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1 Introduction

Quantum spacetime is infamously difficult to address directly. This leads one to search

for alternative geometric frameworks, which may survive the breakdown of locality at the

Planck scale. The most productive approach to date is AdS/CFT [1–3] — a retreat from

the bulk spacetime onto its asymptotic boundary. There, one can operate with a fixed clas-

sical geometry, since the Planck length effectively vanishes due to an infinite warp factor.

AdS/CFT relates two spacetime pictures, with two different notions of locality: an approxi-

mate locality in the higher-dimensional bulk, and a precise locality on the lower-dimensional

boundary. The duality itself is of necessity non-local. Furthermore, the bulk and boundary

pictures each contain a different set of gauge redundancies — the well-known price of local-

ity — which are absent in the dual picture. A question then suggests itself: is there some

third geometric framework, completely divorced from spacetime locality, underlying both

the bulk and boundary descriptions? To find such a framework, one must focus on non-

local, gauge-invariant objects in both bulk and boundary. Such is arguably the strategy be-

hind the study of Ryu-Takayanagi surfaces [4], kinematic space in the context of MERA [5],

and other such relations between quantum-informational quantities and bulk geometry.

At the same time, there exists a much older proposal for a geometric framework to

replace spacetime: Penrose’s twistor theory [6, 7]. There, we effectively trade locality for

causality as the fundamental principle, replacing points with twistors — the “maximally
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lightlike” extended shapes in spacetime. Originally conceived as a framework for quantum

General Relativity, twistor theory has now become a workhorse for scattering amplitude

calculations in maximally supersymmetric Yang-Mills [8] and supergravity [9]. Might it be

possible, then, to use twistor space as a basis for the non-local description underlying both

bulk and boundary in AdS/CFT?

In the present paper, we answer this question in the affirmative, in the context of

one simple model — the duality [10] between type-A higher-spin gravity in AdS4 and a

free U(N) vector model on its 3d boundary. Higher-spin gravity [11, 12] is an interacting

theory of infinitely many massless fields, in this case one for each integer spin. On the

boundary, these fields are dual to an infinite tower of conserved currents in the free CFT.

The simplicity of this holographic model stems from its infinite-dimensional higher-spin

symmetry — similar in some ways to supersymmetry, but stronger. We must note that, in

this simple version, higher-spin gravity is highly unrealistic: while it does contain a massless

spin-2 “graviton”, its interactions are nothing like those of GR, and in fact appear to be

non-local at the cosmological scale. In this sense, we are dealing with a toy model. On the

other hand, higher-spin gravity has the virtue of being formulated in four bulk dimensions,

and is easily compatible with a positive cosmological constant.

A crucial simplifying feature of our higher-spin model is that it allows us to deal

exclusively with free theories. In the bulk, we consider the linearized version of higher-spin

gravity, i.e. free massless fields of all spins, which can be mapped into twistor space via the

Penrose transform. On the boundary, we have the free CFT, which we map into twistor

space using a novel “holographic dual” of the Penrose transform. This boundary version

of the transform is more powerful than its bulk counterpart, since the correlators of the

free CFT encode not only the linearized bulk theory, but also the bulk interactions. Thus,

we’re essentially using the boundary CFT to solve the bulk theory, using twistor space as

a common language between the two.

Note that twistor theory is a dimension-specific tool: it was originally constructed for

massless 4d theories, subject either to conformal 4d symmetry (e.g. Yang-Mills) or to 4d

isometries (e.g. GR or higher-spin gravity). On the other hand, AdS/CFT exploits the

relation between conformal symmetry in d dimensions and isometries in d+ 1 dimensions.

Thus, the intersection between twistor theory and holography will naturally take place

in either AdS5/CFT4 or AdS4/CFT3. The AdS5/CFT4 case was discussed in [13], and

has the promise of general applicability: since the 4d boundary theory is conformal, one

can always think of it as “massless”. In contrast, in the AdS4/CFT3 case considered in

this paper, we expect that twistor methods will be relevant only in the special setup of

higher-spin theory, since it’s only there that the 4d bulk fields are all massless.

The rest of the paper is structured as follows. In section 2, we summarize the main

results, with only a cursory explanation of the notations. Section 3 is a geometric introduc-

tion to twistor space and its relation to bulk and boundary spinor spaces. Our geometry

is carried out in 5d flat spacetime, within which both bulk and boundary are embedded.

In section 4, we introduce the higher-spin algebra, including structures that arise when

focusing on a bulk or boundary point. In section 5, we formulate the linearized bulk theory

and the Penrose transform. In section 6, we resume our discussion of higher-spin algebra,
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focusing on the representation of ordinary spacetime symmetries within the higher-spin

adjoint and fundamental. This will lead us to a geometric viewpoint on the Penrose trans-

form, which in turn will suggest its boundary dual. In section 7, we discuss the boundary

CFT in a bilocal language, and present the holographic dual of the Penrose transform. In

section 8, we establish the holographic relationship between the bulk and boundary pic-

tures, by calculating expectation values of local boundary currents. An analogous matching

for the local field strengths of boundary sources is left for later work. Section 9 is devoted

to discussion and outlook.

Throughout the paper, we consider for simplicity Euclidean spacetime, i.e. the bulk is

Euclidean Anti de Sitter space (EAdS4). However, as discussed in section 9, we envision

an eventual application to Lorentzian de Sitter (dS4).

2 Summary of results

2.1 Penrose transform

In some ways, higher-spin gravity is the most natural application of twistor theory, more

so than Yang-Mills or General Relativity. In Yang-Mills and GR, twistors serve “merely”

as the spinor representation of isometries or conformal transformations in 4d spacetime. In

higher-spin theory, we utilize a greater power of these objects, using them to generate an

infinite-dimensional extension of spacetime symmetries — the higher-spin (HS) group. The

role of twistors in higher-spin algebra is identical to the role of vectors in Clifford algebra:

Clifford algebra: {γµ, γν} = −2ηµν ; Higher-spin algebra: [Ya, Yb]⋆ = 2iIab , (2.1)

where Ya are twistor coordinates, and Iab is the twistor metric. In both cases (2.1), the

ordinary action of spacetime symmetries (realized as rotations in a higher-dimensional flat

space) is implemented by the algebra’s adjoint representation, i.e. by multiplication on

both sides. This should raise a curiosity about the fundamental representation: what if we

multiply by the group element on one side only? In the case of Clifford algebra, this leads

one to discover spinors. In the case of higher-spin algebra, it leads to the Penrose transform!

Specifically, the Penrose transform is a CPT reflection in the fundamental representation

of the higher-spin group. In other words, the Penrose transform is a square root of CPT :

δx(Y ) ⋆ F (Y ) ⋆ δx(Y ) = F (CPT of Y around origin x) ; (2.2)

±F (Y ) ⋆ iδx(Y ) ≡ C(x;Y ) = Penrose transform of F (Y ) at the point x . (2.3)

Here, F (Y ) is a spacetime-independent twistor function, x is a bulk point, C(x;Y ) is a

master field encoding a solution to the free massless field equations, and δx(Y ) is a certain

x-dependent delta function in twistor space. One may think of δx(Y ) as a “twistor-bulk

propagator”. The factor of ±i in (2.3) is for later convenience.

We should point out that the statement (2.3) is both old and new. On one hand, it was

always clear that the twistor formalism of higher-spin theory is closely related to the Penrose

transform (for a relatively recent treatment, see [14]). Also, right-multiplication by a delta-

function as in (2.3) has long been recognized [15–19] as an important operation, relating
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the adjoint and “twisted adjoint” representations of higher-spin algebra, and allowing the

construction of higher-spin invariants, as well as some explicit solutions to the Vasiliev

equations. However, to our knowledge, it was never quite spelled out that this operation

literally is the Penrose transform, i.e. that it relates free massless fields to spacetime-

independent twistor functions. The reason for this is that the standard formulation of

higher-spin theory works with “twistors” made up of spinors within a local orthonormal

frame on a featureless base manifold. In such a framework, spacetime-independent twistor

functions simply don’t arise as a natural object.

In contrast, in this paper, we work with global, spacetime-independent, Penrose-style

twistors, associated with a background AdS4 spacetime. Specifically, our approach to

higher-spin theory is a linearized version of the reformulation [20] of the full non-linear

Vasiliev equations on a fixed AdS4 background. At the linearized level, the existence and

utility of such a formulation is not surprising. At the non-linear level, the reformulation [20]

is a less trivial matter, as it manages to avoid complicating the field equations, and retains

the full higher-spin gauge symmetry. This is possible in higher-spin theory (as opposed

to GR), because spacetime translations are contained in the local gauge group along with

rotations, independently from diffeomorphisms. This in turn is related to the unfolded

language of higher-spin theory, which bundles the fields’ spacetime derivatives together

with the fields themselves.

