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Abstract

We propose a novel method to test the existence of community structure in undirected, real-

valued, edge-weighted graphs. The method is based on the asymptotic behavior of extreme

eigenvalues of a real symmetric edge-weight matrix. We provide a theoretical foundation for

this method and report on its performance using synthetic and real data, suggesting that this

new method outperforms other state-of-the-art methods.

Introduction

Clustering objects based on their similarities is a basic data mining approach in statistical anal-

ysis. In particular, graphical data (or network data) that reflect relationships between nodes,

are often acquired in various scientific domains such as protein-protein interaction, neural

networks, and social networks [1], which potentially provide useful information on the under-

lying structure of the system in question.

Specifically, our interest is to detect possible ‘community’, or cluster structure of undirected

graphs, which is defined as block structure of a graph (Fig 1A), where the corresponding edge-

weight matrix consists of several cluster blocks (four cluster blocks in Fig 1B). To detect such

structure, a number of clustering methods have been proposed in the statistical physics and

information theory literature [2–4]. Mainly, there are four approaches: graph partitioning,

hierarchical clustering, partitional clustering, and spectral clustering [1, 4, 5].

However, the conventional framework for analysis of community structure is typically an

unsigned graph in which an edge weight is constrained to be non-negative. Recently, increased

attention has been paid to analyzing signed graphs that allow negative weights [6]. Indeed, in

real data, it is often essential to account for negative, as well as positive relationships, for a bet-

ter understanding of the underlying community structure in a graph such as a social network.

Most methods in the literature, however, address this problem in a rather limited framework

in which edge weights within a cluster are positive while those between clusters are negative

(i.e., weakly balanced structure) [6]. On the other hand, how to cluster nodes in a more general

framework, such as negative edge weights within a cluster, remains an open question [7].

In the present paper, we address the question of community detection in a real-valued

graph. Let us consider a general framework for community structure as follows. We assume

that edge weights are independently generated from a generative model that is specific to a
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particular cluster block, which characterizes a distribution of edges in each cluster block. Fur-

ther, we assume that these distributions are distinguishable in terms of their mean and vari-

ance. For this framework, as a first step toward addressing a clustering problem, we aim to

develop a statistical method for testing the existence of underlying community structure.

From the theoretical point of view, there is the issue of detectability of community struc-

ture. In the case of unweighted graphs, this issue has been intensively studied because of both

mathematical and physical interest [8–10]. In the situation in which an edge connection is gen-

erated by a probability Pab = ca,b/n where ca,b is constant and n is the number of nodes, it has

been shown that it is impossible for any algorithm to detect underlying community structure

(as n!1) under certain circumstances. Further, it is shown that instead of a conventional

adjacency matrix, a non-backtracking matrix, which represents non-backtracking walks in a

network, provides a better platform for detection algorithms [11]. In the present paper, how-

ever, we focus on the case in which a generative model for edges has fixed parameters, irrespec-

tive of the number of nodes n. In the context of unweighted graphs, this suggests that Pa,b =

ca,b. In this situation, it was shown that it is possible to detect community structures (in case of

bisection) as n goes to1 [12, 13]. In the present paper, we consider such a case.

Regarding statistical tests on community structure, several methods have been proposed in

the context of unsigned (weighted or unweighted) graphs [1]. A common approach to this

problem is to evaluate the stability of cluster solutions when the data in question are noisy [14,

15]. If similar cluster solutions are obtained for graphs with some perturbation of edge-

weights, this suggests the stability of the cluster solution for the original graph, providing the

evidence of the community structure. The bootstrap method employs [16] a similar approach.

A second approach is based on comparisons of cluster solutions for the original graphs with

solutions of randomly permuted graphs. As a statistic for testing significance, the entropy of

graph configurations [17], or ‘C-score’ focusing on the lowest internal degrees [18] have been

proposed. The common feature of these state-of-the-art methods is that a cluster solution to a

given graph is required for testing. In other words, the test result depends on the clustering

Fig 1. Illustration of two-way community structure in a graph. Panel (A): Graphical representation (edge-weighted graph). Panel (B): Matrix representation (edge-

weight matrix), where strengths of relationships between nodes are denoted in color.

https://doi.org/10.1371/journal.pone.0194079.g001
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method employed. In this sense, these methods test the significance of a resulting cluster solu-

tion, rather than the existence of community structure itself. For the general framework of our

interest, such an approach is not applicable because appropriate clustering methods are not

readily available. In [19–21], the spectral homophily of a multi-type random network has been

proposed to capture connectivity between communities. This method uses the second largest

eigenvalue of a symmetric matrix with expected fractions of the links where the partition in

communities is exogenous. However, it is not straightforward to apply their results to our set-

ting of real-valued edge-weights. Moreover, we consider a situation in which the partition in

communities is not exogenous.

We propose a general method for testing community structure of edge-weighted graphs

with real-valued weights, which does not require a cluster solution. Our method is based on

the asymptotic behavior of eigenvalues of the normalized weight matrix of graph, which is

described by Wigner semicircular law when there is no community structure. As in our

approach, in the case of binary-valued graphs, a statistical test for community structure has

recently been proposed [22], based on the exact asymptotic behavior of (maximum) eigenval-

ues. However, that method is not directly applicable to real-valued graphs that account for

both mean and variance, because the Bernoulli distribution assumed in their method cannot

properly capture these quantities. Our method provides a nontrivial extension of community

structure detection to real-valued graphs, and broad applications to network data. In the fol-

lowing sections, first, a theoretical foundation for our method is provided. Second, it is shown

that our method outperforms other methods with synthetic data. Third, we apply our method

to real data.

