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Enhancement of the quadrupole interaction of an atom with the guided light
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We investigate the electric quadrupole interaction of an alkali-metal atom with guided light in the fundamental
and higher-order modes of a vacuum-clad ultrathin optical fiber. We calculate the quadrupole Rabi frequency,
the quadrupole oscillator strength, and their enhancement factors. In the example of a 87Rb atom, we study the
dependencies of the quadrupole Rabi frequency on the quantum numbers of the transition, the mode type, the
phase circulation direction, the propagation direction, the orientation of the quantization axis, the position of the
atom, and the fiber radius. We find that the root-mean-square (rms) quadrupole Rabi frequency reduces quickly
but the quadrupole oscillator strength varies slowly with increasing radial distance. We show that the enhancement
factors of the rms Rabi frequency and the oscillator strength do not depend on any characteristics of the internal
atomic states except for the atomic transition frequency. The enhancement factor of the oscillator strength can be
significant even when the atom is far away from the fiber. We show that, in the case where the atom is positioned
on the fiber surface, the oscillator strength for the quasicircularly polarized fundamental mode HE11 has a local
minimum at the fiber radius a � 107 nm, and is larger than that for quasicircularly polarized higher-order hybrid
modes, transverse electric modes, and transverse magnetic modes in the region a < 498.2 nm.
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I. INTRODUCTION

Dipole-allowed optical transitions in atoms, ions, and
molecules play a key role in modern atomic, molecular,
and optical physics [1]. The corresponding Rabi frequency
is linearly proportional to the amplitude of the light field.
Energy levels that are not connected to lower energy levels by
dipole-allowed transitions are metastable states and have many
applications ranging from precision clocks [2] to quantum
gates [3]. Electric quadrupole transitions, on the other hand,
are proportional to the gradient of the electric field and are less
explored. Techniques to investigate nondipole transitions have
been explored theoretically and experimentally for atoms in
free space [4–17], in evanescent fields [18–20], near a dielectric
microsphere [21], near an ideally conducting cylinder [22], and
near plasmonic nanostructures [23,24]. However, the difficulty
in achieving large electric field gradients over a long distance
makes the study of quadrupole transitions in an extended
medium a challenging task.

Ultrathin optical fibers [25–27] allow tightly radially con-
fined light to propagate over a long distance. Apart from
a high intensity, the evanescent field that extends radially
beyond the physical boundary of an ultrathin fiber also offers
a large intensity gradient in the radial direction [28,29]. The
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corresponding intensity gradient can be used to confine atoms
near the surface of an ultrathin fiber [30–32]. Furthermore, the
higher-order modes of an ultrathin fiber [33–35] may also offer
an azimuthal phase gradient.

The aim of the present paper is to investigate the electric
quadrupole interaction of an alkali-metal atom with guided
light in the fundamental and higher-order modes of a vacuum-
clad ultrathin optical fiber. We calculate the quadrupole Rabi
frequency, the quadrupole oscillator strength, and their en-
hancement factors. In the example of a 87Rb atom, we study the
dependencies of these characteristics on the quantum numbers
of the transition, the mode type, the phase circulation direction,
the propagation direction, the orientation of the quantization
axis, the position of the atom, and the fiber radius.

The paper is organized as follows. In Sec. II we study the
electric quadrupole interaction of an alkali-metal atom with
an arbitrary monochromatic light field. In Sec. III we examine
the interaction of the atom with guided light of an ultrathin
optical fiber and derive an expression for the enhancement
factor of the quadrupole oscillator strength in terms of the fiber
mode functions. In Sec. IV we present numerical results. Our
conclusions are given in Sec. V.

II. QUADRUPOLE INTERACTION OF AN ATOM
WITH AN ARBITRARY LIGHT FIELD

Consider an atom with a single valence electron interacting
with an external optical field E through an electric quadrupole
transition. We use Cartesian coordinates {x1,x2,x3} to describe
the electric quadrupole and the internal states of the atom
[see Fig. 1(a)]. We assume that the center of mass of the
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FIG. 1. (a) Atom with the local quantization coordinate system
{x1,x2,x3} in the vicinity of an ultrathin optical fiber with the fiber-
based Cartesian coordinate system {x,y,z} and the corresponding
cylindrical coordinate system {r,ϕ,z}. (b) Schematic of the hyperfine-
structure (hfs) levels of the 4D5/2 and 5S1/2 states of a 87Rb atom.

atom is located at the origin x = 0 of this coordinate system.
The electric quadrupole moment tensor Qij of the atom, with
i,j = 1,2,3, is defined as

Qij = e(3xixj − R2δij ), (1)

wherexi is the ith coordinate of the valence electron of the atom
and R =

√
x2

1 + x2
2 + x2

3 is the distance from the electron to the
center of mass of the atom. The electric quadrupole interaction
energy is [36]

W = −1

6

∑
ij

Qij

∂Ej

∂xi

∣∣∣∣
x=0

, (2)

where the spatial derivatives of the field components Ej with
respect to the coordinates xi are evaluated at the position x = 0
of the atom.

We represent the field as E = (Ee−iωt + E∗eiωt )/2, where
E is the field amplitude and ω the field frequency. Let |e〉
and |g〉 be upper and lower states of the atom, with energies
h̄ωe and h̄ωg , respectively. In the interaction picture and the
rotating-wave approximation, the interaction Hamiltonian of
the system can be written as

HI = − h̄

2

∑
eg

�gee
−i(ω−ωeg )t σeg + H.c., (3)

where ωeg = ωe − ωg is the atomic transition frequency and

�ge = 1

6h̄

∑
ij

〈e|Qij |g〉∂Ej

∂xi

(4)

is the Rabi frequency for the quadrupole transition between the
states |g〉 and |e〉.

Consider the case of an alkali-metal atom with degenerate
transitions between the magnetic sublevels |g〉 = |nFM〉 and
|e〉 = |n′F ′M ′〉 [see Fig. 1(b)]. Here, n denotes the principal
quantum number and also all additional quantum numbers
not shown explicitly, F is the quantum number for the total
angular momentum of the atom, and M is the magnetic
quantum number. The matrix elements 〈n′F ′M ′|Qij |nFM〉
of the quadrupole tensor operators Qij are, as shown in
Appendix A, given as [7]

〈n′F ′M ′|Qij |nFM〉

= 3eu
(M ′−M)
ij (−1)F

′−M ′
(

F ′ 2 F

−M ′ M ′ − M M

)

×〈n′F ′‖T (2)‖nF 〉, (5)

where the matrices u
(q)
ij with q = −2,−1,0,1,2 are given by

Eqs. (A12), the array in the parentheses is a 3j symbol, and the
invariant factor 〈n′F ′‖T (2)‖nF 〉 is the reduced matrix element
of the tensor operators T (2)

q = 2(2π/15)1/2R2Y2q(ϑ,φ). Here,
Ylq is a spherical harmonic function of degree l and order q,
and ϑ and φ are spherical angles in the spherical coordinates
{R,ϑ,φ} associated with the Cartesian coordinates {x1,x2,x3}.

It is clear from Eq. (5) that the electric quadrupole transition
selection rules for F and F ′ and for M and M ′ are |F ′ − F | �
2 � F ′ + F and |M ′ − M| � 2. We note that the selection
rules for the quantum numbers J and J ′ of the total angular
momenta of the electrons are |J ′ − J | � 2 � J ′ + J . We also
note that the selection rules for the quantum numbers L and
L′ of the total orbital angular momenta of the electrons are
|L′ − L| = 0,2 and L′ + L � 2.