2.2 Holographic dual of the Penrose transform

Coming back to eqs. (2.2)–(2.3), the next question is: can we find a context in which the√
CPT nature of the Penrose transform becomes manifest? It turns out that the answer

is yes, and that it is intimately related to another “square root” relation — the fact that

fundamental higher-spin fields in the bulk are dual to quadratic operators in the boundary

CFT. In fact, the free vector model on the boundary is best expressed in a bilocal language,

in which the relatively complicated local operators φ(ℓ)
↔

∇ . . .
↔

∇φ̄(ℓ) are replaced by the

simple product φ(ℓ)φ̄(ℓ′), where ℓ, ℓ′ are boundary points. Consider, then, a boundary-

bilocal object in the higher-spin algebra — a “twistor-boundary-boundary propagator”:

K(ℓ, ℓ′;Y ) =

√
−2ℓ · ℓ′
4π

δℓ(Y ) ⋆ δ′ℓ(Y ) . (2.4)

On this object, it turns out that the Penrose transform acts explicitly as a “square root”

of CPT, by applying CPT to one of the two boundary points:

iδx(Y ) ⋆ K(ℓ, ℓ′;Y ) = ±K(CPT of ℓ around origin x , ℓ′ ; Y ) ;

K(ℓ, ℓ′;Y ) ⋆ iδx(Y ) = ±K(ℓ , CPT of ℓ′ around origin x ; Y ) .
(2.5)

This property applies not only to CPT reflections, but to all of SO(1, 4), since the latter can

be constructed (in (A)dS, but not in flat spacetime!) by combining CPT reflections around

different origins. Thus, while SO(1, 4) is manifestly realized on arbitrary functions f(Y ) in

the adjoint representation of the HS algebra, it is also manifestly realized in the fundamental

representation when acting on K(ℓ, ℓ′;Y ), by transforming one of the two boundary points
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ℓ, ℓ′. In particular, for the infinitesimal SO(1, 4) generators Mµν = (−i/8)Y γµνY , we have:

Mµν ⋆ K(ℓ, ℓ′;Y ) = ℓµ
∂K

∂ℓν
− ℓν

∂K

∂ℓµ
;

−K(ℓ, ℓ′;Y ) ⋆ Mµν = ℓ′µ
∂K

∂ℓ′ν
− ℓ′ν

∂K

∂ℓ′µ
.

(2.6)

The
√
−ℓ · ℓ′ prefactor in (2.4) is necessary for eqs. (2.5)–(2.6) to hold, and it gives

K(ℓ, ℓ′;Y ) the appropriate conformal weight for a two-point function of massless scalars

on the boundary. The numerical factor in (2.4) is irrelevant to eqs. (2.5)–(2.6), but is nec-

essary for the CFT results below. As we will see, the sign ambiguities in (2.5) are inherent

to the HS algebra.

Moving on now from geometry to physics, our main result is that while δx(Y ) solves

the linearized bulk theory, K(ℓ, ℓ′;Y ) solves the boundary CFT! Specifically, we begin with

the CFT action with U(N) singlet, single-trace sources, written in the spirit of [21] in a

bilocal form:

SCFT[Π(ℓ
′, ℓ)] = −

∫

d3ℓ φ̄I�φI −
∫

d3ℓ′d3ℓ φ̄I(ℓ
′)Π(ℓ′, ℓ)φI(ℓ) . (2.7)

We then define a “holographic dual of the Penrose transform”, which packages the sources

Π(ℓ, ℓ′) into a twistor function F (Y ):

F (Y ) =

∫

d3ℓ d3ℓ′K(ℓ, ℓ′;Y )Π(ℓ′, ℓ) . (2.8)

This allows us to write the partition function in the manifestly higher-spin-invariant form:

ZCFT[F (Y )] ∼ exp

(

−N

4
tr⋆ ln⋆[1 + F (Y )]

)

≡ (det⋆[1 + F (Y )])−N/4 , (2.9)

where “tr⋆” stands for the HS-invariant trace operation tr⋆ F (Y ) = F (0). From (2.9),

we can extract the expectation value of the bilocal operator φI(ℓ)φ̄I(ℓ
′) in the presence

of sources:

〈
φI(ℓ)φ̄I(ℓ

′)
〉
=

N

4
tr⋆

(
K(ℓ′, ℓ;Y ) ⋆ [−1 + F (Y ) + . . . ]

)
, (2.10)

where the dots indicate higher orders in the source F (Y ). This twistor formulation of the

CFT makes global HS symmetry manifest, while doing away with the gauge redundancy

of the sources Π(ℓ′, ℓ).

Crucially, we will see that, up to some subtleties involving discrete symmetries, the

twistor functions F (Y ) in the bulk and boundary pictures can be identified with each

other. Specifically, we will show that, away from sources, the asymptotic boundary data

of the linearized bulk solution (2.3) reproduces the linearized expectation values (2.10) of

the CFT operators, once the latter are translated into local currents. Thus, the 2-point

correlators (more precisely, the 2-bilocal correlators) of the partition function (2.9) are

directly associated with the linearized bulk solution. The higher-point functions in (2.9)

can then be interpreted as encoding the effects of bulk interactions.
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We note that the relation between conformal 3d fields φI(ℓ), φ̄I(ℓ
′) and the fundamental

HS representation (2.6) was realized from different points of view in [22, 23]. The partition

function in a form similar to (2.9) was obtained previously in [24]. On the CFT side,

the main difference between our approach and that of [24] is that the latter operates

directly with the current operators, while we are making contact with the fundamental

fields φI(ℓ), φ̄I(ℓ
′), i.e. with the underlying local structure of the boundary theory.

2.3 Avoiding contact terms

In the HS holography literature, when one calculates the correlation functions

〈j(ℓ1) . . . j(ℓn)〉 of local CFT operators, the calculation is usually restricted to separated

points, i.e. ℓ1, . . . , ℓn are all taken to be distinct. By themselves, these are not enough to

capture the value of ZCFT for a general finite configuration of sources. Indeed, to calculate

such values, we would need integrals of the form d3ℓ1 . . . d
3ℓn, where some of the points

ℓ1, . . . , ℓn may coincide, though only on lower-dimensional submanifolds of the integration

domain. Thus, the full partition function at the single-trace level requires also some knowl-

edge of the correlators’ behavior at coincident points. This extra requirement is similar to,

but weaker than, a knowledge of the multi-trace correlators: the latter are equivalent to

simply making single-trace insertion points coincide, as opposed to the coincidence appear-

ing as a lower-dimensional possibility in a larger integral. This distinction is a consequence

of the simplicity of our particular CFT: if the source-free action contained any multi-trace

couplings, we would have no choice but to always take multi-trace insertions into account.

To be more specific, there are two kinds of problems that we can encounter on

coincident-point submanifolds. First, the separated-point correlator may not be integrable

through these submanifolds. Second, the answer may violate gauge invariance, or, equiva-

lently, current conservation. Fixing such problems requires regularization, as well as adding

contact terms both in the action and in the definition of the currents. For example, when

a charge current j = iφ
↔

∇φ̄ (suppressing U(N) indices) is coupled to a gauge potential A,

the current’s expectation value is divergent at points where A is nonzero. Specifically, the

relevant 2-point function has a non-integrable ∼ 1/r4 short-distance singularity, which be-

comes ∼ 1/r2s+2 in the spin-s case. This divergence is directly related to the fact that the

true conserved current contains an extra contact term Aφφ̄; in other words, the derivative

in the definition of jmust be gauge-covariantized. TheAφφ̄ term has its own short-distance

singularity, which cancels the previous one and leaves us with a finite & conserved current.

Most of these issues are resolved automatically by switching to the bilocal lan-

guage (2.7). There, we only ever find-short distance singularities of the form ∼ 1/r (the

fundamental propagator of the φ fields), which is integrable, and therefore doesn’t require

regularization. From the local point of view, the bilocal language can be viewed as an

extreme form of point-split regularizartion. Conversely, from the bilocal point of view,

the local language corresponds to a singular choice of gauge, where the source Π(ℓ′, ℓ) is

distributional with support on ℓ = ℓ′.

That being said, the bilocal language does not solve everything. In particular, given

some values of the bilocal source, we may still wish to know the expectation value of a

local current. It turns out that upon naive calculation, the resulting current isn’t locally
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conserved: the two points in the bilocal Π(ℓ′, ℓ) act as a source/sink pair (as one can see

by examining eq. (8.55) below). Thus, the need for contact terms arises whenever we’re

interested in a local expectation value, even if the sources are bilocal.

Finally, we come to the fully nonlocal twistor formulation (2.9) of the partition func-

tion. Here, we find that the need for contact terms seems to disappear entirely. This should

not be too surprising, if we put two facts together:

1. The points at which the (local or bilocal) sources are non-vanishing are gauge-

dependent. In particular, at any given point, one can gauge away the value of a

spin-s gauge potential and its first 2s− 2 derivatives.

2. The twistor language does away with both locality and gauge redundancy.

Specifically, as we’ll discuss in section 8.5, the currents that can be derived from a twistorial

expression of the form (2.9) are always automatically conserved.

3 Spacetime and twistor geometry

In this section, we present some elements of geometry in the EAdS4 bulk, its 3d boundary,

and twistor space. Throughout, we view the bulk and boundary as embedded in a flat 5d

spacetime. Similar embedding-space approaches to higher-spin theory and holography may

be found e.g. in [25, 26], in the context of general dimensions. Those approaches employ

a tensor formalism, while our emphasis will be on spinors and twistors. In particular, this

section will focus on the embedding of bulk and boundary spinor spaces within the global

twistor space.

3.1 Spacetime

3.1.1 Bulk and boundary

We define EAdS4 as the hyperboloid of future-pointing unit timelike vectors in flat 5d

Minkowski space R
1,4:

EAdS4 =
{
xµ ∈ R

1,4 |xµxµ = −1, x0 > 0
}
. (3.1)

The metric ηµν of R1,4 has signature (−,+,+,+,+). We use indices (µ, ν, . . . ) for R
1,4

vectors, which we raise and lower using ηµν . The isometry group of EAdS4 is just the

rotation group O(1, 4) in the 5d spacetime (more precisely — the component O↑(1, 4) that

preserves time orientation).