Method

Our statistical test on community structure is based on the probability distribution of eigenval-

ues of the normalized edge-weighted matrix (we define ‘normalization’ later). We make the

best use of asymptotic results on such a distribution when there is no community structure,

which has been intensively studied in the field of Random Matrix Theory of Theoretical Phys-

ics [23]. In this section, we provide a theoretical foundation for our statistical test.

Setting

We consider a clustering problem of nodes for undirected edge-weighted graphs G = (V, E)

where V consists of n vertices {v1, . . ., vn}, and E is represented by the edge-weight matrix Wn,

which is a n × n symmetric (real Hermitian) matrix with elements wi;j ¼ wj;i 2 R and wi,i = 0

(R denotes a set of real numbers). Let us assume that there are K clusters of nodes, denoting

them as c1, . . ., cK. We define a cluster block (k, k0) as a set of weights wi,j such that nodes i and

j belong to the cluster ck and ck0, respectively: vi 2 ck and vj 2 ck0 (1� k, k0 � K). Here, we

assume that each off-diagonal weight wi,j is independently drawn from a certain distribution.

With this assumption, we define a K-way community structure as characterized by different

distributions in K × K cluster blocks. To elaborate this definition, we assume the following dis-

tribution for each cluster block:

wi;j � gk;k0 ði 6¼ jÞ

gk;k0 ¼ mk;k0 þ g � sk;k0 ;
ð1Þ

where vi 2 ck, vj 2 ck0, and g is a certain probability distribution. This definition suggests that a

pair of parameters (μk,k0, σk,k0) characterizes each cluster block, hence, community structure

Statistical test on community

PLOS ONE | https://doi.org/10.1371/journal.pone.0194079 March 20, 2018 3 / 18

https://doi.org/10.1371/journal.pone.0194079


(Fig 2A). Note that in this definition we exclude the degenerate case in which μk,k0 = constant
and σk,k0 = 0 such that variances become zero for the whole set of {wi,j}.

Since the community structure of interest is based on differences of weight distributions, it

is translation- and scale-invariant for all weights. Hence, to simplify the problem, as a prepro-

cess, we standardize off-diagonal elements of Wn using all off-diagonal weights wi,j(i 6¼ j) so

that the mean is zero and the variance one. We denote as S the mapping that standardizes the

edge-weight matrix in this way, transforming each element of the matrix as

S : wi;j ! ðwi;j � mÞ=s for i 6¼ j

wi;i ! 0;
ð2Þ

where μ and σ are the mean and the standard deviation of the whole off-diagonal elements

{wi,j}. Practically, these mean and standard deviation may be replaced by the empirical coun-

terparts μemp and σemp. For the standardized edge-weight matrix S(Wn), we assume that the

mean and the standard deviation of g in Eq (1) are zero and one, respectively. In this setting,

the mean and the standard deviation in cluster block (k, k0) are μk,k0 and σk,k0, respectively. The

differences of these parameters distinguish between clusters in terms of the first and second

moments, while controlling higher moments than two. Using this setting of community struc-

ture, we define no community case as a single community with K = 1 where μk,k0 = 0 and σk,k0 =

1 for S(Wn). Note that since g is arbitrary, including a mixture distribution of a certain distri-

bution family, our definition of no community structure includes the case in which each

weight is generated from a specific distribution in a list of distributions in random order.

Importantly, when we shuffle the off-diagonal elements Wn at random (in element-wise man-

ner), the community structure always disappears. Indeed, in such a case, each element w0i;j of

the shuffled matrix W 0

n independently and identically follows the mixture distribution

Fig 2. Setting of community structure and Tracy-Widom distribution. Panel (A): Illustration of the setting of community structure in a matrix representation where

nodes are arranged in the order of cluster labels. Each cluster block is characterized by mean μ and standard deviation σ with cluster block index (k, k0). Panel (B): The

density function of the Tracy-Widom distribution for Gaussian orthogonal ensembles with β = 1 (the first derivative of F1(x) in Eq (7)), generated by the function dtw
in R-package {RMTstat}. The critical values at significance level α = 0.05 and α/4 = 0.0125 are 0.979 (green line) and 1.889 (red line), respectively.

https://doi.org/10.1371/journal.pone.0194079.g002
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consisting of different components, i.e., ∑k,k0 πk,k0 gk,k0 where πk,k0 is the proportion of elements

of cluster block (k, k0) for the original matrix Wn. We use this property for our statistical test as

an alternative way to estimate confidence intervals.