We now calculate the quadrupole Rabi frequency �ge =
�FMF ′M ′ , defined by Eq. (4). When we insert Eq. (5) into
Eq. (4), we obtain

�FMF ′M ′ = e

2h̄
(−1)F

′−M ′
(

F ′ 2 F

−M ′ M ′ − M M

)

×〈n′F ′‖T (2)‖nF 〉
∑
ij

u
(M ′−M)
ij

∂Ej

∂xi

. (6)

In general, the Rabi frequency �FMF ′M ′ for the transition
between the atomic states |nFM〉 and |n′F ′M ′〉 depends on
the relative orientation of the quantization axis x3 with respect
to the electric field vector E .

The root-mean-square (rms) Rabi frequency �̄FF ′ is given
by the rule [37]

�̄2
FF ′ =

∑
MM ′

|�FMF ′M ′ |2. (7)

We insert Eq. (6) into Eq. (7) and perform the summations over
M and M ′. Then, we obtain

�̄2
FF ′ = e2

20h̄2 |〈n′F ′‖T (2)‖nF 〉|2
∑

q

∣∣∣∣
∑
ij

u
(q)
ij

∂Ej

∂xi

∣∣∣∣
2

. (8)
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We note that Eqs. (6) and (8) can be used for a monochro-
matic light field with an arbitrary space-dependent amplitude
E . In the particular case of standing-wave laser fields, Eqs. (6)
and (8) reduce to the results of Ref. [7].

We assume that the field is near to resonance with the atom,
that is, ω � ω0, where ω0 ≡ ωeg . The oscillator strength fFF ′

can be calculated from the rms Rabi frequency �̄FF ′ by using
the relation [37]

�̄2
FF ′ = e2|E |2

2h̄meω0
(2F + 1)fFF ′ , (9)

where me is the mass of an electron. This yields

fFF ′ = meω0

18h̄e2(2F + 1)

×
∑
MM ′

∣∣∣∣
∑
ij

〈n′F ′M ′|Qij |nFM〉 1

E
∂Ej

∂xi

∣∣∣∣
2

. (10)

Equation (10) can be used for a monochromatic light field with
an arbitrary space-dependent amplitude E . In the particular
case where E = E0e

iK·x with E0 and K being constant real or
complex vectors, Eq. (10) reduces to an expression that is in
agreement with Refs. [18–20].

With the help of Eqs. (8) and (9), we find

fFF ′ = meω0

10h̄

|〈n′F ′‖T (2)‖nF 〉|2
2F + 1

∑
q

∣∣∣∣
∑
ij

u
(q)
ij

1

E
∂Ej

∂xi

∣∣∣∣
2

.

(11)

Like Eq. (10), Eq. (11) can be used for an arbitrary monochro-
matic light field. Due to the summation over M and M ′ in
Eq. (7), the rms Rabi frequency �̄FF ′ and, consequently, the
oscillator strength fFF ′ do not depend on the orientation of
the quantization axis x3. The quadrupole oscillator strength
fFF ′ , given by Eq. (11), is a measure that characterizes the
proportionality of the rms Rabi frequency �̄FF ′ to the field
amplitude magnitude |E | through Eq. (9). The measure fFF ′

depends on not only the reduced quadrupole matrix element
〈n′F ′‖T (2)‖nF 〉 of the atom but also the ratios between the
field gradients ∂Ej /∂xi and the field amplitude E . It is clear
that the oscillator strength fFF ′ is a measure per unit intensity.
We note that, for atoms in free space, the oscillator strength can
be interpreted as the ratio between the quantum-mechanical
transition rate and the classical absorption rate of a single-
electron oscillator with the same frequency [36,37]. However,
this interpretation may not be valid for atoms in the vicinity of
an object because the modifications of the transition rate are
much more complicated than that of the Rabi frequency.

We introduce the notations �̄
(0)
FF ′ and f

(0)
FF ′ for the rms Rabi

frequency and oscillator strength of an atom interacting with a
plane-wave light field in free space via an electric quadrupole
transition. According to [6,7,20] and Appendix B, we have

�̄
(0)2
FF ′ = e2k2|E |2

40h̄2 |〈n′F ′‖T (2)‖nF 〉|2 (12)

and

f
(0)
FF ′ = meω

3
0

20h̄c2

|〈n′F ′‖T (2)‖nF 〉|2
2F + 1

. (13)

The enhancements of the rms Rabi frequency and oscillator
strength in arbitrary light are characterized by the factors

ηRabi = �̄FF ′

�̄
(0)
FF ′

,

ηosc = fFF ′

f
(0)
FF ′

.

(14)

We find

ηosc = η2
Rabi = 2

k2
0 |E |2

∑
q

∣∣∣∣
∑
ij

u
(q)
ij

∂Ej

∂xi

∣∣∣∣
2

. (15)

According to expressions (8) and (11), the dependencies of
�̄2

FF ′ and fFF ′ on F and F ′ are included only in the factors
|〈n′F ′‖T (2)‖nF 〉|2 and |〈n′F ′‖T (2)‖nF 〉|2/(2F + 1). These
scaling factors are determined by the internal atomic states.
They do not depend on the position of the atom and the radius of
the fiber. Consequently, the shapes of the dependencies of �̄2

FF ′
and fFF ′ on the position of the atom and the radius of the fiber
do not depend on the quantum numbers F and F ′. Meanwhile,
Eq. (15) shows that the magnitudes of the enhancement factors
ηRabi and ηosc do not depend on F and F ′. Moreover, these
enhancement factors do not depend on any characteristics of
the atomic states except for the atomic transition frequency
ω0. They are determined by the ratios between the gradients
∂Ej /∂xi and the amplitudeE of the field operating at the atomic
resonant frequency ω0.

We note that the oscillator strength fJJ ′ of the transition
from a lower fine-structure level |nJ 〉 to an upper fine-structure
level |n′J ′〉 of the atom may be obtained by summing up fFF ′

over all values of F ′. The result is

fJJ ′ = meω0

10h̄

|〈n′J ′‖T (2)‖nJ 〉|2
2J + 1

∑
q

∣∣∣∣
∑
ij

u
(q)
ij

1

E
∂Ej

∂xi

∣∣∣∣
2

. (16)

In the case of an atom interacting with a plane-wave light field
in free space, we have [6,7,20]

f
(0)
JJ ′ = meω

3
0

20h̄c2

|〈n′J ′‖T (2)‖nJ 〉|2
2J + 1

. (17)

The relation between fFF ′ and fJJ ′ is [18,19,38]

fFF ′ = (2F ′ + 1)(2J + 1)

{
F ′ 2 F

J I J ′

}2

fJJ ′ , (18)

where I is the nuclear spin quantum number and the array in
the curly braces is a 6j symbol.

III. QUADRUPOLE INTERACTION OF AN ATOM
WITH GUIDED LIGHT

We consider the electric quadrupole interaction between the
atom and a guided light field of a vacuum-clad ultrathin optical
fiber [see Fig. 1(a)]. We assume that the fiber is a dielectric
cylinder of radius a and refractive index n1 and is surrounded
by an infinite background medium of refractive index n2, where
n2 < n1. We consider the case where the refractive indices n1

and n2 are real. We use Cartesian coordinates {x,y,z}, where
z is the coordinate along the fiber axis, and also cylindrical
coordinates {r,ϕ,z}, where r and ϕ are the polar coordinates in
the fiber transverse plane xy.
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We note that our model consists of a fiber and a single atom.
In the case where there are many atoms deposited on the surface
of the fiber, due to the effect of the coverage on the mode
structure of the field, our model is not valid. We also note that,
when the atom is very close to the surface, the energy levels
and the transition rates of the atom are modified. The shifts
of the energy levels and the changes in the transition rates
are related to each other by the Kramers-Kronig relation. In
addition, the wave functions of the internal states of the atom
are also modified. Such changes in the wave functions may
induce a nonzero dipole matrix element for a transition that
is dipole-forbidden in free space. Since the optical transition
frequency is huge, the effect of the surface-induced energy
level shift on the transition rate can be neglected when the
atom is not too close to the surface (when the distance is larger
than a few nanometers in the case of a flat silica surface) [39].
On the other hand, the modification of the atomic state wave
functions is also a weak effect that can occur only when the
atom is very close to the surface. Therefore, for simplicity, we
neglect the effect of the fiber on the atomic energy levels and
wave functions. We also neglect other effects such as material
absorption, nonradiative decay, surface roughness, short-range
repulsion, and adsorption. Because of these approximations,
the results for the case where the atom is effectively placed on
the fiber surface are just the limiting values for the case where
the atom is close enough but not too close to the surface so that
the approximations are valid. When the atom is close enough
to the surface, due to various effects that are not taken into
account in our treatment, our results are not valid.