The tangent space at a point x ∈ EAdS4 consists simply of the vectors vµ that satisfy

x·v = 0. The EAdS4 metric at x can be identified with the projector onto this tangent space:

qµν(x) = ηµν + xµxν . (3.2)

The covariant derivative of vectors in EAdS4 can be defined as the flat R
1,4 derivative,

followed by a projection back onto the hyperboloid:

∇µvν = qρµ(x) q
σ
ν (x) ∂ρvσ . (3.3)
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In addition to the ambient R
1,4 picture, it is sometimes useful to use an intrinsic

coordinate system for EAdS4. Of particular interest are the Poincare coordinates:

xµ(z, r) =
1

z

(
1 + z2 + r2

2
, r,

1− z2 − r2

2

)

, (3.4)

where r is a flat 3d coordinate, and the metric reads:

dxµdx
µ =

dz2 + dr · dr
z2

. (3.5)

The asymptotic boundary of EAdS4 is the conformal 3-sphere of future-pointing null

directions in R
1,4. Thus, we represent boundary points by null vectors ℓµ, with the equiva-

lence ℓµ ∼= λℓµ. The O(1, 4) symmetry group then becomes the conformal symmetry of the

boundary. The limit where a bulk point x approaches the boundary can be represented as

an extreme boost in R
1,4, where the unit vector xµ approaches a null direction ℓµ as:

xµ → ℓµ/z , z → 0 . (3.6)

One can fix the conformal frame on the boundary by choosing a section of the R
1,4

lightcone. Perhaps the most convenient is the flat section:

ℓµ(r) =

(
1 + r2

2
, r,

1− r2

2

)

, (3.7)

which can be viewed as the bulk-to-boundary limit (3.6) of the Poincare coordinates (3.4).

The section (3.7) can be defined as the intersection of the lightcone ℓ · ℓ = 0 with the null

hyperplane:

ℓ · n = −1

2
; nµ =

(
1

2
,0,−1

2

)

(3.8)

The metric on the flat section (3.7) is simply dℓµdℓ
µ = dr · dr. In particular, the R

1,4

scalar product ℓ · ℓ′ is directly related to the 3d Euclidean distance in the frame (3.7):

ℓ · ℓ′ = −1

2

(
r− r′

)2
. (3.9)

3.1.2 Massless scalars and conserved currents on the boundary

Boundary quantities with conformal weight ∆ are represented by functions f(ℓ) on the

lightcone, subject to the homogeneity condition f(λℓ) = λ−∆f(ℓ), or, equivalently:

ℓµ
∂

∂ℓµ
f(ℓ) = −∆f(ℓ) . (3.10)

In particular, a free massless scalar on the 3d boundary has conformal weight ∆ = 1/2.

Scalars with this weight admit a conformally covariant Laplacian �, which in the R
1,4

language is given simply by [27]:

�φ(ℓ) =
∂φ(ℓ)

∂ℓµ∂ℓµ
. (3.11)
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Here, it’s assumed that we’ve extended the function φ(ℓ) into non-null values of ℓµ, where

it remains subject to the homogeneity condition (3.10). The Laplacian (3.11) does not

otherwise depend on this artificial extension of φ(ℓ) into ℓ · ℓ 6= 0, as it vanishes for any

function that is zero at ℓ · ℓ = 0:

� ((ℓ · ℓ)f(ℓ)) = 0 at ℓ · ℓ = 0 , for any f(ℓ) with weight ∆ = 5/2 . (3.12)

One can verify explicitly that eq. (3.11) defines the usual 3d Laplacian on the flat

section (3.7).

Boundary currents of various spin and their conservation laws are also easy to describe

in the O(1, 4)-covariant framework. A spin-s current is represented by a totally symmetric

and traceless tensor jµ1...µs . To bring the tensor’s indices from R
1,4 down to the boundary’s

3d tangent space, we impose a constraint and an equivalence relation:

ℓµ1
jµ1µ2...µs = 0 ; (3.13)

jµ1µ2...µs ∼= jµ1µ2...µs + ℓ(µ1θµ2...µs) , (3.14)

where θµ1...µs−1 is a totally symmetric and traceless tensor satisfying ℓµ1
θµ1µ2...µs−1 = 0.

The presence of tensor indices makes the notion of conformal weight a bit subtle. In

this paper, our tensor indices lie in the R
1,4 ambient space, and we define the conformal

weight ∆ via jµ1...µs(λℓ) = λ−∆jµ1...µs(ℓ). For the corresponding tensor with indices in

the boundary’s tangent or cotangent bundle, this implies a conformal weight of ∆ + s or

∆ − s, respectively. For a spin-s tensor jµ1...µs with the particular weight ∆ = s + 1, one

can define a conformally covariant divergence:

(div j)µ1...µs−1 =
∂jµ1...µs−1µs

∂ℓµs
, (3.15)

where we again extend jµ1...µs(ℓ) away from ℓ·ℓ = 0, while maintaining the constraint (3.13)

and the homogeneity condition jµ1...µs(λℓ) = λ−s−1jµ1...µs(ℓ). To see that the result doesn’t

otherwise depend on this artificial extension, we note that eq. (3.15) can be rewritten in

terms of the derivative ℓ ∧ (∂/∂ℓ), which only acts tangentially to the ℓ · ℓ = 0 lightcone:

(

ℓν
∂

∂ℓµs
− ℓµs

∂

∂ℓν

)

jµ1...µs−1µs = (div j)µ1...µs−1ℓν + jµ1...µs−1
ν . (3.16)

It remains to verify that the formula (3.15) is consistent with the equivalence relation (3.14).

It is here that the conformal weight ∆ = s+ 1 will be important. One must be careful to

extend eq. (3.14) away from ℓ·ℓ = 0 in a way that doesn’t conflict with the constraint (3.13).

To do this, we introduce a fixed null vector n 6= ℓ, and replace ℓµ in (3.14) with:

ℓ̃µ = ℓµ − ℓ · ℓ
ℓ · n nµ . (3.17)

One then finds that the divergence (3.15) is indeed consistent with (3.14), via:

δjµ1...µs = ℓ̃(µ1θµ2...µs) =⇒ δ(div j)µ1...µs−1 =
s− 1

s
ℓ(µ1

∂

∂ℓν
θµ2...µs−1)ν . (3.18)
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3.2 Twistors

Here, we introduce spinors and twistors in EAdS4 from the viewpoint described in [28].

Our focus here is on algebraic properties; see [28] for a more detailed geometric perspective.

The twistors of EAdS4 are just the 4-component Dirac spinors of the isometry group

SO(1, 4). We use indices (a, b, . . . ) for twistors. The twistor space is equipped with a

symplectic metric Iab, which is used to raise and lower indices via:

Ua = IabU
b ; Ua = UbI

ba ; IacI
bc = δba . (3.19)

Tensor and twistor indices are related through the gamma matrices (γµ)
a
b, which satisfy

the Clifford algebra {γµ, γν} = −2ηµν . These 4+1d gamma matrices can be realized as

the usual 3+1d ones, with the addition of γ5 (in our notation, γ4) for the fifth direction in

R
1,4. In 2× 2 block notation, the matrices Iab and (γµ)

a
b can be represented e.g. as:

Iab =

(

0 −iσ2
−iσ2 0

)

;

(γ0)ab =

(

0 1

1 0

)

; (γ4)ab =

(

0 −1

1 0

)

; (γk)ab =

(

−iσk 0

0 iσk

)

,

(3.20)

where σk with k = 1, 2, 3 are the Pauli matrices. The representation (3.20) is geared to

simplify the “null” matrices γ0 ± γ4. An alternative representation, which simplifies the

“timelike” matrix γ0, reads:

Iab =

(

−iσ2 0

0 iσ2

)

;

(γ0)ab =

(

1 0

0 −1

)

; (γ4)ab =

(

0 −1

1 0

)

; (γk)ab =

(

0 iσk

iσk 0

)

.

(3.21)

The matrices γµab are antisymmetric and traceless in their twistor indices. We define the

antisymmetric product of gamma matrices as:

γµνab ≡ γ[µacγ
ν]c

b . (3.22)

The γµνab are symmetric in their twistor indices. We use the matrices γabµ to convert between

4+1d vectors and traceless bitwistors as:

ξab = γabµ ξµ ; ξµ = −1

4
γµabξ

ab . (3.23)

Similarly, γabµν can be used to convert between bivectors and symmetric twistor matrices:

fab =
1

2
γabµνf

µν ; fµν =
1

4
γµνab f

ab . (3.24)

Useful identities include:

γµabγ
ab
ν =−4δµν ; γµνab γ

ab
ρσ =8δ

[µ
[ρ δ

ν]
σ] ; γabµ γµcd= IabIcd−4δ

[a
[c δ

b]
d] ; γabµνγ

µν
cd =8δ

(a
(c δ

b)
d) ;

ǫabcd=3I [abIcd] ; ǫabcdIcd=2Iab ; ǫabcdγµcd=−2γµab ; γ[abµ γcd]ν =
1

3
ηµνǫ

abcd .

(3.25)
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Here, ǫabcd is the totally antisymmetric symbol with inverse ǫabcd = 3I[abIcd], such that

ǫabcdǫ
abcd = 4!. The metric Iab has unit determinant with respect to ǫabcd. We use ǫabcd to

define a measure on twistor space via:

d4U ≡ ǫabcd
4!(2π)2

dUadU bdU cdUd . (3.26)

Here and elsewhere, we include 2π factors in the measure, in such a way that they will

not appear explicitly in our Fourier and Gaussian integrals. Note that our choice for the

overall sign of ǫabcd is the opposite from that in [28], and indeed, in the basis (3.20), we get

ǫ1234 = −1. This choice will end up being more convenient for relations such as (3.36).

3.2.1 Index-free notation

In order to streamline the formulas below, we now introduce some index-free notation for

products in R
1,4 and in twistor space. x · x will represent the scalar product xµx

µ in

R
1,4. The twistor matrices δba and (γµ)

a
b will be written in index-free notation as 1 and γµ.

Combined with the index conversion (3.23), this means that the matrix (xµγµ)
a
b for a vector

xµ ∈ R
1,4 will be written simply as x (this is just the Feynman slash convention, without

the slash). Products in the index-free notation imply bottom-to-top index contractions.

