(t) in equation (6) and
rearranging for g(f) we arrive at the desired ramp of the nonlinear interaction strength of a bright soliton matter-
wave that realizes a STA for a chosen T.

In figure 2(a), we show an example of a ramp of the interaction strength for compression, which corresponds
to the pulse that would be applied to achieve one of the adiabatic strokes of the Otto-cycle. Clearly, the functional
form of these modulations depends heavily on the total duration of the stroke, Ty and in the adiabatic limit we
find g,,(t) = (mwlat(t) — 4)/2Na(t) =~ —2/Na(t) (red, dashed) from equation (7), which is a monotonic
function. Conversely, for Ty = 0.15 (solid, black) the ramp designed by the STA is more complex, most notably
exhibiting a change in slope. This clearly shows that despite achieving essentially the same final state, employing
a STA can imply that a drastically different trajectory is followed in order to compensate for the short timescale.
In what follows, we will fix T and examine the performance of a transformation facilitated by the STA. For
comparison we use the same ramp given by the adiabatic limit, but performed in the shorter time T and we refer
to this as the time rescaled adiabatic (TRA) stroke. This allows for a fair comparison since as T increases, the two
modulations coincide.

4. Performance of shortcuts to adiabaticity for soliton compression

We begin by examining the work done during and after a compression from g; = —0.1to g, = —0.2. Fixing
Ty = 0.15, we show in figure 2(b) the work for the correctly engineered STA (black) and the TRA (red dashed)
stroke. The horizontal dotted line indicates the adiabatic energy change { WAP), which is the work done in the
perfect adiabatic case. For both approaches, we see that the average work obtained at Ty is different from (WAP),
which implies that a certain amount of irreversible work was done during each stroke. However, using the STA
leads to a significantly smaller degree of irreversibility.

In order to more clearly assess the relative performance of the two strokes, we show the irreversible work, as
defined by equation (5), as a function of Ty in figure 3(a). Here the lines show (W,,) at the end of the stroke for

4
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Figure 3. (a) Average irreversible work, (W) and (b) the final state fidelity, F as a function of T All panels show a compression of the
soliton for g; = —0.1and g = —0.2 (redlines)and g; = —0.2and g = —0.2646 (black lines), with N = 100. The solid lines

represent the STA while the dashed lines are the TRA strokes.

the STA (solid red) and TRA (dashed red) against Ty for g; = —0.1and g = —0.2. Takinglarger values of Ty
decreases (Wi,) for both stokes as we approach the adiabatic limit, whereas for small Ty the amount of
irreversibility created by both strokes increases. For Ty 2 0.1 the STA creates less irreversible work than the TRA
as dynamical excitations are successfully suppressed, however for faster transformation times, Ty <5 0.1, we find
the converse. This can be understood by considering the modulations that are required by the STA for small Tj;
cffigure 2(a). In this case the trajectory for g(#) varies significantly, in stark contrast to the smooth,
monotonically decreasing function used for the TRA stroke. This implies the need to input large amounts of
energy during the stroke, in turn leading to a significant amount of irreversible work, which diverges as Ty — 0.

To investigate the role of the strength of the nonlinearity in these dynamics we show {W, ) for stronger
nonlinear interaction strengths g, = —0.2 and g = —0.2646 as the black curves in figure 3(a). Itis important to
note that the energy difference between the initial and desired target states here is identical to the previous weakly
nonlinear case. However, we now see the remarkable role that nonlinearities can play in engineering the STA.
The black lines show that, while the qualitative behavior is consistent with the case of weakly nonlinear
interactions, the typical values of {W,,) that can be achieved are lower. In fact, one can see that using stronger
nonlinear interactions allows for significantly faster strokes to be performed while still restricting the creation of
excess excitations in the system., The reason for this is the effect that the increased nonlinearity has on the energy
spectrum. Larger nonlinearity increases the gap between the energy eigenstates, which in turn allows for a faster
driving since the system requires more energy to reach the excited states [33, 35].

A crucial quantity in any control protocol is the final state fidelity, which allows us to quantity how close our
final dynamical state at the end of the stroke, 1/ (x, Tf), is to the target equilibrium state, ¥(x),

F = [{¢(x, Ty) T(x)) . (11)

In figure 3(b) we show that the behavior of Fis consistent with the one of (W}, as the STA typically results in
larger fidelities at the end of the stroke and therefore gives a more consistent approach to reach the target state
than the TRA. Furthermore, using strong nonlinear interactions allows for higher target fidelities at shorter
stroke times, however in line with the irreversible work we can see that taking Ty very small leads to the TRA
stroke outperforming the STA. Nonetheless, in this case the actual fidelities are quite low in comparison to the
desired target state rendering both approaches somewhat ineffective.