We assume that the fiber supports the fundamental HE11

mode and a few higher-order modes [40] in a finite bandwidth
around the central frequency ω0 = ωe − ωg of the atom. The
theory of fiber guided modes is given in Ref. [40] and is sum-
marized in Appendix C. The propagation constantβ of a guided
mode is determined by Eq. (C1). A guided mode in the class
of quasicircularly polarized hybrid modes, transverse electric
modes, and transverse magnetic modes can be labeled by an
index μ = (ω,N,f,p). Here, ω is the mode frequency, the
notation N = HElm, EHlm, TE0m, or TM0m stands for the mode
type, with l = 1,2, . . . and m = 1,2, . . . being the azimuthal
and radial mode orders, respectively, the index f = +1 or
−1 denotes respectively the forward or backward propagation
direction along the fiber axis z, and p is the polarization index.
The HElm and EHlm modes are hybrid modes. For these modes,
the azimuthal order is l 
= 0, and the index p is equal to +1 or
−1, indicating the counterclockwise or clockwise circulation
direction of the helical phase front. The TE0m and TM0m modes
are transverse electric and magnetic modes. For these modes,
the azimuthal mode order is l = 0, the mode polarization is
single, and the polarization index p can be dropped.

For a quasicircularly polarized hybrid HElm or EHlm mode
with the propagation direction f and the phase circulation
direction p, the field amplitude is [34,40]

E = (er r̂ + peϕϕ̂ + f ezẑ)eifβz+iplϕ, (19)

where er , eϕ , and ez are given by Eqs. (C10) and (C11) for
β > 0 and l > 0.

For a TE0m mode with the propagation direction f , the field
amplitude is [34,40]

E = eϕϕ̂eifβz, (20)

where the only nonzero cylindrical component eϕ is given by
Eqs. (C12) and (C13).

For a TM0m mode with the propagation direction f , the field
amplitude is [34,40]

E = (er r̂ + f ezẑ)eifβz, (21)

where the components er and ez are given by Eqs. (C14) and
(C15) for β > 0. An important property of the mode functions
of hybrid and TM modes is that the longitudinal component ez

is nonvanishing and in quadrature (π/2 out of phase) with the
radial component er .

Quasilinearly polarized hybrid modes are linear super-
positions of counterclockwise and clockwise quasicircularly
polarized hybrid modes. The amplitude of the guided field in a
quasilinearly polarized hybrid mode can be written in the form

E =
√

2[r̂er cos(lϕ − ϕpol) + iϕ̂eϕ sin(lϕ − ϕpol)

+ f ẑez cos(lϕ − ϕpol)]e
ifβz, (22)

where the phase angle ϕpol determines the orientation of the
symmetry axes of the mode profile in the fiber transverse
plane. In particular, the specific phase angle values ϕpol = 0
and π/2 define two orthogonal polarization profiles, one being
symmetric with respect to the x axis and the other being the
result of the rotation of the first one by an angle of π/2l in the
fiber transverse plane xy.

With the help of some simple coordinate transforma-
tions, we can easily calculate the quadrupole Rabi frequency
�FMF ′M ′ , the quadrupole oscillator strength fFF ′ , and their
enhancement factors ηRabi and ηosc for an arbitrary guided light
field. For quasicircularly polarized hybrid HE and EH modes,
TE modes, and TM modes, a simple analytical expression for
the enhancement factor ηosc is found to be

ηosc = 1

k2
0 |e|2

[∣∣∣∣e′
r − 1

r
(ileϕ + er )

∣∣∣∣
2

+
∣∣∣∣e′

ϕ + 1

r
(iler − eϕ)

∣∣∣∣
2

+ |e′
z + iβ0er |2 +

∣∣∣∣ l

r
ez + β0eϕ

∣∣∣∣
2

+ 1

3

∣∣∣∣e′
r − 2iβ0ez + 1

r
(ileϕ + er )

∣∣∣∣
2]

. (23)

Here, er , eϕ , and ez are evaluated at the atomic transition
frequency ω0, and the notations e′

r,ϕ,z = ∂er,ϕ,z/∂r and β0 =
β(ω0) have been introduced. We emphasize that Eq. (23) is not
valid for quasilinearly polarized hybrid modes.

We find from Eq. (23) that, in the limit r → ∞, we have
ηosc → η∞

osc, where

η∞
osc =

⎧⎪⎪⎨
⎪⎪⎩

q2
0 +β2

0

k2
0

+ 4q2
0 β2

0

k2
0 (q2

0 +β2
0 +β2

0 s2
0 )

for HE and EH,

q2
0 +β2

0

k2
0

for TE,

q2
0 +β2

0

k2
0

+ 4q2
0 β2

0

k2
0 (q2

0 +β2
0 )

for TM.

(24)

Here, q0 and s0 are the fiber parameters given in Appendix C
and are evaluated at the frequency ω0. It is clear that η∞

osc are
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determined by the fiber parameters. Since β0 � k0, we have
η∞

osc � 1.

IV. NUMERICAL RESULTS

In this section, we demonstrate the results of numerical
calculations for the characteristics of an electric quadrupole
transition of an atom interacting with a guided light field
of an ultrathin optical fiber. As an example, we study the
electric quadrupole transition between the ground state 5S1/2

and the excited state 4D5/2 of a 87Rb atom. For this transition,
we have L′ = 2, J ′ = 5/2, L = 0, J = 1/2, and I = 3/2.
The wavelength of the transition is λ0 = 516.5 nm. The
experimentally measured oscillator strength of the transition
5S1/2 → 4D5/2 in free space is f

(0)
JJ ′ = 8.06 × 10−7 [5]. In our

numerical calculations, we assume that the field is at exact
resonance with the atom (ω = ω0).

Before we proceed, we note that we choose the quadrupole
transition 5S1/2 → 4D5/2 of a 87Rb atom to calculate numer-
ically because the oscillator strength of this transition in free
space has been measured [5]. Another reason is that a similar
transition, namely, the transition 6S1/2 → 5D5/2, of cesium
atoms in an evanescent field has been studied experimentally
[18]. Although a specific quadrupole transition of a specific
alkali-metal atom is chosen, our numerical results are relatively
general because the enhancement factor ηosc of the oscillator
strength does not depend on any characteristics of the atomic
states except for the atomic transition frequency ω0.

First, we calculate the Rabi frequency �FMF ′M ′ for the
transition between the magnetic sublevels |FM〉 and |F ′M ′〉.
It is clear from Eq. (6) that �FMF ′M ′ depends on not only F

and F ′ but also M and M ′, and is linearly proportional to the
gradient of the amplitude of the light field.