So, e.g. for two twistors Ua, V a and two vectors ℓµ, xµ, we have:

UV ≡ UaV
a = −IabU

aV b ; ℓ · x ≡ ℓµx
µ = −1

4
tr(ℓx) ;

(xU)a ≡ xabU
b ; UℓxU ≡ Uaℓ

a
bx

b
cU

c = −ℓµxνγ
µν
ab U

aU b .
(3.27)

A product UΓ1 . . .ΓnV , where U and V are twistors and the matrices Γ1, . . . ,Γn are either

symmetric or antisymmetric, can be reversed as follows:

V Γn . . .Γ1U = (−1)nsym+1(UΓ1 . . .ΓnV ) , (3.28)

where nsym is the number of symmetric matrices among the Γ1, . . . ,Γn.

3.2.2 Twistor integrals

In calculations below, we will need to evaluate integrals over twistor space, as well as

over various spinor subspaces. These integrals are somewhat delicate, because the relevant

spaces are complex, and one has to worry about appropriate integration contours. To some

extent, this is a result of our choice of signature: in Lorentzian AdS4, the twistors and

boundary spinors (but not the bulk spinors) have a natural real structure. However, this

real structure doesn’t necessarily help, because the natural real contours may not be the

ones along which the integrals converge. Luckily, the only integrals we will need explicitly

are of delta functions and Gaussians. These can be defined by analytical continuation from

appropriate real-line integrals.

The first integral formula that we’ll need is:

∫

d4Ud4V f(U) eiUV = f(0) . (3.29)
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This can equivalently be written as:

∫

d4U δ(U)f(U) = f(0) , (3.30)

where the twistor delta function is defined as:

δ(U) =

∫

d4V eiV U . (3.31)

The second twistor integral that we will use is the Gaussian:

∫

d4U e(UAU)/2 =
±1√
detA

; detA =
1

8

(
trA2

)2 − 1

4
trA4 , (3.32)

where Aab is a symmetric twistor matrix, and we use its tracelessness for the last expression

in (3.32). Note that the 2π factors are already taken care of by the definition (3.26) of

the measure.

The sign in (3.32) is ambiguous due to the square root, and in general will depend

on how exactly we analytically continue from the case of a real contour and real negative-

definite Aab. In fact, we’ll see that in the context of the HS symmetry group, this sign

ambiguity is crucial, and cannot be globally fixed. Specifically, within the HS group, the

subgroup SO(1, 4) of ordinary spacetime symmetries is represented by twistor Gaussians,

and its topology is only consistent when the sign ambiguity (3.32) is taken into account.

Finally, we note that the sign ambiguity in Gaussian integrals also reflects on the delta

function (3.31). The integral in (3.31) can be regularized and evaluated by inserting a

broad Gaussian into the integrand. However, the result of this Gaussian integral is only

defined up to sign. Therefore, while the integral (3.30) involving δ(U) is well-defined, δ(U)

itself is defined as a limit of ordinary functions only up to sign. An alternative way to

see this is to define δ(U) as the limit of a series of ever-narrowing Gaussians, which are

constrained to have a unit integral. Since these integrals are only defined up to sign, the

same is true for the series that limits to δ(U).

3.3 Bulk spinors

When we choose a point x ∈ EAdS4, the Dirac representation of SO(1, 4) becomes iden-

tified with the Dirac representation of the rotation group SO(4) at x. It then decom-

poses into left-handed and right-handed Weyl spinor representations, corresponding to

SO(4) = SO(3)L × SO(3)R. The decomposition is accomplished by a pair of projectors:

PL
a
b(x) =

1

2
(δab − xµγµ

a
b) =

1

2
(δab − xab) ;

PR
a
b(x) =

1

2
(δab + xµγµ

a
b) =

1

2
(δab + xab) .

(3.33)

These serve as an x-dependent version of the familiar chiral projectors in R
4. We note that

PL and PR get interchanged under the “antipodal map” xµ → −xµ. In the Euclidean AdS

context, this is a formal operation that takes us away from the hyperboloid (3.1) and into

its x0 < 0 counterpart.
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Given a twistor Ua, we denote its left-handed and right-handed components at x as

uaL/R(x) = (PL/R)
a
b(x)U

b. As in our treatment of tensors, it is possible to use the (a, b, . . . )

indices for both SO(4, 1) and SO(4) Dirac spinors. The projectors PL
ab(x) and PR

ab(x) serve

as the spinor metrics for the left-handed and right-handed Weyl spinor spaces. For a 2d

spinor space, a symplectic metric also acts as a measure, i.e. we can define:

d2uL ≡ PL
ab(x)

2(2π)
dUadU b ; d2uR ≡ PR

ab(x)

2(2π)
dUadU b . (3.34)

Alternatively, the measures can be defined as the inverses of P ab
L and P ab

R , as in:

duaLdu
b
L

2π
≡ P ab

L (x) d2uL ;
duaRdu

b
R

2π
≡ P ab

R (x) d2uR . (3.35)

The two chiral spinor measures combine to form the twistor measure (3.26), via:

d4U = d2uLd
2uR . (3.36)

The power of this formalism for describing spinors is that the twistors, i.e. the spinors

of R1,4, are flat: we can transport them freely from one point in EAdS4 to another. What

changes from point to point is the twistor’s decomposition into left-handed and right-

handed spinors. In particular, the covariant derivative for Weyl spinors in EAdS4 can be

constructed by embedding the spinor inside a twistor, taking the flat R1,4 derivative, and

projecting back into the appropriate spinor space. For e.g. a left-handed spinor field ψa
L(x),

this can be written as:

∇µψ
a
L(x) = qνµ(x)PL

a
b(x) ∂νψ

b
L(x) . (3.37)

An important special case is the covariant derivative of the left-handed and right-handed

components yL(x), yR(x) of a spacetime-independent twistor Y :

∇µ y
a
L = −1

2
(γµ)

a
b y

b
R ; ∇µ y

a
R =

1

2
(γµ)

a
b y

b
L . (3.38)

This is just Penrose’s twistor equation, in the presence of a cosmological constant.

A vector ξµ ∈ R
1,4, when evaluated at a point x ∈ EAdS4, decomposes into an O(4)

scalar (the radial component, encoded by the scalar product ξ ·x) and an O(4) vector (the

tangential component, encoded by the vector ξµ+(ξ ·x)xµ or the bivector ξ[µxν]). For the

twistor matrix ξ = ξµγµ, this decomposition can be expressed in terms of chiral projections

of the twistor indices:

O(4) scalar: PLξPL=(ξ ·x)PL ; PRξPR =−(ξ ·x)PR ; (3.39)

O(4) vector: PLξPR+PRξPL= ξ+(ξ ·x)x ; PLξPR−PRξPL=
1

2
(ξx−xξ) . (3.40)

In particlar, displacements dxµ along the EAdS4 hyperboloid have only mixed-chirality

components, as in (3.40).
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3.4 Boundary spinors

At a boundary point ℓµ, the decomposition of twistor space is somewhat different. While

the 4d bulk has two Weyl spinor spaces at each point, the 3d boundary has a single (2-

component) Dirac spinor space. Let us now describe how this spinor space arises from the

R
1,4, twistorial perspective.

In the asymptotic limit (3.6), both the left-handed and right-handed projectors degen-

erate into multiples of ℓab:

P ab
L (x) → −1

z
P ab(ℓ) ; P ab

R (x) → 1

z
P ab(ℓ) , (3.41)

where we’ve defined:

P ab(ℓ) ≡ 1

2
ℓab . (3.42)

Thus, the two subspaces PL(x) and PR(x) degenerate into a single subspace P (ℓ), spanned

by the bitwistor P ab(ℓ) ∼ ℓab. Equivalently, P (ℓ) is the subspace annihilated by the

matrix ℓab:

ua ∈ P (ℓ) ⇐⇒ ℓ[abuc] = 0 ⇐⇒ ℓabu
b = 0 . (3.43)

The subspace P (ℓ) can be identified as the spinor space on the 3d boundary. Though P (ℓ)

is null under the twistor metric Iab, one can use the inverse of the matrix (3.42) to define

a metric and a measure d2u on P (ℓ), in analogy with the bulk definition (3.35):

duadub

2π
≡ P ab(ℓ) d2u =

1

2
ℓabd2u . (3.44)

The measure d2u scales inversely with the null vector ℓµ, i.e. it has conformal weight ∆ = 1.

We should therefore think of P (ℓ) as the space of boundary cospinors, i.e. the square roots

of boundary covectors.

The space of contravariant boundary spinors, i.e. the square roots of boundary vectors,

is the space P ∗(ℓ) dual to P (ℓ) under the twistor metric. It is easy to see that this is the

quotient space of twistors modulo terms in P (ℓ):

(u∗)a ∼= (u∗)a + ua , ua ∈ P (ℓ) . (3.45)

P ∗(ℓ) can be equipped with a metric and measure inversely related to that of (3.44), i.e.

given simply by the matrix (3.42):

d2u∗ ≡ Pab(ℓ)

2(2π)
(du∗)a(du∗)b =

ℓab
8π

(du∗)a(du∗)b , (3.46)

with conformal weight ∆ = −1. Multiplication by the matrix (3.42) defines a mapping

between P (ℓ) and P ∗(ℓ), via:

(u∗)a ∈ P ∗(ℓ) ←→ P a
b(ℓ)(u

∗)b =
1

2
ℓab(u

∗)b ∈ P (ℓ) . (3.47)
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This mapping is consistent with the measures (3.44), (3.46). It can be viewed as the

map between boundary spinors and cospinors via the spinor metric (3.46). It should be

stressed that the spinor spaces P (ℓ) and P ∗(ℓ) depend only on the direction of ℓµ, which

corresponds to the choice of boundary point. However, the measures (3.44), (3.46) and

the mapping (3.47) depend also on the scaling of ℓµ, which corresponds to a choice of

conformal frame.