From figure 3 we learn three important points: (i) arbitrarily fast manipulation of the soliton matter-wave is
not possible using this technique. Such fast manipulation leads to poor final fidelities with the target state, and
comes accompanied by sizeable irreversible work. (ii) Stronger non-nonlinear interactions allow for faster
strokes. By changing the gaps in the energy spectrum, the larger nonlinear terms lead to better overall
performance. (iii) For a realistic implementation, one could fix a minimum average post-stroke fidelity that state
must achieve. This will then set a practical lower bound on Tj; which can then be used to determine optimal
parameters in order to keep the irreversible work to a minimum.

5
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5. Performance enhanced Otto cycle with a soliton matter wave

While the above analysis only dealt with the compression of the matter-wave, qualitatively similar results hold
for an expansion where the nonlinear interaction strength is reduced. However, due to the effect the expansion
has on the energy spectrum, this process generally results in slightly lower average fidelities and correspondingly
higher irreversible work compared to soliton compression. Regardless, one can use the above approach to assess
the performance of a quantum Otto- cycle facilitated using a STA, as depicted in figure 1. To thisend, and in line
with the analysis of [44, 45] where the case of the exactly solvable harmonic oscillator was treated, we calculate
the efficiency of the cycle

§ (12)

where (W (g)) is the work during the compression (expansion) stroke. Here (Qy ) = €£(0, Np) — &:(Ty, No)is
the energy change when particles are lost from the soliton to the free thermal gas, where (0, Ni) is the initial
energy of the soliton before the expansion stroke with N particles, while - (Ty, N¢) is the non-adiabatic energy
at the end of the compression stroke with N particles. Therefore, more particles are condensed in the soliton for
the compression than the expansion, N > N, so that when simulating the cycle the effect of temperature is
captured by the difference between N-and Ng. As the normalization of the soliton wavefunction is dependent
on Ng g, the energy of the soliton will be modified by the change in particle number at end of the work strokes.
This is needed to ensure power output from the engine cycle and gives the conditions that (W) + (We) < 0
and (Qy ) > 0. We can immediately see from equation (12) as we reduce the time to perform the strokes, Tj; the
efficiency will decrease due to the growing irreversible work created during the STA, see figure 3(a). We also
assess the power generated

p— W) + (W) (13)

T

where 7 is the total time for the whole cycle to be completed. We will assume that the time for the thermalization
strokes, where particles are introduced or removed from the system, is much shorter than the time taken for the
other strokes to be completed, and therefore 7 ~ 2T} [41, 44, 45].

Before analyzing these quantities in detail, it is interesting to note that there exists upper bounds on the
efficiency and the power by virtue of the QSL, which sets a lower bound on the time required for a quantum state to
evolve [26-28, 35, 46] (see [29, 30] for recent reviews). We remark that, although we work with a mean-field
dynamics, the QSL is known to extend to classical settings [68—70]. In the present context we can define the QSL as

/B

Tpioe PRl
! (Eta)

) (14)

where Bis the Bures angle between the initial and final states [28] and {Esta) = TL fOTf [ehu @) — ebpuB]deis
f

the energy of the shortcut, where ey, (£) (¢ 14 (1)) is the energy of the instantaneous eigenstate for the value of
g(t) for the STA (TRA). Asshown in [44, 45] the upper bounds are then given by

(W2P) + (WD)
Qn) + % (Bc + Bp) /T
(WEP) + (W)

Té!SL 4 TEQSL

NasL = _< (15)

Pgst = — 5 (16)
where B and Bgare the the Bures angles for the compression and expansion strokes, and (Wé\[E)} is the adiabatic
work difference for compression or expansion of the soliton. The thin dotted curves in figure 4 correspond to
these upper bounds.