Statistical test

In this section, we develop a statistical test for the existence of community structure defined in

the previous section (i.e., K = 1 vs. K> 1). We base our test on the asymptotic behavior of the

eigenvalues of S(Wn) (n goes to1) when there is no community structure. A useful result of

Random Matrix Theory in this context is that if the elements of an infinite dimensional sym-

metric matrix X independently follow a certain distribution with mean zero and variance one,

then the empirical (random) distribution of the eigenvalue λ of Xn=
ffiffiffi
n
p

, where Xn is the princi-

pal submatrix of X for the first n rows and columns, converges almost surely to a Wigner semi-

circular distribution as n goes to1 (semicircular law).

fscðlÞ �
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � l

2
p

:

Note that this law holds for any generative distribution of the elements in matrix X (as long as

independently drawn), which is referred to as the universality property of the law. Also, this

law holds even if we replace diagonal elements with zero’s, as in our case. Further, strong Bai-

Yin theorem suggests that with the additional condition of the distribution of each element

(namely, the existence of a fourth moment), the largest magnitude of eigenvalues is almost cer-

tainly bounded by 2. These two theorems imply that the largest magnitude of eigenvalues

almost surely converges to two ([24], p.136).

In order to apply this property to our context, we consider a normalization mapping of

edge-weight matrix Wn, transforming each element of the matrix as

T : wi;j ! Sðwi;jÞ=
ffiffiffi
n
p

; ð3Þ

where S is the standardization mapping in Eq (2). Now, let us assume that the elements in an

edge-weight matrix Wn are generated as in Eq (1). In this setting, if the largest magnitude of

eigenvalues of T(Wn) does not converge to two, then, there should be some K-way community

structure in the graph (K> 1) because of our assumption in Eq (1) (Note that without the

assumption in Eq (1), this property does not hold. For instance, one can make a scale-free

graph where the eigenvalues do not follow the semicircular law [25]). However, the converse

argument does not necessarily hold. That is to say, the fact that the convergence of the largest

magnitude of eigenvalues to two does not imply that there is no community structure (i.e.,

K = 1). A simple counter example is given as follows (proof in S1 Appendix).

Example 1. LetWn be a n × n symmetric edge-weight matrix that has K-way community
structure with the same cluster size (n/K) as defined in the previous section. Suppose that μk,k0 = 0
for 8k, k0, s2

k;k0 ¼ 0 for k 6¼ k0, and s2
k;k ¼ 1. Then, the largest magnitude of eigenvalues of T(Wn)

almost surely converges to two as n goes to1.

Nonetheless, in our setting, we can show that an additional condition on the eigenvalue dis-

tribution for an exponentially mapped edge-weight matrix ensures that the converse argument

also holds. For this purpose, we introduce the exponential mapping Exp that transforms each

element of Wn as

Exp : wi;j ! exp ðt � wi;jÞ for i 6¼ j

wi;i ! 0;
ð4Þ
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where t 2 R is a tuning parameter (we do not explicitly denote the dependence of Exp on t
because of cluttering). Subsequently, we define the normalization mapping Te for the exponen-

tially transformed matrix as

Te : wi;j ! SðExpðwi;jÞÞ=
ffiffiffi
n
p

: ð5Þ

Now, the following theorem provides a necessary and sufficient condition for the existence

of community structure (proof in S2 Appendix).

Theorem 1. LetWn be a n × n weight matrix defined in the previous section with the fixed
proportion of cluster sizes (r1, . . ., rK) and the pairs of fixed parameters {(μk,k0, σk,k0)}(k, k0 = 1, . . .,

K). Suppose that there exists the moment-generating function M(t) in an open interval containing
zero for g (g is defined in Eq (1)). Then, the following statements (C1) and (C2) are equivalent:

(C1) There is no community structure (i.e., K = 1)

(C2) Each of the largest magnitudes of eigenvalues of T(Wn) and Te(Wn) for any non-zero real
value t0 6¼ 0 almost surely converges to two, as n goes to1.

Theorem 1 motivates us to use the largest magnitude of eigenvalues of edge-weight matrix

to establish a statistical test on the null hypothesis H0:

H0 : There is no community structure: ð6Þ

Practically, to test the null hypothesis H0, we focus on positive and negative extreme values of

eigenvalues. The largest eigenvalue may deviate positively from two, while the smallest eigen-

value may deviated negatively from -2.

Comments.

1. Strictly speaking, the independent assumption on weights is broken if we transform them

by T or Te using an empirical mean and standard deviation μemp and σemp. For simplicity,

however, we ignore such an effect in the present paper.

2. Our method is not applicable to a directed graph, because in that case an edge-weight

matrix becomes non-symmetric; hence, Theorem 1, which is based on properties of eigen-

values of symmetric matrices, does not hold.

3. The spectral method in [19–21] takes a slightly different approach from our method. In the

context of unweighted graph, they consider a symmetric matrix representing an expected

fraction of edges between two communities (hence, the summation of entries in a row is

one). Further, the size of the matrix in their approach is K × K while that of our method is

n × n. Moreover, in their approach, the second largest eigenvalue is considered because the

largest eigenvalue is constant (always one). As other community detection methods, it is

not trivial to generalize their method to real-valued graphs.

4. Theorem 1 implies that if there is no community structure (i.e., edges are i.i.d. generated),

the ratio of the second largest eigenvalue to the largest eigenvalue converges to one. This is

a general property to a symmetric matrix. This result is contrasted with Brody’s conjecture

that for a positive non-symmetric matrix in which all edges are i.i.d. generated, the ratio of

the second largest eigenvalue to the largest eigenvalue goes to zero [26–28].