Note that for bulk spinors, there was no need for such subtleties. There, we have no

arbitrary rescaling of the spinor metrics, and the chiral spinor spaces PL(x), PR(x) are the

same as their duals under the twistor metric P ∗
L(x), P

∗
R(x). In particular, the measure (3.46)

can be viewed as the boundary limit of the bulk spinor measures (3.34).

At a bulk point x, an arbitrary twistor U has a well-defined decomposition U = uL+uR.

This is no longer true at a boundary point ℓ: here, U has a well-defined projection

u∗ ∈ P ∗(ℓ), but its “P (ℓ) component” is ambiguous. However, one can span the twistor

space by first choosing u∗, and then spanning the equivalence class (3.45) by varying

u ∈ P (ℓ). In this context, the two spinor measures (3.44), (3.46) can be combined into

the global twistor measure. From the identity ǫabcdℓ
cd = −2ℓab, one can derive the explicit

formula:

d4U = −d2u d2u∗ . (3.48)

3.4.1 Boundary currents in spinor form

The spinor language is especially well-suited for describing boundary currents of arbitrary

spin and their conservation laws. A spin-s boundary object (i.e. a rank-s totally traceless

and symmetric tensor) can be described by a totally symmetric rank-2s spinor jℓ with

indices in P (ℓ):

ℓba1j
a1a2...a2s
ℓ = 0 , (3.49)

or a totally symmetric rank-2s spinor j∗ with indices in P ∗(ℓ):

ja1a2...a2s∗
∼= ja1a2...a2s∗ + ℓ(a1c λ

a2...a2s)c for any λa2...a2sc . (3.50)

These two representations are related by the mapping (3.47), i.e. by the spinor metric at ℓ:

ja1...a2sℓ =
1

4s
ℓa1b1 . . . ℓ

a2s
b2sj

b1...b2s
∗ . (3.51)

Note that neither jℓ nor j∗ is the direct translation into twistor indices of the boundary

tensor jµ1...µs from section 3.1.2:

ja1b1...asbs = γa1b1µ1
. . . γasbsµs

jµ1...µs . (3.52)

As opposed to ja1...a2sℓ and ja1...a2s∗ , the twistor indices on ja1b1...asbs are not totally sym-

metric. One can see from eqs. (3.13)–(3.14) that j is a sort of intermediate between jℓ and

j∗, with one index in every akbk pair lying in P (ℓ), and the other in P ∗(ℓ). The dictionary

between jℓ, j and j∗ can be viewed as two successive applications of the mapping (3.47):

ja1b1...asbs =
1

2s
δ[a1c1 ℓb1]c2 . . . δ

[as
c2s−1

ℓbs]c2sj
c1c2...c2s−1c2s
∗ ; (3.53)

j
a1a2...a2s−1a2s
ℓ = ℓa1c1 . . . ℓ

a2s−1
csj

c1a2...csa2s , (3.54)
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or, restoring j into tensor form:

jµ1...µs =
1

8s
ℓν1γ

ν1µ1
c1c2 . . . ℓνsγ

νsµs
c2s−1c2sj

c1c2...c2s−1c2s
∗ ; (3.55)

j
a1a2...a2s−1a2s
ℓ = ℓν1γa1a2ν1µ1

. . . ℓνsγa2s−1a2s
νsµs

jµ1...µs . (3.56)

One can also translate jℓ rather than j into tensor indices. This yields the tensor:

jµ1ν1...µsνs
ℓ =

1

4s
γµ1ν1
a1a2 . . . γ

µsνs
a2s−1a2s j

a1a2...a2s−1a2s
ℓ = 2sℓ[µ1δν1]ρ1 . . . ℓ[µsδνs]ρs j

ρ1...ρs , (3.57)

which is invariant under (3.14).

If j has conformal weight ∆, then jℓ and j∗ have weights ∆−s and ∆+s, respectively.

The conformally covariant divergence (3.15), which is well-defined for ∆ = s + 1, is best

expressed in spinor language in terms of j∗:

(div j∗)
a1...a2s−2 =

1

8
γµνbc ℓµ

∂

∂ℓν
j
a1...a2s−2bc
∗ . (3.58)

When j∗ has the correct conformal weight ∆+s = 2s+1, one can show that this operation

is consistent with the equivalence relation (3.50). With the particular numerical factor

in (3.58), div j∗ is related to the tensorial expression (3.15) via the spin-(s− 1) version of

the map (3.55).

3.4.2 More on the bulk-to-boundary limit

It is instructive to flesh out the limit (3.41) in some more detail. For this purpose, we

will need to know the direction from which the bulk point x approaches the boundary

point ℓ. This direction can be encoded by a second boundary point n, where we normalize

ℓ · n = −1/2 for convenience. We can then define the approach xµ → ℓµ/z as:

xµ =
1

z
ℓµ + znµ , (3.59)

such that x · x = −1 is maintained throughout. The trajectory (3.59) is just the geodesic

from the boundary point n to the boundary point ℓ, which approaches ℓ as z → 0. The

spacelike unit tangent to the trajectory (3.59) reads:

tµ =
1

z
ℓµ − znµ . (3.60)

For simplicity, let us choose a frame such that:

ℓµ =

(
1

2
,0,

1

2

)

; nµ =

(
1

2
,0,−1

2

)

. (3.61)

Then the trajectory (3.59) is just the geodesic of changing z at constant r = 0 in the

Poincare coordinates (3.4). In the frame (3.61), using the explicit gamma matrices (3.20),

we can now observe the following. The spinor spaces P (ℓ) and PL/R(x) and are spanned

by twistors of the form:

P (ℓ) : Uℓ =

(

u

0

)

; PL(x) : UL =

(

u

zu

)

; PR(x) : UR =

(

u

−zu

)

, (3.62)

where u is a 2-component spinor. This explicitly shows how PL/R(x) both converge

towards P (ℓ).
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It will be useful to identify the three twistors (3.62) for given u as representing “asymp-

totically the same” boundary spinor. They can be mapped explicitly onto each other using

the following operators:

UR = −tUL = txUL = (ℓn− nℓ)UL ; (3.63)

UL = +tUR = txUR = (ℓn− nℓ)UR ; (3.64)

Uℓ =
1

2
(1 + tx)UL/R = ℓnUL/R . (3.65)

Thus, the operator tx = ℓn − nℓ asymptotically maps spinors in PL(x) to their “asymp-

totically equal” counterparts in PR(x) and vise versa, while the operator (1 + tx)/2 = ℓn

maps them both to their “asymptotically equal” counterpart in P (ℓ). In other words, the

projection U → ℓnU ∈ P (ℓ) defines the “boundary limit” of a twistor U . In the language of

section 6 below, the projector ℓn can be interpreted as an infinite boost in the ℓ∧ n plane.

Finally, let us work out the action Γ → ℓnΓnℓ of the projector ℓn on a complete basis

of twistor matrices Γ:

1 → 0 ; ℓ → ℓ ; n → 0 ; γi → 0 ;

ℓn− nℓ → 0 ; ℓγi → ℓγi ; nγi → 0 ; γij → 0 .
(3.66)

Here, we defined γi = eµi γµ, where the indices (i, j, . . . ) run over the values 1, 2, 3, and the

basis eµi spans the 3d subspace orthogonal to both ℓ and n. Using a basis with {x, t} in

place of {ℓ, n}, eqs. (3.66) become:

1 → 0 ; x → 1

z
ℓ ; t → 1

z
ℓ ; γi → 0 ;

tx → 0 ; xγi →
1

z
ℓγi ; tγi →

1

z
ℓγi ; γij → 0 .

(3.67)

3.5 Bulk and boundary spinor spaces on an equal footing

For some purposes, in particular for the higher-spin two-point functions of section 4.4

below, one can avoid the distinction between bulk and boundary points. This feature is

linked to covariance under the O(1, 5) group of bulk conformal transformations, though we

will not pursue that angle explicitly.

Let us consider a 2-component spinor space, which may be either a boundary spinor

space P (ℓ) or a bulk spinor space PL(x) or PR(x). This spinor space is spanned by a twistor

matrix, which in index-free notation is again simply P (ℓ), PL(x) or PR(x). These can all

be treated as special cases of:

P (ξ) =
1

2

(√

−ξ · ξ + ξ
)

, (3.68)

where the matrix P ab(ξ) is determined by a timelike or null vector ξµ ∈ R
1,4. The special

cases of bulk and boundary spinor spaces correspond to:

ξµ = ℓµ ⇒ P (ξ) = P (ℓ) ; ξµ = ±xµ ⇒ P (ξ) = PR/L(x) . (3.69)
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Unifying eqs. (3.35) and (3.44), we can define a metric and measure on the spinor space

P (ξ) via:

duadub

2π
≡ P ab(ξ) d2u . (3.70)

We note the identity:

ǫabcdP
cd(ξ) = 2Pab(−ξ) , (3.71)

which implies in particular that P (−ξ) is the subspace orthogonal to P (ξ). In other words,

the space P ∗(ξ), i.e. the dual to P (ξ) under the twistor metric, is just the quotient space

of twistors modulo terms in P (−ξ). For a boundary point, this reproduces the dual spinor

space (3.45), since the spaces P (ℓ) and P (−ℓ) coincide (with a factor of −1 between the

corresponding matrices). For a bulk point, this means that the space P ∗
L/R(x) dual to

PL/R(x) is the space of twistors modulo terms in PR/L(x), which can be identified with

PL/R(x) itself.