We plot in Fig. 2 the absolute value of the Rabi frequency
�FMF ′M ′ as a function of the radial distance r for different
upper sublevels |F ′M ′〉 and different guided modes N =
HE11, TE01, TM01, and HE21. For the calculations of this
figure, we choose the quantization axis x3 = z. We observe
that |�FMF ′M ′ | reduces almost exponentially with increasing
r . The steep slope in the radial dependence of |�FMF ′M ′ |
is a manifestation of the evanescent-wave behavior of the
guided field outside the fiber. The scaling is determined by
the modified Bessel function Kl(qr), where l is the azimuthal
mode order and q is the inverse of the evanescent-wave
penetration length (see Appendix C). The parameter q depends
on the mode type. When r is large enough, the function Kl(qr)
can be approximated as e−qr

√
π/2qr . It is clear from Fig. 2

that |�FMF ′M ′ | depends on not only the magnetic quantum
numbers of the atomic transition but also the type of the guided
mode. The dotted blue curve in Fig. 2(b), which stands for
the case of the upper sublevel M ′ = 2 and the TE mode, is
zero. This means that the TE mode does not interact with the
quadrupole transition between the sublevels |F = 2,M = 2〉
and |F ′ = 4,M ′ = 2〉 for the quantization axis x3 = z. The
vanishing of this interaction is a consequence of the properties
of the TE mode and the quadrupole operator Qij for the
transition |F = 2,M = 2〉 → |F ′ = 4,M ′ = 2〉 with x3 = z.

The Rabi frequency �FMF ′M ′ for the transition between the
sublevels |FM〉 and |F ′M ′〉 depends on the relative orientation
of the quantization axis x3 with respect to the fiber axis z.

2
1

4
3

M’=0

r/a
|Ω

FM
F’

M
’ | /

 2
π 

 (k
H

z)

HE11 (a)

TE01 (b)

TM01 (c)

HE21 (d)

FIG. 2. Absolute value of the Rabi frequency �FMF ′M ′ for the
quadrupole transition between the sublevel M = 2 of the level
5S1/2F = 2 and a sublevel M ′ of the level 4D5/2F

′ = 4 as a
function of the radial distance r for different magnetic quantum
numbers M ′ = 0,1,2,3,4 and different guided mode types N =
HE11, TE01, TM01, and HE21. The fiber radius is a = 280 nm. The
wavelength of the atomic transition is λ0 = 516.5 nm. The refractive
indices of the fiber and the vacuum cladding are n1 = 1.4615 and
n2 = 1, respectively. The power of the guided light field is 2.5 nW.
The field propagates in the +z direction. The hybrid modes are
counterclockwise quasicircularly polarized. The quantization axis is
x3 = z. The azimuthal angle for the position of the atom in the fiber
cross-section xy plane is arbitrary.

In order to illustrate this dependence, we plot in Fig. 3 the
radial dependencies of the absolute value of the Rabi frequency
�FMF ′M ′ for the quadrupole transition between the sublevels
|F = 2,M = 2〉 and |F ′ = 4,M ′ = 4〉 for different choices of
the quantization axis, namely, x3 = z, x, and y. We observe
that �FMF ′M ′ strongly depends on the orientation of x3. In the
cases of the HE11, TM01, and HE21 modes, the absolute value
|�FMF ′M ′ | for x3 = y [see the dotted blue curves in Figs. 3(a),
3(c), and 3(d)] is larger than for x3 = z and x3 = x [see the
solid black and dashed red curves in Figs. 3(a), 3(c), and 3(d)].
However, in the case of the TE01 mode, we have |�FMF ′M ′ | = 0
for x3 = y [see the dotted blue curve in Fig. 3(b)]. The
vanishing of this interaction is a consequence of the properties
of the TE mode and the quadrupole operator Qij for the
transition |F = 2,M = 2〉 → |F ′ = 4,M ′ = 4〉 with x3 = y.

We plot in Figs. 4 and 5 the radial dependencies of
|�FMF ′M ′ | for the opposite phase circulation directions
p = ±1 and the opposite propagation directions f = ±1.
The dependence of |�FMF ′M ′ | on f is related to the spin-orbit
coupling of light [41–47]. It has been shown that, due to
the spin-orbit coupling of light, spontaneous emission and

013821-5



LE KIEN, RAY, NIEDDU, BUSCH, AND NIC CHORMAIC PHYSICAL REVIEW A 97, 013821 (2018)
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TE01 (b)
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HE21 (d)

x3=z
x
y

FIG. 3. Radial dependencies of the absolute value of the Rabi
frequency �FMF ′M ′ for the quadrupole transition between the sub-
levels |F = 2,M = 2〉 and |F ′ = 4,M ′ = 4〉 for different choices
of the quantization axis x3 and different guided modes. The atom
is positioned on the positive side of the x axis (ϕ = 0) and the
hybrid modes are counterclockwise quasicircularly polarized. Other
parameters are as for Fig. 2.

scattering from an atom with a circular dipole near a nanofiber
can be asymmetric with respect to the opposite propagation
directions along the fiber axis [48–54]. We note that we have
|�FMF ′M ′ | = 0 for both directions f = ±1 in Fig. 5(c), where
M = 2, M ′ = 4, and N = TE01, and in Fig. 5(f), where
M = 2, M ′ = 3, and N = TM01. Our additional analysis,
which is not shown here, confirms the vanishing of these
quadrupole transitions.

Next, we calculate the rms Rabi frequency �̄FF ′ and the
oscillator strength fFF ′ as functions of the position r of the
atom and the radius a of the fiber. As already pointed out in

r/a

|Ω
FM

F’
M

’ | /
 2

π 
 (k

H
z)

HE11 (a)

HE21 (b)

p = +1
p = -1

FIG. 4. Radial dependencies of the absolute value of the Rabi
frequency �FMF ′M ′ for the opposite phase circulation directions p =
±1 of the circularly polarized hybrid modes HE11 and HE21. The
lower and upper levels of the transition are |F = 2,M = 2〉 and |F ′ =
4,M ′ = 4〉 and the quantization axis is x3 = z. Other parameters are
as for Fig. 2.

r/a

|Ω
FM

F’
M

’ | /
 2

π 
 (k

H
z)

HE11
(a)

TE01

(b)

TM01

(c)

HE21

(d)

M=2, M’=4

f = +1
f = -1

(e) (f)

(g) (h)

M=2, M’=3

FIG. 5. Radial dependencies of the absolute value of the Rabi
frequency �FMF ′M ′ for the opposite propagation directions f = ±1
of different guided modes. The lower and upper levels of the transition
are |F = 2,M = 2〉 and |F ′ = 4,M ′ = 4〉 (left column) and |F =
2,M = 2〉 and |F ′ = 4,M ′ = 3〉 (right column). The quantization axis
is x3 = y, the atom is positioned on the positive side of the x axis,
and the hybrid modes are counterclockwise quasicircularly polarized.
Other parameters are as for Fig. 2.

Sec. II, due to the summation over transitions with different
magnetic quantum numbers, �̄FF ′ and fFF ′ do not depend on
the relative orientation of the quantization axis x3 with respect
to fiber axis z. Moreover, the shapes of the dependencies of
�̄FF ′ and fFF ′ on r and a do not depend on F and F ′.