5. The exponentially transformed matrix in Theorem 1 does not replace non-backtracking

matrix in [11]. Rather, the exponentially transformed matrix serves to capture differences

of variances in generative models.

Statistical test on community
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6. In the current setting, means and variances in generative models are fixed. One may won-

der how much this condition can be relaxed. From the argument about unweighted graphs

by [12, 29], we speculate that one may be able to relax the condition such that the difference

of means may be larger than O(log n/n). Indeed, assuming that this condition holds after

standardizing the edge-weight matrix, Eq (3) in S2 Appendix becomes λ1(Mn)� A(log n)2.

Hence, in this relaxed condition as well as in non-relaxed condition, it holds that if there is

community structure with equal variances the largest magnitude of eigenvalues does not

converge to two (the first part of the proof of Theorem 1). Moreover, using the relaxed con-

dition, it can be shown that for the unstandardized matrix, mean differences should be also

larger than O(log n/n). Note that from the prime number theorem [30], the reciprocal of

log n/n denotes the number of prime numbers less than n. This observation provides us the

following interpretation of the results. If we assume that the community size is the same

across different communities, the number of prime numbers denotes the number of irre-

ducible topologies of communities (for example, four-community structure may be

reduced to two-community structure by paring two communities while three-community

structure is not reducible). We speculate that such an irreducible community structure is

easier to detect than the remainder of structures and that if such structures are more avail-

able, the detection of community structure becomes easier. This interpretation suggests

that the number of prime numbers may be inversely related to detectable differences of

means, which is consistent with the lower bound O(log n/n).

7. One may wish to tune the value of t0 as follows. We consider two-community structure,

assuming that edges within communities are generated by Nðm; s2
1
Þ while edges between

communities by Nðm; s2
2
Þ. The first moment (mean) of the exponentially transformed

variable generated from N(μ, σ) is given by exp(μt + σ2t2/2) while the second moment is exp

(2μt + 2σ2t2). Using these results, we can analytically evaluate the difference in means of the

exponentially transformed variables between Nðm;s2
1
Þ and Nðm; s2

2
Þ normalized by the

square root of the average of variances. It can be shown that in this case μ is irrelevant for

the normalized difference. So, one may choose t0 that maximizes the normalized difference

for a given σ1 and σ2, or, simply the ratio r ¼ s2
1
=s2

2
. From Fig 3, one may choose t0 between

0.5 and 1.

The behavior of the largest eigenvalue has been well studied in the literature when elements of

the edge-weight matrix Wn are independently generated by certain symmetric distributions g
(typically Gaussian, otherwise, its density function may be even with less heavier tails than

Gaussian distributions) with mean zero and variance one for non-diagonal elements and with

mean zero and variance two for diagonal elements. In this setting, the largest eigenvalue λmax

asymptotically follows the Tracy-Widom distribution for Gaussian orthogonal ensembles with

parameter β = 1:

lim
n!1

Pðlmax � 2þ x=n2=3Þ ¼ F1ðxÞ; ð7Þ

where F1ðxÞ � expf� ð1=2Þ
R1
x qðyÞdygðF2ðxÞÞ

1=2
with F2ðxÞ � expf�

R1
x ðy � xÞq2ðyÞdyg

where q(x) is the solution of Painlevé II equation d2q/dx2 = xq + 2q3 with the boundary condi-

tion q(x) * Ai(x) as x!1 [31, 32]. Note that the Tracy-Widom distribution is for the maxi-

mum eigenvalue of a specific type of symmetric matrix (e.g., Gaussian ensembles) while

the semicircular law holds for the distribution of eigenvalues in a general type of symmetric

matrix (Wigner ensembles). Moreover, in our framework, the diagonal elements are all zero,

which is a slightly different situation than the conventional assumption for the Tracy-Widom
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distribution. Nevertheless, because of the universality property of the Tracy-Widom distribu-

tion ([33], Theorem 21.4.3), we can safely apply Eq (7) to our context (obviously, our context

satisfies the condition of universality that the diagonal part should be symmetric with a sub-

Gaussian tail).

Using the Tracy-Widom distribution in Eq (7), we set confidence intervals for our statistical

test as follows. For the normalized edge-weight matrix T(Wn), we set the confidence interval

CImax of the largest eigenvalue λmax at level α. Since the violation of the semicircular law occurs

as the positive deviation from the expected value, we consider the one-sided confidence inter-

val as (−1, q) where q is a critical value at significant level α, i.e., P(λmax� q|H0) = α, which is

estimated by F1(x) in Eq (7) (refer to the shape of its first derivative in Fig 2B). If the generative

distribution g is not symmetric or is heavy-tailed, one may evaluate the distribution of the larg-

est eigenvalues by means of a permutation test for T(Wn). Though the permutation test may

provide an accurate confidence interval, it is not computationally efficient because we need to

compute eigenvalues a large number of times. Therefore, when the number of nodes is large,

one may opt for the Tracy-Widom distribution to efficiently obtain confidence intervals. In

addition to the largest eigenvalue, we also test the smallest eigenvalue λmin, which may violate

the semicircular law (what matters is indeed the largest magnitude of eigenvalue). In this case,

the confidence interval CImin is given by (−q,1). In similar fashion, we test the largest and the

smallest eigenvalue of the exponentially normalized weight matrix. We first standardize the

data and then apply the mapping Te where we set t0 to 1/2 as default. This results in the trans-

formed matrix Te(S(Wn)) (we denote the confidence intervals as CI0max and CI0min, respectively).