Consider now a pair of spinor spaces P (ξ) and P (ξ′), associated with a pair of bulk or

boundary points. The relationship between these spaces is governed by two invariants:

Pab(ξ)P
ab(ξ′) = tr

(
P (ξ)P (ξ′)

)
=

√

(ξ · ξ)(ξ′ · ξ′)− ξ · ξ′ ; (3.72)

1

2
ǫabcdP

ab(ξ)P cd(ξ′) = tr
(
P (ξ)P (−ξ′)

)
=

√

(ξ · ξ)(ξ′ · ξ′) + ξ · ξ′ . (3.73)

An arbitrary twistor U can be decomposed along P (ξ) and P (ξ′) as follows:

U = u+ u′ ; u =
2P (ξ)P (−ξ′)U

tr (P (ξ)P (−ξ′))
∈ P (ξ) ; u′ =

2P (ξ′)P (−ξ)U

tr (P (ξ′)P (−ξ))
∈ P (ξ′) , (3.74)

where the scalar product of the two components u, u′ reads:

uu′ =
Uξξ′U

2
(√

(ξ · ξ)(ξ′ · ξ′) + ξ · ξ′
) . (3.75)

The twistor measure decomposes under (3.74) as:

d4U =
1

4
ǫabcdP

ab(ξ)P cd(ξ′) d2u d2u′ =
1

2

(√

(ξ · ξ)(ξ′ · ξ′) + ξ · ξ′
)

d2u d2u′ . (3.76)

The chiral decomposition U = uL + uR at a single bulk point x can be viewed as a

special case of (3.74), with eqs. (3.75)–(3.76) reproducing the identities uLuR = 0 and

d4U = d2uLd
2uR.

3.5.1 Integrals over spinor spaces

In calculations below, we will need the 2-component spinor versions of the 4-component

twistor integrals (3.29)–(3.32). Consider a general (bulk or boundary) spinor space P (ξ)

as above. A Gaussian integral over P (ξ) can be calculated as:
∫

P (ξ)
d2u euAu/2 =

±1
√

detP (ξ)(A)
; detP (ξ)(A) = −1

2
tr (P (ξ)A)2 . (3.77)
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Here, A is a symmetric twistor matrix, while detP (ξ)(A) is the determinant of A, viewed

as a 2× 2 quadratic form over the spinor space P (ξ).

The generic analog of the delta-function-type integral (3.29) involves a pair of spinor

spaces P (ξ), P (ξ′). The integral reads:

∫

P (ξ)
d2u

∫

P (ξ′)
d2u′f(u)eiuu

′

=
2

Pab(ξ)P ab(ξ′)
f(0)=

2
√

(ξ ·ξ)(ξ′ ·ξ′)−ξ ·ξ′
f(0) . (3.78)

In addition, at a single boundary point ℓ, one can write the following delta-function-type

integrals over the spinor space P (ℓ) and its dual space P ∗(ℓ):

∫

P (ℓ)
d2u

∫

P ∗(ℓ)
d2u∗f(u) eiuu

∗

= f(0) ;

∫

P (ℓ)
d2u

∫

P ∗(ℓ)
d2u∗f(u∗) eiuu

∗

= f(0) . (3.79)

The integral (3.78) can be written explicitly in terms of a delta function as follows:

∫

P (ξ)
d2u δξ′(u)f(u) =

2
√

(ξ · ξ)(ξ′ · ξ′)− ξ · ξ′
f(0) , (3.80)

where the spinor delta function is defined as:

δξ(U) =

∫

P (ξ)
d2v eivU . (3.81)

In the particular cases (3.69) of bulk and boundary spinor spaces, we denote these delta

functions as:

ξµ = ℓµ ⇒ δξ(U) = δℓ(U) ; ξµ = ±xµ ⇒ δξ(U) ≡ δR/L
x (U) . (3.82)

The notation is meant to signify that δξ(U) is a delta function with respect to U , with

support on a 2d spinor space determined by ξ. Specifically, it has support on the subspace

P (−ξ) which is orthogonal to P (ξ). For a boundary point, this means that δℓ(U) has

support on P (ℓ), forcing the P ∗(ℓ) component of U to vanish. For a bulk point, it means

that δ
R/L
x (U) has support on PL/R(x), forcing the PR/L(x) component to vanish. The

boundary delta function δℓ(U) has conformal weight ∆ = 1, and can be used to rewrite

the second integral in (3.79) as:

∫

P ∗(ℓ)
d2u∗ δℓ(u

∗) f(u∗) = f(0) . (3.83)

The comments from section 3.2.2 regarding sign ambiguities in twistor integrals apply

equally well to the spinor case. Gaussians are well-defined functions, but their integrals

have a sign ambiguity that cannot be globally fixed. Conversely, delta functions have well-

defined integrals, but they themselves are defined as limits of ordinary functions only up

to sign. An additional subtlety arises when adding or comparing integrals over different

spinor spaces, associated with different spacetime points. In that case, one must make a

separate contour choice for every integral, and this choice may fail to be consistent across

a large enough spacetime region.

– 19 –



J
H
E
P
0
1
(
2
0
1
8
)
1
0
0

4 Higher-spin algebra

4.1 Spacetime-independent structure

In higher-spin theory, one introduces (spacetime-independent) twistor coordinates Y a,

which are acted on by the non-commutative star product:

Y a ⋆ Y b = Y aY b + iIab . (4.1)

By associativity, this extends into a product on polynomials in Y :

f(Y ) ⋆ g(Y ) = f exp

(

iIab
←−−
∂

∂Y a

−−→
∂

∂Y b

)

g . (4.2)

In practical calculations, it is convenient to use the index-free notation of section 3.2.1,

where some twistors are implicitly lower-index and some are upper-index. One can then

use the formulas:

Iab
←−−
∂

∂Y a

−−→
∂

∂Y b
=

←−−
∂

∂Y a

−−→
∂

∂Ya
= −

←−−
∂

∂Ya

−−→
∂

∂Y a
, (4.3)

where it is important that ∂/∂Ya is minus the raised-index version of ∂/∂Y a. Together

with rearrangements of the form (3.28), one can reduce calculations to convenient index-free

expressions such as:

UΓ1 . . .ΓmY

(

Iab
←−−
∂

∂Y a

−−→
∂

∂Y b

)

Y Γm+1 . . .ΓnV = UΓ1 . . .ΓnV ;

Y Γ1 . . .Γm

(

Iab
←−−
∂

∂Y a

−−→
∂

∂Y b

)

Γm+1 . . .ΓnY = − tr(Γ1 . . .Γn) .

(4.4)

The star product also extends to non-polynomial functions, where one must resort to an

integral formula:

f(Y ) ⋆ g(Y ) = f exp

(

iIab
←−−
∂

∂Y a

−−→
∂

∂Y b

)

g =

∫

d4Ud4V f(Y + U) g(Y + V ) e−iUV . (4.5)

The higher-spin symmetry algebra is the infinite-dimensional Lie algebra of even (i.e.

integer-spin) functions f(Y ) with the associative product (4.5). It contains as a subalgebra

the generators of the EAdS4 isometry group O(1, 4):

Mµν = − i

8
Y γµνY ; [Mµν ,Mρσ]⋆ = 4δ

[µ
[ρ Mν]

σ] . (4.6)

The product (4.5) respects a trace operation, defined simply by evaluating f(Y ) at Y = 0:

tr⋆ f(Y ) = f(0) ; tr⋆(f ⋆ g) = tr⋆(g ⋆ f) =

∫

d4Ud4V f(U) g(V ) e−iUV . (4.7)
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Here, the equality tr⋆(f ⋆ g) = tr⋆(g ⋆ f) relies on f(Y ), g(Y ) being even functions. The

tr⋆ operation is usually denoted in the literature by “str”, since in certain generalizations

of the algebra (4.5), the trace (4.7) becomes a supertrace.

Another important object is the delta function (3.31):

δ(Y ) =

∫

d4U eiUY . (4.8)

A star product with δ(Y ) implements the Fourier transform:

f(Y ) ⋆ δ(Y ) =

∫

d4Uf(U) eiUY ; δ(Y ) ⋆ f(Y ) =

∫

d4Uf(U) e−iUY . (4.9)

The following properties establish δ(Y ) as a Klein operator of the algebra (4.5):

δ(Y ) ⋆ δ(Y ) = 1 ; δ(Y ) ⋆ f(Y ) ⋆ δ(Y ) = f(−Y ) , (4.10)

i.e. δ(Y ) (anti)commutes with even (odd) functions f(Y ). This implies that δ(Y ) is in-

variant in the adjoint representation of the higher-spin symmetry group (recall that the

symmetry includes only integer spins, i.e. only generators even in Y ).

The star product f⋆g, the trace tr⋆ f and the invariant Klein operator δ(Y ) are the only

allowed ingredients in an expression that preserves (undeformed) higher-spin symmetry.

The role of δ(Y ) in this list is somewhat subtle. The issue is the contour ambiguity

of the integral formula (4.5), which arises whenever we do higher-spin algebra with non-

polynomial functions. As discussed in section 3.2.2, even the simplest cases - delta functions

and Gaussians - are associated with a sign ambiguity. In particular, one should be careful

with assigning meaning to the sign of δ(Y ) and its star products. While this sign ambiguity

may not look like much, there is a sense in which it is the only information carried in star

products with δ(Y ). Indeed, since δ(Y ) squares to unity, one may think of decomposing

the space of functions f(Y ) into eigenspaces with eigenvalues ±1 under star-multiplication

by δ(Y ). Formally, this decomposition is accomplished by the pair of projectors:

P±(Y ) =
1± δ(Y )

2
. (4.11)

Conceptually, these projectors play an important role in the theory: as we will see, they

are related to bulk antipodal symmetry, as well as to the two types of asymptotic boundary

data (Neumann vs. Dirichlet or magnetic vs. electric). However, since the sign of δ(Y ) is

a priori ambiguous, one shouldn’t take the projectors (4.11) too seriously. In particular,

in section 5.4, we will see in detail how they fail to be well-defined linear operators. In

the present section, we will continue to list useful formal identities involving δ(Y ). Later

in the paper, we will make use of δ(Y ) and the projectors P±(Y ), but with a dose of care

and self-consciousness.