We plot in Figs. 6 and 7 the radial dependencies of the
rms Rabi frequency �̄FF ′ and the oscillator strength fFF ′ of
the atom. These figures show that �̄FF ′ and fFF ′ achieve
their largest values at r/a = 1. We observe that �̄FF ′ reduces
quickly but fFF ′ decreases slowly with increasing r . The
reason for the sharp contrast between the dependencies of
these quantities on r is that, unlike the Rabi frequency, the

r/a

Ω
FF

’ /2
π 

 (k
H

z) HE11

TM01
HE21

TE01

FIG. 6. Radial dependencies of the rms Rabi frequency �̄FF ′ for
different guided modes. The hfs levels are F = 2 and F ′ = 4. The
hybrid modes are quasicircularly polarized and the quantization axis
is arbitrary. Other parameters are as for Fig. 2.
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’  (1
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)
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HE21

TE01

FIG. 7. Radial dependencies of the oscillator strength fFF ′ for
different guided modes. Parameters used are as for Fig. 6.

oscillator strength fFF ′ does not depend on the magnitude of
the field amplitude. Indeed, fFF ′ is, as already mentioned in
the previous section, proportional to the square of the ratio
between the field gradient and the field amplitude. In the limit
of large radial distances, both the gradient and the amplitude
of the field in a guided mode tend to zero but the ratio between
them tends to a nonzero value.

Figures 6 and 7 show that the rms Rabi frequency �̄FF ′

and the oscillator strength fFF ′ depend on the mode type.
Comparison between the curves for different modes shows
that, for the parameters of the figures, the oscillator strength
fFF ′ for the fundamental mode HE11 (see the solid black
curve in Fig. 7) is the largest, while the corresponding rms
Rabi frequency �̄FF ′ (see the solid black curve in Fig. 6) is the
smallest or the second smallest. The contrast between these
relations is due to the fact that the rms Rabi frequency �̄FF ′ is
proportional to the product of the oscillator strength fFF ′ and
the electric field intensity |E |2 [see Eq. (9)]. Outside the fiber,
for a given power, the magnitude of the intensity of the field in
the fundamental mode is smaller than that in other modes [34].

We show in Figs. 8 and 9 the rms Rabi frequency �̄FF ′ and
the oscillator strength fFF ′ as functions of the fiber radius a.
We observe from Fig. 8 that the rms Rabi frequency �̄FF ′ first
increases and then decreases with increasing a. It is clear from
this figure that �̄FF ′ for different guided modes have different
maxima at different values of a. We observe from Fig. 9 that,
for the fundamental mode HE11, the oscillator strengthfFF ′ has
a local minimum at a � 107 nm. Meanwhile, for the higher-
order modes, fFF ′ increases with increasing a. In the region
a < 498.2 nm, fFF ′ for the HE11 mode is larger than that for
higher-order modes. When a is in the region from 498.2 to
1000 nm, fFF ′ for the TM01 mode is larger than that for other
modes.

The increase of fFF ′ for the HE11 and higher-order modes
with increasing a in the region of large a is a consequence
of the fact that expression (11) for fFF ′ contains the terms
that are proportional to the gradients ∂Ex,y,z/∂z of the field
amplitudes Ex,y,z in the direction of the fiber axis z. These
gradients are proportional to the propagation constant β, which
increases with increasing fiber radius a [34,40]. The decrease

HE11

TM01
HE21

TE01
EH11
HE31
HE12

a (nm)

Ω
FF

’ /2
π 

 (k
H

z)

FIG. 8. The rms Rabi frequency �̄FF ′ as a function of the fiber
radius a for different guided modes. The atom is positioned on
the fiber surface. The hybrid modes are quasicircularly polarized
and the quantization axis is arbitrary. Other parameters are as for
Fig. 2. The vertical dotted lines indicate the positions of the cutoffs
for higher-order modes.

of fFF ′ with increasing a in the region of small a for the HE11

mode (see the solid black curve in Fig. 9) is a result of the
changes in the structure of the field. The initial decrease and
the subsequent increase lead to the occurrence of a minimum
in the dependence of fFF ′ on a in the case of the HE11 mode
(see the solid black curve in Fig. 9).

We now calculate the oscillator-strength enhancement fac-
tor ηosc, which is the ratio between the oscillator strength fFF ′

for a fiber guided field and the oscillator strength f
(0)
FF ′ for a

free-space plane-wave field. As already pointed out in Sec. II,
the magnitude of the enhancement factor ηosc does not depend
on the quantum numbers F and F ′ and any other characteristics
of the atomic states except for the atomic transition frequency
ω0. Like fFF ′ , the enhancement factor ηosc does not depend on
the magnitude E of the field amplitude.

We plot in Fig. 10 the radial dependencies of the oscillator-
strength enhancement factor ηosc for different guided modes.

a (nm)

f FF
’  (1

0-5
)

HE11

TM01
HE21

TE01
EH11
HE31
HE12

FIG. 9. Oscillator strength fFF ′ as a function of the fiber radius a

for different guided modes. Parameters used are as for Fig. 8.
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r/a

η os
c

HE11

TM01
HE21

TE01

FIG. 10. Radial dependencies of the oscillator-strength enhance-
ment factor ηosc for different guided modes. The hybrid modes are
quasicircularly polarized and the quantization axis is arbitrary. Other
parameters are as for Fig. 2.

It is clear from the figure that ηosc achieves its largest values at
r/a = 1. We see that ηosc reduces slowly with increasing radial
distance r . This result means that, despite the evanescent wave
behavior, the enhancement factor ηosc can be significant even
when the atom is far away from the fiber. The reason is that
the oscillator strength fFF ′ and consequently the enhancement
factor ηosc are determined by not the field amplitude but
the ratio between the field gradient and the field amplitude.
We emphasize that guided modes are different from free-
space plane waves even in the limit of large radial distances.
Therefore, the enhancement factor ηosc can be different from
1 even in this limit [see Eq. (24)].

We show in Fig. 11 the oscillator-strength enhancement
factor ηosc as a function of the fiber radius a for different guided
modes. Similar to the oscillator strength fFF ′ , the enhancement
factor ηosc for the fundamental mode HE11 has a local minimum

a (nm)

η os
c

HE11

TM01
HE21

TE01
EH11
HE31
HE12

FIG. 11. Oscillator-strength enhancement factor ηosc as a function
of the fiber radius a for different guided modes. The atom is positioned
on the fiber surface. The hybrid modes are quasicircularly polarized
and the quantization axis is arbitrary. Other parameters are as for
Fig. 2. The vertical dotted lines indicate the positions of the cutoffs
for higher-order modes.

r/a

η os
c

circ, arb ϕ

ϕ = 0

ϕ = π/2

ϕ = 0

ϕ = π/4

(a)

(b)

circ, arb ϕ

lin HE11

lin HE21

FIG. 12. Oscillator-strength enhancement factors ηosc for the
quasilinearly polarized HE11 and HE21 modes as functions of the
radial distance r at different azimuthal angles ϕ. The orientation angle
of the quasilinear polarization axis is ϕpol = 0 and the quantization
axis is arbitrary. Other parameters are as for Fig. 2. For comparison, the
results for the corresponding quasicircularly polarized hybrid modes
are shown by the dotted black curves.

at the fiber radius a � 107 nm, and is larger than that for higher-
order modes in the region a < 498.2 nm. Meanwhile, the
enhancement factor ηosc for higher-order modes monotonically
increases with increasing a. When a is in the region from 498.2
to 1000 nm, the factor ηosc for the TM01 mode is larger than
that for other modes.