Since this procedure involves a series of four statistical tests, we set the level of significance to

α/4 for each test, taking into account the Bonferroni correction (Algorithm 1; IðaÞ is an indica-

tor function: 1 for correct a; 0 otherwise).

Fig 3. Normalized differences of exponentially transformed variables between normal distributions N(μ, σ1) and

N(μ, σ2). The X-axis denotes t0 in Theorem 1 and the Y-axis normalized difference. We set r ¼ s2
1
=s2

2
to 1.1, 1.6, 2.1,

2.6, and 3.1.

https://doi.org/10.1371/journal.pone.0194079.g003
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Algorithm 1. Testing the existence of community structure
Input: Edge-weight matrix W, confidence intervals CImax, CImin, CI0max and
CI0min at level α/4.
s  0
s sþ I (max. eigenvalue of T(W) 2 CImax)
s sþ I (min. eigenvalues of T(W) 2 CImin)
s sþ I (max. eigenvalue of Te(S(W)) 2 CI0max)
s sþ I (min. eigenvalue of Te(S(W)) 2 CI0min)
if s = 4 then
Accept H0

else
Reject H0

end if

Simulation study on synthetic data

In this section, we report on a simulation study to evaluate the performance of our method.

First, we investigate the validity of using F1(x) in Eq (7) to approximate the distribution of the

maximum eigenvalue λmax when n is finite. Second, we investigate the power of our method

when the null hypothesis H0 is not true.

Third, we compare the performance of our method outlined in Algorithm 1 with other

methods. Basically, existing methods consist of two steps. In the first step, a clustering solu-

tion for a given graph is produced by a (arbitrary) clustering method. The resulting solution

is subsequently compared with clustering solutions for randomized graphs, and is further

evaluated with a specific statistic. In this study, we adapt one of the state-of-the-art methods

based on clustering entropy (‘CE’, originally designed for a unweighted graph) [14]:

S ¼ � 1

L

P
ði;jÞfpi;j log

2
pi;j þ ð1 � pi;jÞlog

2
ð1 � pi;jÞg where L is the total number of edges in the

graph, and pi,j is ‘in-cluster probability’ that measures the proportion of concordance of clus-

ter memberships of nodes i and j between the given graph and the randomized graph over a

number of different noisy contaminations (we set the number of such contaminations to

100). Regarding clustering, to the best of our knowledge, there is no clustering method that is

specifically designed to detect community structure based on differences of distribution

patterns. As a bail-out procedure, we consider one of the state-of-the-art methods for signed

networks: Signed spectral clustering based on a normalized, signed Laplacian method (‘Sign-

edSpec’), which is designed to detect weakly balanced structure of graphs, i.e., positive

weights within clusters and negative weights between clusters [6]. We also consider conven-

tional spectral clustering (normalized Laplacian method, ‘ConvSpec’), which is applicable to

graphs with positive weights. To apply the method ‘ConvSpec’ in our context, we transform

an edge-weight matrix into a positively-weighted matrix by subtracting min
i;j

wi;j from each

weight. Note that the method ‘ConvSpec’ is equivalent to the method ‘SignedSpec’ when edge

weights are all positive.

Data generation

For the data structure in this simulation study, we adopted that in [34], setting the number of

clusters to five and cluster size to (10s, 20s, 30s, 40s, 50s), where we manipulated integer s. In

this setting, we have 5 × 5 = 25 cluster blocks. In each cluster block, weights were indepen-

dently drawn from a Gaussian distribution N(μk,k0, σk,k0) where μk,k0 and s2
k;k0 are the mean and

the variance for a cluster block (k, k0). We generated 100 datasets for each setting.
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Results

When the number of nodes ranges from 150 to 1500, the distribution function F1(x) in Eq (7)

provides a good approximation of the critical value at a significance level of α = 0.05 under the

null hypothesis H0 (Fig 4A). Since the function F1(x) provides the asymptotic probability dis-

tribution, this result suggests that the function F1(x) also provides a good approximation of the

critical value when the number of nodes exceeds this range. In regard to statistical power, it is

implied that our method can readily detect the existence of community structure when means

μk,k0 in each block differ by at most 0.3 (3 × 0.05 + 3 × 0.05) when σk,k0 = 1 with the number of

nodes being 750 (Fig 4B). On the other hand, the power may not be sufficient when differences

Fig 4. Boxplots represent distributions of the largest eigenvalues for various settings. Panel (A): No-community case (K = 1) of Gaussian ensembles for different

number of nodes from 150 to 1500 in x-axis. Panel (B): Five-way community case with the number of nodes 750 and cluster size (50, 100, 150, 200, 250). Each cluster

block is characterized by means of a Gaussian distribution (while fixing variance = 1), which is randomly chosen from {−μ, μ} with equal probabilities. The value of μ is

manipulated from 0 to 0.5 of width 0.1 in x-axis. Panel (C): A five-way community case characterized by variance (while fixing mean = 0), which is randomly chosen

from {1, σ2} with equal probabilities. The value of σ is manipulated from 1 to 6 of width 1 in x-axis. Panel (D): A five-way community case in the same setting as in (C),

but each edge-weight matrix is transformed by the exponential mapping Exp in Eq (4) with t0 = 1/2. In all panels, the green line denotes the 95 percentile of the largest

eigenvalue under the null hypothesis H0 in (6).

https://doi.org/10.1371/journal.pone.0194079.g004
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among cluster blocks are characterized by variances s2
k;k0 (Fig 4C). However, the application of

our method to the exponentially transformed matrix by Exp considerably improves the power

(Fig 4D). All these results suggest good performance of our method in testing for the existence

of community structure in a graph.