4.2 Structure at a bulk point

Choosing a bulk point x ∈ EAdS4 picks out a preferred rotation group SO(4) = SO(3)L ×
SO(3)R out of the isometry group SO(1, 4). In the star-product language, the two chiral
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SO(3)’s are generated by bilinears yaLy
b
L and yaRy

b
R, where we used the chiral decomposition

Y = yL + yR of the twistor Y into Weyl spinors at x. Each of the chiral SO(3)’s can be

extended into its own higher-spin subalgebra, given respectively by chiral functions f(yL)

and f(yR). Since left-handed and right-handed spinors are orthogonal under the twistor

metric, the two subalgebras commute. Explicitly, the chiral decomposition of the star

product (4.1) reads:

yaL ⋆ ybL = yaLy
b
L + iP ab

L ; yaR ⋆ ybR = yaRy
b
R + iP ab

R ; yaL ⋆ ybR = ybR ⋆ yaL = yaLy
b
R , (4.12)

where we must keep in mind that the projectors PL/R and the Weyl spinors yL/R depend

on the bulk point x.

Analogously to the role of δ(Y ), delta functions with respect to yL and yR play the

role of Klein operators for the left-handed and right-handed higher-spin subalgebras. We’ve

already encountered these spinor delta functions in eqs. (3.81)–(3.82):

δLx (Y ) =

∫

PL(x)
d2uL eiuLY ; δRx (Y ) =

∫

PR(x)
d2uR eiuRY . (4.13)

The delta function δ
L/R
x (Y ) depends on the twistor Y only through the spinor component

yL/R. These delta functions have star-product properties [15] analogous to eqs. (4.9)–(4.10):

f(yL + yR) ⋆ δ
L
x (yL) =

∫

d2uL f(uL + yR) e
iuLyL ;

δLx (yL) ⋆ f(yL + yR) =

∫

d2uL f(uL + yR) e
−iuLyL ;

δLx (yL) ⋆ f(yL + yR) ⋆ δ
L
x (yL) = f(−yL + yR) ,

(4.14)

and similarly for δRx (yR). These can be written more covariantly as:

f(Y ) ⋆ δL/Rx (Y ) =

∫

d2uL/R f(Y + uL/R) e
iuL/RY ; (4.15)

δL/Rx (Y ) ⋆ f(Y ) =

∫

d2uL/R f(Y + uL/R) e
−iuL/RY ; (4.16)

δLx (Y ) ⋆ f(Y ) ⋆ δLx (Y ) = f(xY ) ; δRx (Y ) ⋆ f(Y ) ⋆ δRx (Y ) = f(−xY ) . (4.17)

As a special case, we have:

δL/Rx (Y ) ⋆ δ(Y ) = δ(Y ) ⋆ δL/Rx (Y ) = δR/L
x (Y ) . (4.18)

The products of the chiral delta functions are x-independent:

δLx (Y ) ⋆ δLx (Y ) = δRx (Y ) ⋆ δRx (Y ) = 1 ;

δLx (Y ) ⋆ δRx (Y ) = δRx (Y ) ⋆ δLx (Y ) = δLx (Y )δRx (Y ) = δ(Y ) .
(4.19)

Finally, it will be helpful to explicitly express the x-dependence of δLx (Y ) and δRx (Y ).

Taking x derivatives of integrals such as (4.13) is subtle, since the subspace over which we

are integrating is itself a function of x. A useful workaround (e.g. for the d2uL integral) is
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to perform a change of variables uL = PL(x)u
′
L, where u′L can now be integrated over the

left-handed spinor space PL(x
′) at an arbitrary fixed point x′. After taking the desired x

derivatives, we can replace x′ → x. By this method, we find:

∇µδ
L
x = −1

2
(γµ)

a
b y

b
R

∂δLx
∂yaL

= − i

2
(yLγµyR) ⋆ δ

L
x =

i

2
δLx ⋆ (yLγµyR) ;

∇µδ
R
x =

1

2
(γµ)

a
b y

b
L

∂δRx
∂yaR

= − i

2
(yLγµyR) ⋆ δ

R
x =

i

2
δRx ⋆ (yLγµyR) ,

(4.20)

or, in more covariant notation:

∇µδ
L
x = − i

4
(Y γµxY ) ⋆ δLx =

i

4
δLx ⋆ (Y γµxY ) ;

∇µδ
R
x = − i

4
(Y γµxY ) ⋆ δRx =

i

4
δRx ⋆ (Y γµxY ) .

(4.21)

4.3 Structure at a boundary point

Now, instead of a bulk point x, let us fix a boundary point ℓ. The isometry group SO(1, 4),

now viewed as the boundary conformal group, acquires three preferred subgroups, nested

within each other:

1. Special conformal transformations around ℓ (or, equivalently, translations in a frame

where ℓ is the point at infinity). These are generated by bilinears Y AY , where the

symmetric twistor matrix A satisfies ℓA = 0.

2. Special conformal transformations and rotations around ℓ. These are generated by

bilinears Y AY where ℓA−Aℓ = 0.

3. Special conformal transformations, rotations and dilatations around ℓ. These are

generated by bilinears Y AY where ℓA−Aℓ = λℓ for some scalar λ.

Neither of these subgroups extends into an interesting higher-spin subalgebra. The only

subgroup that extends at all is the first one. The corresponding higher-spin subalgebra

A0(ℓ) consists of functions f(Y ) that satisfy f(Y + u) = f(Y ) for any u ∈ P (ℓ), i.e. of

functions f(y∗) over the boundary spinor space P ∗(ℓ):

f(Y ) ∈ A0(ℓ) ⇐⇒ f(Y + u) = f(Y ) for u ∈ P (ℓ) ⇐⇒ f(Y ) = f(y∗) . (4.22)

The special conformal transformations around ℓ are generated by the quadratic piece of

this subalgebra. The entire subalgebra is commuting, and the star product is simply:

f, g ∈ A0(ℓ) =⇒ f(Y ) ⋆ g(Y ) = f(Y )g(Y ) . (4.23)

A special element of the subalgebra A0(ℓ) is the delta function with respect to y∗,

which we’ve encountered in eqs. (3.81)–(3.82):

δℓ(Y ) =

∫

P (ℓ)
d2u eiuY . (4.24)
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In the bulk-to-boundary limiting procedure (3.6), the delta function (4.24) can be expressed

as a rescaled limit of the bulk delta functions (4.13):

δℓ(Y ) = lim
x→ℓ/z

1

z
δRx (Y ) = − lim

x→ℓ/z

1

z
δLx (Y ) . (4.25)

However, unlike its bulk counterparts, δℓ(Y ) is not a Klein operator. In particular, the

star product δℓ(Y ) ⋆ δℓ(Y ) is divergent. The star product of δℓ(Y ) with the global delta

function δ(Y ) reads:

δℓ(Y ) ⋆ δ(Y ) = δ(Y ) ⋆ δℓ(Y ) = −δℓ(Y ) . (4.26)

From the point of view of the bulk-to-boundary limit (4.25), these identities can be viewed

as a limiting case of (4.18).

The delta function δℓ(Y ) is a member not only of the subalgebra A0(ℓ), but of two

additional (also degenerate) higher-spin subalgebras. These subalgebras, which we denote

as A±(ℓ), consist of functions with the property:

f(Y ) ∈ A±(ℓ) ⇐⇒ f(Y + u) = e±iuY f(Y ) for u ∈ P (ℓ) , (4.27)

Functions of the form (4.27) can be thought of as “twisted” functions on P ∗(ℓ); like the

true functions on P ∗(ℓ) that make up the subalgebra A0(ℓ), they depend freely only on a

single two-component spinor. The star product in the subalgebras A±(ℓ) reads:

f, g ∈ A−(ℓ) =⇒ f(Y ) ⋆ g(Y ) = g(0)f(Y ) = (tr⋆ g)f(Y ) ;

f, g ∈ A+(ℓ) =⇒ f(Y ) ⋆ g(Y ) = f(0)g(Y ) = (tr⋆ f)g(Y ) .
(4.28)

The definition (4.27) of the subalgebras A±(ℓ) can be expressed concisely in star-

product form:

f(Y ) ∈ A−(ℓ) ⇐⇒ f(Y ) ⋆ ℓ Y = 0 ;

f(Y ) ∈ A+(ℓ) ⇐⇒ ℓ Y ⋆ f(Y ) = 0 .
(4.29)

From here, it follows that multiplication on the right (left) by a function in A−(ℓ) (A+(ℓ))

projects any function into the corresponding subalgebra:

f ∈ A−(ℓ) ⇒ g ⋆ f ∈ A−(ℓ) ; f ∈ A+(ℓ) ⇒ f ⋆ g ∈ A+(ℓ) . (4.30)

In particular, since δℓ(Y ) is an element of both A−(ℓ) and A+(ℓ), we have, for any f(Y ):

f(Y ) ⋆ δℓ(Y ) =

∫

P (ℓ)
d2u f(Y + u) eiuY ∈ A−(ℓ) ;

δℓ(Y ) ⋆ f(Y ) =

∫

P (ℓ)
d2u f(Y + u) e−iuY ∈ A+(ℓ) ,

(4.31)

while the product δℓ(Y ) ⋆ f(Y ) ⋆ δℓ(Y ) is divergent. The formulas (4.31) can be recognized

as boundary limits of (4.15)–(4.16). There is no boundary analog of the Fourier-transform

formulas (4.14), because at a boundary point ℓ, twistor space does not decompose into an

orthogonal pair of spinor spaces.
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4.4 Structure at two and more points

A key object in our analysis will be the star product of two spinor delta functions δLx (Y ),

δRx (Y ) or δℓ(Y ) at a pair of bulk or boundary points. In this section, we will compute

these products and discuss their properties. These two-point products are closely related

to various propagators in the HS literature, such as the D-functions of [14, 29] and the

boundary-to-bulk propagators of [16], and are quite similar in spirit to propagators in

ordinary field theory. However, one should keep in mind an important detail: while the

products δ ⋆ δ depend on two spacetime points, they depend on only one twistor variable

Y , which is not associated with either point in particular. In section 6.3, we will discuss

these two-point products from a different viewpoint, as group elements of the spacetime

symmetry SO(1, 4).