Due to the summation over transitions with different mag-
netic quantum numbers and the cylindrical symmetry of the

a (nm)

η os
c

circ, arb ϕ

ϕ = 0

ϕ = π/2

ϕ = 0

ϕ = π/4

(a)

(b)

circ, arb ϕ

lin HE11

lin HE21

FIG. 13. Oscillator-strength enhancement factors ηosc for the
quasilinearly polarized HE11 and HE21 modes as functions of the
fiber radius a. The atom is positioned on the fiber surface at
different azimuthal angles ϕ. The orientation angle of the quasilinear
polarization axis is ϕpol = 0 and the quantization axis is arbitrary.
Other parameters are as for Fig. 2. The vertical dotted line indicates
the position of the cutoff for the HE21 mode. For comparison, the
results for the corresponding quasicircularly polarized hybrid modes
are shown by the dotted black curves.
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ϕ

η os
c

(a)lin HE11

(b)lin HE21

π 2π3π/2π/20

r/a = 1
r/a = 1.5

FIG. 14. Oscillator-strength enhancement factors ηosc for the
quasilinearly polarized HE11 and HE21 modes as functions of the
azimuthal angle ϕ for the position of the atom in the fiber cross-section
plane. The orientation angle of the quasilinear polarization axis is
ϕpol = 0 and the quantization axis is arbitrary. Other parameters are
as for Fig. 2.

field in a quasicircularly polarized hybrid mode, the oscillator
strength fFF ′ and the enhancement factor ηosc for such a mode
do not depend on the azimuthal position ϕ of the atom in the
fiber transverse plane. For the field in a quasilinearly polarized
hybrid mode, since the cylindrical symmetry is broken, fFF ′

and ηosc vary with varying ϕ. We plot in Figs. 12 and 13 the
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 1
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 3
 4

x/a
y/a
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(a)

FIG. 15. Oscillator-strength enhancement factors ηosc for the
quasilinearly polarized HE11 and HE21 modes as functions of the posi-
tion of the atom in the fiber cross-section plane. The orientation angle
of the quasilinear polarization axis is ϕpol = 0 and the quantization
axis is arbitrary. Other parameters are as for Fig. 2.

dependencies of ηosc for the quasilinearly polarized HE11 and
HE21 modes on the radial distance r and the fiber radius a for
different azimuthal angles ϕ. We observe from the figures that,
depending on ϕ, the factor ηosc for a quasilinearly polarized
hybrid mode may decrease or increase with increasing distance
r , may be larger or smaller than that for the corresponding qua-
sicircularly polarized hybrid mode, and may have a minimum
in the dependence on the fiber radius a. Figure 12 shows that
ηosc varies slowly in the radial direction. Comparison between
the curves for different azimuthal angles in Figs. 12 and 13
indicates that ηosc for quasilinearly polarized modes varies
significantly in the azimuthal direction.

In order to get a better view of the spatial profiles of the
enhancement factor ηosc for quasilinearly polarized hybrid
modes, we plot in Figs. 14 and 15 this factor as a function
of the azimuthal angle ϕ and as a function of the Cartesian
coordinates x and y of the position of the atom in the fiber
cross-section plane. The figures show that ηosc for quasilinearly
polarized hybrid modes varies significantly in the azimuthal
direction but slightly in the radial direction, and is relatively
large or small along the major or minor symmetry axes of the
modes, respectively.

V. CONCLUSION AND DISCUSSION

In this work, we have studied the electric quadrupole
interaction of an alkali-metal atom with guided light in
the fundamental and higher-order modes of a vacuum-clad
ultrathin optical fiber. We have calculated the quadrupole
Rabi frequency, the quadrupole oscillator strength, and their
enhancement factors. In the example of a 87Rb atom, we have
studied the dependencies of the Rabi frequency on the quantum
numbers of the transition, the mode type, the phase circulation
direction, the propagation direction, the orientation of the
quantization axis, the position of the atom, and the fiber radius.
We have found that the rms quadrupole Rabi frequency and the
quadrupole oscillator strength are enhanced by the effect of the
fiber on the gradient of the field amplitude. With increasing
radial distance, the rms Rabi frequency reduces quickly but
the oscillator strength varies slowly. The enhancement factors
of the rms Rabi frequency and the oscillator strength do not
depend on any characteristics of the internal atomic states
except for the atomic transition frequency. These factors are de-
termined by the ratios between the gradients and the amplitude
of the field operating at the atomic transition frequency. Like
the oscillator strength, its enhancement factorηosc varies slowly
with increasing distance from the atom to the fiber surface. Due
to this fact, the factor ηosc can be significant even when the
atom is far away from the fiber. We have found that, in the case
where the atom is positioned on the fiber surface, the oscillator
strength for the quasicircularly polarized fundamental mode
HE11 has a local minimum at the fiber radius a � 107 nm.
Meanwhile, for quasicircularly polarized higher-order hybrid
modes, transverse electric modes, and transverse magnetic
modes, the oscillator strength monotonically increases with in-
creasing a. In the region a < 498.2 nm, the oscillator strength
for the quasicircularly polarized HE11 mode is larger than that
for quasicircularly polarized higher-order hybrid modes, trans-
verse electric modes, and transverse magnetic modes. We have
shown that, depending on the azimuthal position of the atom,
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the enhancement factor ηosc for a quasilinearly polarized hybrid
mode may decrease or increase with increasing distance, and
may be larger or smaller than that for the corresponding
quasicircularly polarized hybrid mode. We have found that
the factor ηosc for quasilinearly polarized hybrid modes varies
significantly in the azimuthal direction, and is relatively large
or small along the major or minor symmetry axes of the modes,
respectively.

Our results may find application in future research on
probing electric quadrupole transitions of atoms, molecules,
and particles using the fundamental and higher-order modes
of ultrathin optical fibers. Direct access to electric quadrupole
transitions might be beneficial for fiber-based optical clocks
[55]. A photon in a higher-order hybrid mode may have
significant orbital angular momentum in addition to spin
angular momentum. Therefore, our results on the enhanced
electric quadrupole interaction of an atom with guided light
might lead to an efficient way for transferring more than one
quantum of angular momentum per photon to the internal
degrees of freedom of the atom [8,14]. Furthermore, the
particular atomic transition addressed in this article allows one
to prepare a rubidium atom in the excited state 4D5/2. The only
dipole-allowed decay of this state to the ground state is via the
intermediate level 5P3/2, by cascaded emission of two photons
at 1530 and 780 nm. The emitted photons are correlated and can
be entangled [56,57]. This opens up the possibility to develop
a fiber-based source of entangled photon pairs at wavelengths
relevant to telecom and atomic references.
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APPENDIX A: MATRIX ELEMENTS OF THE
QUADRUPOLE TENSOR OPERATORS

We introduce the notations

x
(1)
−1 = x1 − ix2√

2
,

x
(1)
0 = x3, (A1)

x
(1)
1 = −x1 + ix2√

2
,

for the spherical tensor components of the position vector x =
(x1,x2,x3). In terms of these components, we have

x1 = x
(1)
−1 − x

(1)
1√

2
,

x2 = i
x

(1)
−1 + x

(1)
1√

2
, (A2)

x3 = x
(1)
0 .

We can write

xi =
∑

q

u
(q)
i x(1)

q , (A3)

where u
(q)
i with i = 1,2,3 are the components of the spher-

ical basis vectors u(q) in the Cartesian coordinate system
{x1,x2,x3}. The expressions for the vectors u(q) are

u(−1) = 1√
2

(1,i,0),

u(0) = (0,0,1), (A4)

u(1) = − 1√
2

(1,−i,0).

We note that u(q)∗ = (−1)qu(−q), u(q) · u(q ′)∗ = δqq ′ , and∑
q u

(q)
i u

(q)∗
j = δij .