Lastly, we compare the performance of our method with the remaining methods. We

applied our method as outlined in Algorithm 1 to synthetic data, setting α to 0.05 (hence,

α/4 = 0.0125). When the community structure is characterized by mean differences, the per-

formance of our method is comparable with the clustering entropy method with signed spec-

tral clustering (CE + SignedSpec), while it outperforms the clustering entropy method with

conventional spectral clustering (CE + ConvSpec) (Fig 5A). On the other hand, when the com-

munity structure is characterized by scale differences, our method considerably outperforms

other methods (Fig 5B).

Application to real data 1

In this section, we test our method on real data. The objective is to evaluate the performance of

our method when it is applied to various types of real graph data.

Data

First, we applied our method to the following benchmark graph datasets: Karate club, Karate
[35]; co-authorships in network science, Co-authours [36]; Tribal relationships in highland

New Guinea, Gahuku-Gama [37]. The datasets of Karate and Co-authours are binary (i.e., {0,

1}), while the edges in the dataset of Gahuku-Gama take discrete signed values, {−1, 0, 1}. The

number of nodes for these datasets are 34, 1589, and 16, respectively. These datasets have been

well studied in terms of detecting community structure [7].

Second, we applied our method to a real-valued edge-weighted graph: resting state func-

tional MRI (fMRI) data [38]. The original dataset consists of the level of BOLD (Blood-Oxy-

gen-Level Dependent) signals at short intervals, which reflects neural activity at tiny regions of

Fig 5. Comparison of the power of the test for three different methods. Our method, the clustering entropy method for the resulting cluster solution using the

signed spectral clustering method (CE + SignedSpec), and the clustering entropy method using conventional spectral clustering (CE + ConvSpec). The true

community structure is set as follows: cluster size (50, 100, 150, 200, 250); means and variances are manipulated in x-axis of Panel (A) and (B) as in Fig 4B and 4C,

respectively.

https://doi.org/10.1371/journal.pone.0194079.g005
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the brain, called ‘voxel’ (4949 voxels in this dataset). We pre-processed this dataset by evaluat-

ing temporal correlations among these voxels and carrying out Fisher’s z-transformation for

them, which results in a 4949 edge-weight matrix W. The objective in this dataset is to test our

method on a real-valued, edge-weight matrix and to draw useful inferences from the analysis.

Results

For the first group of real datasets, our method finds some community structure (i.e., K> 1),

whether we estimate critical values using the Tracy-Widom distribution or a permutation test

(Fig 6). Note that in the binary case, we always obtain the same results for the original matrix

and for the exponentially transposed matrix, because T(W) = Te(S(W)). So, we tested only

T(W) in Karate and Co-authors datasets, setting the significance level to α/2.

It is observed in Fig 6 that confidence intervals largely match between the Tracy-Widom

distribution and the permutation test for the Karate and Co-authors datasets. On the other

hand, there is some discrepancy between these for Gahuku-Gama data. A possible explanation

for this is due to the small number of nodes in the dataset: the Tracy-Widom distribution

describes the asymptotic behavior of the eigenvalue when n goes to1.

For fMRI dataset, our test rejected the null hypothesis H0, yielding the maximum and mini-

mum eigenvalues as 31.0 and -7.2 for T(W), and 31.8 and -10.9 for Te(S(W)), which provides

strong evidence that community structure exists in this graph. Furthermore, we carried out

our test for subsets of voxels in brain regions that are anatomically predefined, where the num-

ber of voxels ranges from 13 to 498. Our test results suggest that community structure may

exist in each region (except for brain region 16) (Fig 7). This result supports the conjecture on

Fig 6. Results of application of our method to real datasets. Karate, Co-authors, and Gahuku-Gama from left to right panels. A star denotes the maximum or

minimum eigenvalues of the normalized matrix T(W), while a cross denotes those of the exponentially normalized matrix Te(S(W)). The top or bottom edges of boxes

denote critical values of these eigenvalues at significance level α/2 with α = 0.05 for Karate and Co-authors datasets, and α/4 for Gahuku-Gama dataset. These critical

values resulted from a permutation test with 1000 randomized realizations. In contrast, red dashed lines denote critical values derived from the Tracy-Widom

distribution F1(x).

https://doi.org/10.1371/journal.pone.0194079.g006
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heterogeneity of brain activities in anatomically defined brain regions, discussed in the neuro-

science literature [39].

Application to real data 2

We consider further application of our method to real data, focussing in unweighted graphs.