We examine the efficiency and power of the Otto cycle in figure 4 for weak (red) and strong (black) nonlinear
interaction strengths for the STA (solid) and the TRA (dashed) strokes, while the compression and expansion
strokes are implemented with solitons composed of N = 100 and N = 90 particles respectively. As done
previously, to ensure a fair comparison, the magnitude of the change in the nonlinear interaction is modified
such that in the adiabatic limit the work performed during each stroke of the two realizations is the same.
Furthermore, the power in the adiabatic limit for the two interaction regimes will also be identical and we rescale
nwith respect to the adiabatic efficiency, 1, ,. We see that the efficiency is always poor for small T regardless of
the interaction regime or the type of ramp applied. Larger T allows one to realize a significantly more efficient
cycle, one that operates at close to the adiabatic efficiency and, on these timescales, we find the use of the STA is
always advantageous. Furthermore, we again see that stronger nonlinearities lead to a better overall
performance, while the output power is more sharply peaked and experiences a sharp cutoff. Thisis a
consequence of the increased slope of (W,,,) at short Tj; as the designed STA must approach g — 0 to

6
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Figure 4. (a) Efficiency of the cycle normalized with respect to the adiabatic efficiency 1), , and (b) power, for the weakly nonlinear case
with g; = —0.1and g, = —0.2 (red lines, 1, , ~ 0.76) and strongly nonlinear case g; = —0.2 and g = —0.2646 (black lines,
Nap & 0.43). The solid lines represent the STA while the dashed lines are the corresponding TRA stroke. The thin dotted lines are the

respective upper bounds dictated by the QSL. Along the compression stroke we take N> = 100 while along the expansion stroke we fix
Ng = 90.

compensate for the excess energy put into the system. For |gN| ~ 1 the sech ansatz for the soliton breaks down
and the STA becomes ineffective. Finally, comparing with the bounds defined by the QSL, we see that for
intermediate timescales strong nonlinearities allow for an efficiency and power close to maximal. As we increase
T} and all protocols approach the adiabatic limit, we find the curves all converge on top of one-another.

An important caveat must be stressed regarding the above results. Our definitions of efficiency and power do
notaccount for any cost (energetic or otherwise) in achieving the desired dynamics. Such a question has received
intense interest recently [33—-36, 44—47]. A reasonable (although not unique) definition for the cost of achieving
one of the expansion /compression strokes is to determine the energy required for the pulse, i.e. (Egya). As this
represents an additional energy input, the efficiency then becomes

. (We) + (We)
cost <QN-> + (ESTA>C - (55’[‘A>E i

Including this additional energy term should also have an effect on the output power. Indeed, if we view the use

of the STA as a means to boost performance, the added power inputted through the use of the pulse should be
subtracted from the total output power, thus

(17)

P - — (We) + (We) — (Esta)e — (Estale

(18)
-

In figure 5 we compare these quantities to equations (12) and (13). Clearly, the qualitative behavior is consistent,
with the overall effect to slightly decrease the performance. However, we see that the advantages pointed out
previously still persist, allowing us to conclude that even by including the additional energy required to achieve
the dynamics, the STA can still significantly boost the performance of the cycle. As a final remark, while there are
several (related) definitions for the cost required to achieve a STA currently in the literature [33-36, 44—47],
regardless of which approach is chosen the general features outlined here will persist.
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Figure 5. (a) Efficiency of the cycle normalized with respect to the adiabatic efficiency ), [, and (b) power, for the weakly nonlinear case
with g; = —0.1and g, = —0.2(redlines, 77}, ~ 0.76) and strongly nonlinear case g; = —0.2and g; = —0.2646 (black lines,
Tap = 0.43). The solid lines represent efficiency and power calculated with equations (12) and (13) respectively. The thin dotted lines
are efficiency and power calculated with equations (17) and (18) respectively, which includes the added energy required to implement
the STA.

6. Conclusions

We have analyzed the performance of a recently proposed STA which modulates the nonlinear interaction ofa
soliton matter wave, We quantified the effectiveness of the STA during compression of the soliton by calculating
the irreversible work and the fidelity of the final state. We showed that the STA is a viable technique to efficiently
suppresses excitations on non-adiabatic timescales, while its use on arbitrarily short timescales results in the
generation of a significant degree of irreversibility when implementing the STA. Examining the performance of
an Otto cycle using the soliton matter-wave as a working substance, we have shown that the STA can be a useful
tool for these intermediate timescales, and that larger nonlinear interaction strengths lead to a better overall
performance. Our results thus significantly add to the study of quantum thermal cycles by taking advantage of
the versatility of BECs to create a Feshbach engine, which can be efficiently controlled by tuning the nonlinearity
according to the STA. This system is also experimentally viable, where the energy of the soliton can be extracted
from in situ observations of the density, or through time-of-flight measurements of the momentum
distribution.
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