It follows from Eq. (A3) that

xixj =
∑
M1M2

u
(M1)
i u

(M2)
j x

(1)
M1

x
(1)
M2

. (A5)

In order to calculate the direct product x
(1)
M1

x
(1)
M2

, we use the
formula [58]

x
(1)
M1

x
(1)
M2

=
∑
Kq

T (K)
q (−1)q

√
2K + 1

(
1 1 K

M1 M2 −q

)
,

(A6)

where T (K)
q with q = −K, . . . ,K are the tensor elements of

the irreducible tensor products T (K) = [x(1) ⊗ x(1)](K) of rank
K = 0,1,2. The expression for T (K)

q is

T (K)
q = (−1)q

√
2K + 1

∑
q1q2

(
1 1 K

q1 q2 −q

)
x(1)

q1
x(1)

q2
. (A7)

We can show that

T
(0)

0 = −x2
1 + x2

2 + x2
3√

3
, T (1)

q = 0, (A8)

and

T
(2)

0 = 2x2
3 − x2

1 − x2
2√

6
,

T
(2)

1 = −x3(x1 + ix2),

T
(2)
−1 = x3(x1 − ix2), (A9)

T
(2)

2 = 1

2
(x1 + ix2)2,

T
(2)
−2 = 1

2
(x1 − ix2)2.

Note that T
(0)

0 = −R2/
√

3 and T (2)
q = 2(2π/15)1/2R2Y2q

(ϑ,φ), where Ylq(ϑ,φ) are spherical harmonics with ϑ and φ

being spherical angles.
We insert Eq. (A6) into Eq. (A5) and use Eq. (1). Then, we

obtain

Qij ≡ e(3xixj − R2δij ) = 3e
∑

q

u
(q)
ij T (2)

q , (A10)
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where

u
(q)
ij = (−1)q

√
5

∑
M1M2

u
(M1)
i u

(M2)
j

(
1 1 2

M1 M2 −q

)
. (A11)

The explicit expressions for the tensors u
(q)
ij are

u
(2)
ij = 1

2

⎛
⎝ 1 −i 0

−i −1 0
0 0 0

⎞
⎠,

u
(1)
ij = 1

2

⎛
⎝ 0 0 −1

0 0 i

−1 i 0

⎞
⎠,

u
(0)
ij = 1√

6

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠, (A12)

u
(−1)
ij = 1

2

⎛
⎝0 0 1

0 0 i

1 i 0

⎞
⎠,

u
(−2)
ij = 1

2

⎛
⎝1 i 0

i −1 0
0 0 0

⎞
⎠.

Note that u
(q)
ij = u

(q)
ji , u

(q)∗
ij = (−1)qu(−q)

ij ,
∑

ij u
(q)
ij u

(q ′)∗
ij =

δqq ′ , and
∑

i u
(q)
ii = 0.

The matrix elements of the tensor T (2)
q can be calculated

using the Wigner-Eckart theorem [58],

〈n′F ′M ′|T (2)
q |nFM〉

= (−1)F
′−M ′

(
F ′ 2 F

−M ′ q M

)
〈n′F ′‖T (2)‖nF 〉, (A13)

where the array in the parentheses is a 3j symbol and the
invariant factor 〈n′F ′‖T (2)‖nF 〉 is a reduced matrix element.
The selection rules for F and F ′ are |F ′ − F | � 2 � F ′ + F .
The selection rules for M and M ′ are |M ′ − M| � 2 and M ′ −
M = q. When we use Eqs. (A10) and (A13), we obtain [7]

〈n′F ′M ′|Qij |nFM〉

= 3eu
(M ′−M)
ij (−1)F

′−M ′
(

F ′ 2 F

−M ′ M ′ − M M

)

×〈n′F ′‖T (2)‖nF 〉. (A14)

Since the tensor operators T (2)
q do not act on the nuclear

spin degree of freedom, the dependence of the reduced matrix

element 〈n′F ′‖T (2)‖nF 〉 on F and F ′ may be factored out as
[58]

〈n′F ′‖T (2)‖nF 〉

= (−1)J
′+I+F

√
(2F + 1)(2F ′ + 1)

{
F ′ 2 F

J I J ′

}

×〈n′J ′‖T (2)‖nJ 〉, (A15)

where J is the quantum number for the total angular momen-
tum of the electrons, I is the nuclear spin quantum number,
and the array in the curly braces is a 6j symbol. The selection
rules for J and J ′ are |J ′ − J | � 2 � J ′ + J .

Furthermore, since the tensor operators T (2)
q do not act on

the electron spin degree of freedom, we have [58]

〈n′J ′‖T (2)‖nJ 〉

= (−1)L
′+S+J

√
(2J + 1)(2J ′ + 1)

{
J ′ 2 J

L S L′

}

×〈n′L′‖T (2)‖nL〉, (A16)

where L is the quantum number for the total orbital angular
momentum of the electrons and S the quantum number for
the total spin of the electrons. It follows from the addition
of angular momenta that the quadrupole matrix elements
may be nonzero only if |L′ − L| � 2 � L′ + L. On the other
hand, the parity of the tensor T (2)

q ∝ Y2q is even. Therefore,
the quadrupole matrix elements may be nonzero only if L

and L′ have the same parity. Thus, the electric quadrupole
transition selection rules for L and L′ are |L′ − L| = 0,2 and
L′ + L � 2. We note that, in the special case where L = 0 and
L′ = 2, we have 〈n′,L′ = 2‖T (2)‖n,L = 0〉 = √

2/3〈n′,L′ =
2|R2|n,L = 0〉.

APPENDIX B: QUADRUPOLE INTERACTION
OF AN ATOM WITH A PLANE-WAVE LIGHT

FIELD IN FREE SPACE

Assume that the field is a plane wave E = Eεeik·x in free
space, where E is the amplitude, k is the wave vector, and ε

is the polarization vector. In this case, the rms Rabi frequency
�̄

(0)
FF ′ is found from Eq. (8) to be

�̄
(0)2
FF ′ = e2|E |2

20h̄2 |〈n′F ′‖T (2)‖nF 〉|2
∑

q

∣∣∣∣
∑
ij

u
(q)
ij kiεj

∣∣∣∣
2

. (B1)

Without loss of generality, we assume that the field propa-
gates along the x3 direction and is linearly polarized along the
x1 direction. Then, we have k = (0,0,k) and ε = (1,0,0) in
the Cartesian coordinate system {x1,x2,x3}. These expressions
lead to ki = kδi,3 and εj = δj,1. Then, Eq. (B1) gives

�̄
(0)2
FF ′ = e2k2|E |2

20h̄2 |〈n′F ′‖T (2)‖nF 〉|2
∑

q

∣∣u(q)
31

∣∣2
. (B2)

From Eqs. (A12), we find
∑

q |u(q)
31 |2 = 1/2. Hence, we obtain

�̄
(0)2
FF ′ = e2k2|E |2

40h̄2 |〈n′F ′‖T (2)‖nF 〉|2. (B3)

The oscillator strength f
(0)
FF ′ is related to the rms Rabi

frequency �̄
(0)
FF ′ via formula (9). With the help of this formula,
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we find

f
(0)
FF ′ = meω

3
0

20h̄c2

|〈n′F ′‖T (2)‖nF 〉|2
2F + 1

. (B4)

The oscillator strength f
(0)
JJ ′ of the transition from a lower fine-

structure level |nJ 〉 to an upper fine-structure level |n′J ′〉 of
the atom in free space may be obtained by summing up f

(0)
FF ′

over all values of F ′. The result is [6,7,20]

f
(0)
JJ ′ = meω

3
0

20h̄c2

|〈n′J ′‖T (2)‖nJ 〉|2
2J + 1

. (B5)

The rate γF ′F of quadrupole spontaneous emission from
an upper hyperfine-structure level |n′F ′〉 to a lower hyperfine-
structure level |nF 〉 of the atom in free space is related to the
oscillator strength f

(0)
FF ′ as

γ
(0)
F ′F = e2ω2

0

2πε0mec3

2F + 1

2F ′ + 1
f

(0)
FF ′ . (B6)

Hence, we find

γ
(0)
F ′F = e2ω5

0

40πε0h̄c5

|〈n′F ′‖T (2)‖nF 〉|2
2F ′ + 1

. (B7)