The object is to compare its performance and computation time with other relevant methods,

which specialize in unweighted graphs. Though our method has been developed for weighted

graphs, it works for unweighted graphs as well, because a unweighted graph is a special case

of weighted graph. In addition to performance, we also compare computation time in this

context.

Fig 7. Results of application of our method to the fMRI dataset. Stars denote the maximum or minimum eigenvalues λ for normalized weight matrices by mapping

T in various brains regions with an edge-weight matrix Wk,k, indexed by the brain region k in the x-axis. Crosses denote counterparts for exponentially normalized

weight matrices by the mapping Te. Horizontal lines denote lines y = −2 and y = 2, which correspond to values at which the minimum and maximum eigenvalues

asymptotically converge.

https://doi.org/10.1371/journal.pone.0194079.g007
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Relevant methods

One of the most popular approaches to detection of communities in an unweighted graph is

based on ‘modularity’ [40, 41], which is defined as

Q ¼
X

k

ðek;k � a2

kÞ; ð8Þ

where ek,k0 is one-half of the fractions of edges between cluster k and k0, and ak = ∑k0 ek,k0. The

modularity Q denotes deviation of the number of edges from possible random configurations,

hence, serving as an objective function for finding a community structure. The algorithm of

optimizing Q is to start with node-community (a community consisting of a single node) and

to aggregate communities to increase Q in a similar fashion to a hierarchical clustering algo-

rithm [42]. We use an algorithm of this kind proposed by [41], which is referred to as ‘New-

man’. On the other hand, Louvain methods [43–45] are a variant of the modularity-based

methods, which optimizes Q (or, different type of Q) by means of iterating the following two

steps. The first step is to optimize Q by aggregating communities in the aforementioned man-

ner. The second step is to re-parameterize each community as a single node. These steps are

alternatively carried out until no further increment in Q is possible. Here, we use one of

the most popular methods by [43], referred to as ‘Louvain’. For a threshold of detecting com-

munity structure, we use an analytical approximation of modularity for an Erdős-Rényi ran-

dom graph with n nodes and probability p of connecting two nodes, which is given as

ð1 � 2=
ffiffiffi
n
p
Þð2=ðpnÞÞ2=3

by [46]. Note that in a sparse graph, even without any community

structure, modularity Q can take a large value. The analytical approximation captures this

point, providing a useful criterion of community detection, though the confidence interval is

not readily available. For another relevant method to modularity, we consider an approach

based on eigenvalues of a modularity matrix by [47]. In a similar line to the graph Laplacian

[48], this method partitions nodes based on the eigenvector of the modularity matrix corre-

sponding to the largest positive eigenvalue. By repeatedly evaluating such an eigenvector, we

continue to partition nodes until no further positive eigenvalue is obtained. Here, we use this

method (referred to as ‘Split’) for the first partition of nodes, evaluating the largest eigenvalue

of the modularity matrix. Furthermore, we consider a versatile approach: a Bayesian clustering

method for communities in a graph by [49]. This method explicitly models community mem-

berships as probabilistic parameters, which are optimized in a Bayesian manner (referred to as

‘Bayesian’). Lastly, we include a bootstrap method by [16], which is combined with the com-

munity detecting method ‘Newman’, setting the proportion of disturbance to 5% (referred to

as ‘Bootstrap’). In this method, for simplicity, we evaluate concordances of community struc-

ture between the original graph and bootstrapped graphs by means of Adjusted Rand Index

[50] in the same spirit as [51].

For meaningful comparison of computation time among different methods, we ran these

methods in the same programming language, Matlab, using publicly available codes for New-

man in [52], Louvain in [53] and Bayesian in [54]. For our method, Split method, and Boot-

strap method, we ourselves programmed corresponding Matlab codes.

Data

We consider the following real datasets: Social networks in Indian Villages [55, 56] with 203

nodes and 523 edges (referred to as ‘IndianVillage’); Protein-protein interactions in budding

yeast [57] with 2361 nodes and 6600 edges (referred to as ‘Yeast’); Word associations based on

empirical studies [58] with 10617 nodes and 63000 edges (referred to as ‘FreeAssoc’; we trans-

formed the original data into an undirected graph by adding edges if there is a connection
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between nodes in either direction). In addition, we also consider inverted graphs in which the

status of an edge is inverted in these datasets (i.e., if there is an edge, it is removed; otherwise, it

is added). We expected that this would clarify differences of performance among the methods

in question. Finally, we generate weighted versions of these datasets as follows. If there is an

edge, a weight is randomly generated from N(0, 1), otherwise from N(0, 0.01). We apply our

method and Bayesian method to these datasets (the remainder of methods are not applicable

to a weighted graph).