The rate γ
(0)
J ′J of quadrupole spontaneous emission from an

upper fine-structure level |n′J ′〉 to a lower fine-structure level
|nJ 〉 of the atom in free space may be obtained by summing
up γ

(0)
F ′F over all values of F . The result is [6,7,20]

γ
(0)
J ′J = e2ω5

0

40πε0h̄c5

|〈n′J ′‖T (2)‖nJ 〉|2
2J ′ + 1

. (B8)

We have the relation

γ
(0)
J ′J = e2ω2

0

2πε0mec3

2J + 1

2J ′ + 1
f

(0)
JJ ′ . (B9)

It follows from Eq. (A15) that the relations between γ
(0)
F ′F

and γ
(0)
J ′J and between f

(0)
FF ′ and f

(0)
JJ ′ are [18,19,38]

γ
(0)
F ′F = (2F + 1)(2J ′ + 1)

{
F ′ 2 F

J I J ′

}2

γ
(0)
J ′J ,

f
(0)
FF ′ = (2F ′ + 1)(2J + 1)

{
F ′ 2 F

J I J ′

}2

f
(0)
JJ ′ . (B10)

APPENDIX C: GUIDED MODES OF A STEP-INDEX FIBER

Consider the model of a step-index fiber that is a dielectric
cylinder of radius a and refractive index n1 and is surrounded
by an infinite background medium of refractive index n2,
where n2 < n1. For a guided light field of frequency ω (free-
space wavelength λ = 2πc/ω and free-space wave number
k = ω/c), the propagation constant β is determined by the
fiber eigenvalue equation [40][

J ′
l (ha)

haJl(ha)
+ K ′

l (qa)

qaKl(qa)

][
n2

1J
′
l (ha)

haJl(ha)
+ n2

2K
′
l (qa)

qaKl(qa)

]

= l2

(
1

h2a2
+ 1

q2a2

)2
β2

k2
. (C1)

Here, we have introduced the parameters h = (n2
1k

2 − β2)1/2

and q = (β2 − n2
2k

2)1/2, which characterize the scales of the

spatial variations of the field inside and outside the fiber,
respectively. The integer index l = 0,1,2, . . . is the azimuthal
mode order, which determines the helical phase front and the
associated phase gradient in the fiber transverse plane. The no-
tations Jl and Kl stand for the Bessel functions of the first
kind and the modified Bessel functions of the second kind,
respectively. The notations J ′

l (x) and K ′
l (x) stand for the

derivatives of Jl(x) and Kl(x) with respect to the argument
x. We note that the fiber eigenvalue equation (C1) remains the
same when we replace β by −β or l by −l.

For l � 1, the eigenvalue equation (C1) leads to hybrid HE
and EH modes [40]. The eigenvalue equation is given, for HE
modes, as

Jl−1(ha)

haJl(ha)
= −n2

1 + n2
2

2n2
1

K ′
l (qa)

qaKl(qa)
+ l

h2a2
− R (C2)

and, for EH modes, as

Jl−1(ha)

haJl(ha)
= −n2

1 + n2
2

2n2
1

K ′
l (qa)

qaKl(qa)
+ l

h2a2
+ R. (C3)

Here, we have introduced the notation

R =
[(

n2
1 − n2

2

2n2
1

)2(
K ′

l (qa)

qaKl(qa)

)2

+
(

lβ

n1k

)2( 1

q2a2
+ 1

h2a2

)2]1/2

. (C4)

We label HE and EH modes as HElm and EHlm, respectively,
where l = 1,2, . . . and m = 1,2, . . . are the azimuthal and
radial mode orders, respectively. Here, the radial mode order
m implies that the HElm or EHlm mode is the mth solution to the
corresponding eigenvalue equation (C2) or (C3), respectively.

For l = 0, the eigenvalue equation (C1) leads to transverse
electric modes TE and transverse magnetic modes TM [40].
The eigenvalue equation is given, for TE modes, as

J1(ha)

haJ0(ha)
= − K1(qa)

qaK0(qa)
(C5)

and, for TM modes, as

J1(ha)

haJ0(ha)
= −n2

2

n2
1

K1(qa)

qaK0(qa)
. (C6)

We label TE and TM modes as TE0m and TM0m, respectively,
where m = 1,2, . . . is the radial mode order. The subscript 0
implies that the azimuthal mode order of TE and TM modes is
l = 0. The radial mode order m implies that the TE0m or TM0m

mode is the mth solution to the corresponding eigenvalue
equation (C5) or (C6), respectively.

According to Ref. [40], the fiber size parameter V is
defined as V = ka

√
n2

1 − n2
2. The cutoff values Vc for HE1m

modes are determined as solutions to the equation J1(Vc) = 0.
For HElm modes with l = 2,3, . . . , the cutoff values are
obtained as nonzero solutions to the equation (n2

1/n2
2 + 1)(l −

1)Jl−1(Vc) = VcJl(Vc). The cutoff values Vc for EHlm modes,
where l = 1,2, . . . , are determined as nonzero solutions to the
equation Jl(Vc) = 0. For TE0m and TM0m modes, the cutoff
values Vc are obtained as solutions to the equation J0(Vc) = 0.
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The electric component of the field can be presented in the
form

E = 1
2Ee−iωt + c.c., (C7)

whereE is the amplitude. For a guided mode with a propagation
constant β and an azimuthal mode order l, we can write

E = eeiβz+ilϕ, (C8)

where e is the mode profile function. In order to construct the
profile functions of a complete set of guided modes, we allow
β and l in Eq. (C8) to take not only positive but also negative
values. We decompose the vectorial function e into the radial,
azimuthal, and axial components denoted by the subscripts r ,
ϕ, and z, respectively. We summarize the expressions for the
mode functions of quasicircularly polarized hybrid modes, TE
modes, and TM modes in the following [40].

1. Quasicircularly polarized hybrid modes

We consider quasicircularly polarized hybrid modes N =
HElm or EHlm. It is convenient to introduce the parameter

s = l

(
1

h2a2
+ 1

q2a2

)[
J ′

l (ha)

haJl(ha)
+ K ′

l (qa)

qaKl(qa)

]−1

. (C9)

Then, we find, for r < a,

er = iA
β

2h
[(1 − s)Jl−1(hr) − (1 + s)Jl+1(hr)],

eϕ = −A
β

2h
[(1 − s)Jl−1(hr) + (1 + s)Jl+1(hr)], (C10)

ez = AJl(hr),

and, for r > a,

er = iA
β

2q

Jl(ha)

Kl(qa)
[(1 − s)Kl−1(qr) + (1 + s)Kl+1(qr)],

eϕ = −A
β

2q

Jl(ha)

Kl(qa)
[(1 − s)Kl−1(qr) − (1 + s)Kl+1(qr)],

ez = A
Jl(ha)

Kl(qa)
Kl(qr). (C11)

Here, the parameter A is a constant that can be determined
from the propagating power of the field.

2. TE modes

We consider transverse electric modes N = TE0m. For
r < a, we have

er = 0, eϕ = i
ωμ0

h
AJ1(hr), ez = 0. (C12)

For r > a, we have

er = 0, eϕ = −i
ωμ0

q

J0(ha)

K0(qa)
AK1(qr), ez = 0. (C13)

3. TM modes

We consider transverse magnetic modes N = TM0m. For
r < a, we have

er = −i
β

h
AJ1(hr), eϕ = 0, ez = AJ0(hr). (C14)

For r > a, we have

er = i
β

q

J0(ha)

K0(qa)
AK1(qr),

eϕ = 0, (C15)

ez = J0(ha)

K0(qa)
AK0(qr).
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