Results

For the original datasets, the performance of our method is comparable to other relevant

methods, because the existence of community structures is well detected (Table 1). On the

other hand, our method suggests the existence of community structures for the inverted

graphs as well. Bayesian method and Split method yielded similar results. However, the modu-

larity-based methods Newman and Louvain suggest no community structures while the per-

formance of Bootstrap method is in-between. These differences arise from different (implicit)

assumptions in the methods. Our method and Bayesian method focus on differences of pat-

terns in occurrence of edges in communities, while the modularity-based approaches focus

only on high density of edges in communists. For practical usage, this implies that one should

carefully choose a method, depending on what type of community structure one aims to

detect. In case of weighted datasets, both our method and Bayesian method yield similar

Table 1. Results of application to unweighted graphs of real datasets: IndianVillage, Yeast and FreeAssoc. In the column of ‘Type’ in the table, ‘Ori’ denotes the origi-

nal graph while ‘Inv’ the inverted graph. Further, ‘Ori.w’ denotes the weighted original graph while ‘Inv.w’ denotes the weighted inverted graph. For each cell in the table,

computation time and a corresponding statistic to detect community structure are displayed. A star marker in digits denotes that the result supports the existence of com-

munity structure. These statistics and critical values are given as follows. For our method, the maximum magnitude of eigenvalues λ is used. The critical value is given by

the Tracy-Widom distribution in Eq (7). For Newman and Louvain methods, modularity Q is used with the critical value 0.45, 0.48, and 0.29 for IndianVillage, Yeast and

FreeAssoc, respectively, based on the analytical approximation of modularity for an Erdős-Rényi random graph. For Split method, a positive largest eigenvalue of modular-

ity matrix λ0 suggests community structure while a negative largest eigenvalue λ0 non-community structure. For Bayesian method, the difference of marginal log-likelihood

for K = 1 and K = 2 (‘Dif’; subtraction of K = 1 case from K = 2 case) is used. A positive difference suggests community structure while a negative difference non-commu-

nity structure. For Bootstrap method, we evaluate stability of community structure by means of Adjusted Rand Index (ARI) between the targeted graph and bootstrapped

graphs (the number of replicates is set to 100). We compare the median of ARI (mARI) with the distribution of ARI when the targeted graph is randomized. If mARI falls

within the 95% confidence interval, it suggests that there is no community structure. Seemingly, this method is not computationally efficient. We were not able to obtain

the results for FreeAssoc within 72 hours.

Methods Type Datasets

IndianVillage Yeast FreeAssoc

Our method Ori 0sec, λ = 3.1� 0sec, λ = 7.8� 3mn, λ = 9.6�

Inv 0sec, λ = 3.1� 4sec, λ = 7.8� 4mn, λ = 9.6�

Newman Ori 0sec, Q = 0.53� 2mn, Q = 0.56� 3hr, Q = 0.39�

Inv 0sec, Q = 0.00 2mn, Q = 0.00 3hr, Q = 0.00

Louvain Ori 0sec, Q = 0.53� 15sec, Q = 0.56� 2mn, Q = 0.42�

Inv 1sec, Q = 0.00 2mn, Q = 0.00 1hr, Q = 0.00

Split Ori 0sec, λ0 = 6.3� 3sec, λ0 = 17.0� 5mn, λ0 = 27.4�

Inv 0sec, λ0 = 4.5� 3sec, λ0 = 10.1� 6mn, λ0 = 17.0�

Bayesian Ori 2mn, Dif = 2.3e4� 23mn, Dif = 9.4e6� 4hr, Dif = 1.8e8�

Inv 2mn, Dif = 4.9e3� 15mn, Dif = 8.2e6� 4hr, Dif = 1.6e8�

Bootstrap Ori 27sec, mARI = 0.36� 4hr, mARI = 0.50� > 72hr

Inv 29sec, mARI = 0.15 6hr, mARI = 0.28� > 72hr

Our method Ori.w 0sec, λ = 2.7� 7sec, λ = 2.7� 8mn, λ = 2.5�

Inv.w 0sec, λ = 2.06� 7sec, λ = 2.00 8mn, λ = 1.99

Bayesian Ori.w 4mn, Dif = 2.1e3� 43mn, Dif = 6.0e4� 19hr, Dif = 4.0e5�

Inv.w 4mn, Dif = −3.3e1 48mn, Dif = −4.9e1 66mn, Dif = −5.8e1

https://doi.org/10.1371/journal.pone.0194079.t001
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results on detection of community structures. Lastly, as regards computation time, our method

outperforms the remainder of the methods. This is possibly due to that these methods go

through a procedure to search for community memberships including the number of commu-

nities, while our method does not include such a procedure.

Discussion

We have proposed a novel method for a statistical test for the existence of community structure

in an undirected graph that is characterized by the first and the second moments of a generative

model for edge weights. This method can be considered a nontrivial extension of the recently

proposed method [22] from a binary-valued to a real-valued graph. Unlike the existing methods

for real-valued graphs, our method does not need a cluster solution. Hence, we can apply this

method even to the nontrivial case of clustering in which edge weights take both positive and

negative real values. Also, our approach avoids a nontrivial problem of determining the number

of clusters. Further, our method is quite efficient in terms of computation time: We only need

to evaluate the eigenvalues of an edge-weight matrix once if we use the Tracy-Widom distribu-

tion, which is due to the asymptotic results derived from Random Matrix Theory.

As the next step of analysis, one may wonder how to find community memberships when

our test rejects the null hypothesis of K = 1. The present paper did not address this issue, but it

would be quite useful to examine eigenvectors of the edge-weight matrix as in the case of spec-

tral clustering. It is conjectured that some of the eigenvectors of T(W) and Te(S(W)) may con-

tain information on community memberships. In the future, it will be important to determine

and to synthesize relevant eigenvectors for inferring underlying community structure.
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