4.4.1 The general two-point product

The different kinds of two-point products can all be computed together, using the machinery

of section 3.5. Recall from (3.82) that the delta functions δLx (Y ), δRx (Y ), δℓ(Y ) are all special

cases of the general spinor delta function (3.81):

δξ(Y ) =

∫

P (ξ)
d2u eiuY . (4.32)

The star-product formulas (4.15)–(4.16), (4.18), (4.26), (4.31) are all particular cases of

the identities:

f(Y ) ⋆ δξ(Y ) =

∫

P (ξ)
d2u f(Y + u) eiuY ; (4.33)

δξ(Y ) ⋆ f(Y ) =

∫

P (ξ)
d2u f(Y + u) e−iuY ; (4.34)

δξ(Y ) ⋆ δ(Y ) = δ(Y ) ⋆ δξ(Y ) = δ−ξ(Y ) . (4.35)

We can now compute the star product of two delta functions of the general type (4.32).

First, using eq. (4.33), we get the integral expression:

δξ(Y ) ⋆ δξ′(Y ) =

∫

P (ξ)
d2u

∫

P (ξ′)
d2u′ ei(uY+u′Y+uu′) . (4.36)

With some work, this integral can be brought to the form (3.78). To do this, we decompose

the twistor Y into a pair of spinors as in eq. (3.74):

Y = y + ȳ′ ; y ∈ P (ξ) ; ȳ′ ∈ P (−ξ′) . (4.37)

The ȳ′ piece is identically orthogonal to u′ ∈ P (ξ′), while the y piece can be used to shift

the integration variable u ∈ P (ξ). This brings the integral into the form:

δξ(Y ) ⋆ δξ′(Y ) =

∫

P (ξ)
d2u

∫

P (ξ′)
d2u′ ei(uY+yȳ′)eiuu

′

=
2eiyȳ

′

√

(ξ · ξ)(ξ′ · ξ′)− ξ · ξ′

=
2

√

(ξ · ξ)(ξ′ · ξ′)− ξ · ξ′
exp

(

−iY ξξ′Y/2
√

(ξ · ξ)(ξ′ · ξ′)− ξ · ξ′

)

.

(4.38)
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where we used eq. (3.78) in the first line and eq. (3.75) in the second line. For particular

cases of bulk/boundary points, the result (4.38) reads:

δℓ(Y ) ⋆ δℓ′(Y ) = − 2

ℓ · ℓ′ exp
iY ℓℓ′Y

2ℓ · ℓ′ ; (4.39)

δℓ(Y ) ⋆ δRx (Y ) = − 2

ℓ · x exp
iY ℓxY

2ℓ · x ; δRx (Y ) ⋆ δℓ(Y ) = − 2

ℓ · x exp
iY xℓY

2ℓ · x ; (4.40)

δRx (Y ) ⋆ δRx′(Y ) =
2

1− x · x′ exp
iY xx′Y

2(x · x′ − 1)
, (4.41)

where one can substitute δRx (Y )→δLx (Y ) via the antipodal map x → −x, and likewise for x′.

4.4.2 Properties of the boundary-boundary product

We now focus on the boundary-boundary two-point product (4.39), which possesses some

remarkable properties. First, if we multiply (4.39) by
√
−ℓ · ℓ′, the result has the conformal

weight ∆ = 1/2 of a 3d free massless scalar with respect to both boundary points. We

can then evaluate the 3d conformal Laplacian (3.11), only to find that the massless wave

equation is satisfied:

√
−ℓ · ℓ′ δℓ(Y ) ⋆ δℓ′(Y ) =

2√
−ℓ · ℓ′

exp
iY ℓℓ′Y

2ℓ · ℓ′ ; (4.42)

�ℓ

(√
−ℓ · ℓ′ δℓ(Y ) ⋆ δℓ′(Y )

)

= �ℓ′

(√
−ℓ · ℓ′ δℓ(Y ) ⋆ δℓ′(Y )

)

= 0 ∀ℓ 6= ℓ′ . (4.43)

At ℓ = ℓ′, the two-point product has a singularity, and the wave equation (4.43) picks

up a source term. Moreover, since this is an essential singularity, the source term will

contain not just a delta distribution, but also an infinite tower of its derivatives. Thus,

upon integration over ℓ or ℓ′, the source will not appear localized at ℓ = ℓ′, as we will see

explicitly in section 7.4.3.

Upon taking the higher-spin trace (4.7), the essential singularity in (4.42) becomes a

simple pole. In fact, up to a numerical factor, this trace is just the ∆ = 1/2 boundary-to-

boundary propagator, which satisfies the wave equation with a point source:

tr⋆

(√
−ℓ · ℓ′ δℓ(Y ) ⋆ δℓ′(Y )

)

=
2√

−ℓ · ℓ′
; (4.44)

�ℓ tr⋆

(√
−ℓ · ℓ′ δℓ(Y ) ⋆ δℓ′(Y )

)

= −8π
√
2 δ5/2,1/2(ℓ, ℓ′) . (4.45)

Here, the superscripts on the boundary delta function δ(ℓ, ℓ′) denote its conformal weight

with respect to each argument. To derive the wave equation (4.45), we recall that in the flat

frame (3.7),
√
−ℓ · ℓ′ is just the 3d Euclidean distance |r−r′|/

√
2. The full Gaussian (4.42)

can now be understood as a Taylor series of derivatives of the propagator (4.44). This

can be seen explicitly by converting the coefficients of different powers of Y into boundary

tensors, or more abstractly from eqs. (6.24), (6.26) below.

Another feature of the boundary-boundary product (4.39) is that it belongs simultane-

ously to the higher-spin subalgebras A+(ℓ) and A−(ℓ
′). As we can see from (4.31), the same
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is true for the more general product δℓ(Y ) ⋆ f(Y ) ⋆ δℓ′(Y ), where f(Y ) is an arbitrary func-

tion. On the other hand, it’s clear from the definition (4.27) or (4.29) that the intersection

A+(ℓ) ∩ A−(ℓ
′) is one-dimensional. Therefore, for any function f(Y ), we must have:

δℓ(Y ) ⋆ f(Y ) ⋆ δℓ′(Y ) = λ δℓ(Y ) ⋆ δℓ′(Y ) , (4.46)

for some Y -independent coefficient λ. Taking the higher-spin trace of both sides, we can

express this coefficient as:

λ = −ℓ · ℓ′
2

tr⋆ (δℓ(Y ) ⋆ f(Y ) ⋆ δℓ′(Y )) . (4.47)

Eq. (4.46) is the underlying root of the “forgetful property” [16] of higher-spin propagators.

As a special case of (4.46), we evaluate the three-point product:

δℓ(Y ) ⋆ δℓ′(Y ) ⋆ δℓ′′(Y ) = ±i

√

− ℓ · ℓ′′
2(ℓ · ℓ′)(ℓ′ · ℓ′′) δℓ(Y ) ⋆ δℓ′′(Y ) . (4.48)

The sign ambiguity is due to a Gaussian integration of the form (3.77). An efficient way to

derive eq. (4.48) is to use the result (4.39) for the product of two delta functions, and then

factor in the third delta function via (4.31); thanks to eq. (4.46), it suffices to evaluate the

result at Y = 0.

5 Linearized higher-spin gravity

In this section, we formulate linearized higher-spin gravity on EAdS4, along with its solution

via the Penrose transform. The formulas that appear here will receive a more geometric

interpretation in section 6. In section 5.1, we describe free massless fields of arbitrary

integer spin. In section 5.2, we review the Penrose transform in (A)dS4. In section 5.3, we

introduce the unfolded formulation, which recasts both the field equations and the Penrose

transform into HS-covariant star-product expressions. Finally, in section 5.4, we discuss

antipodal symmetry xµ ↔ −xµ and its analogue in the twistor language.

5.1 Free massless fields in EAdS4

Our starting point is a set of free massless fields, one for each integer spin. A field with

spin s > 0 is described by the self-dual and anti-self-dual parts of its field strength (i.e. the

higher-spin generalization of the Maxwell tensor and the linearized Weyl tensor). These

are encoded by purely left-handed and purely right-handed totally symmetric spinors with

2s indices. The field content is thus:

Spin 0: C(0,0) , Spin 1: C
(2,0)
αβ , C

(0,2)

α̇β̇
, Spin 2: C

(4,0)
αβγδ, C

(0,4)

α̇β̇γ̇δ̇
, etc. , (5.1)

where the numbers in parentheses signify the number of left-handed and right-handed

spinor indices. We are temporarily introducing designated indices (α, β, . . . ) and (α̇, β̇, . . . )

respectively for left-handed and right-handed Weyl spinors at a bulk point x. These are

the same as twistor indices (a, b, . . . ), but with PL/R(x) chiral projections implied. The
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spinor fields (5.1) can also be expressed in tensor form, using the convention (3.24) for

converting a symmetric pair of twistor indices into an antisymmetric pair of tensor indices.

The left-handed and right-handed parts of the spin-s field strength combine into a single

tensor, via:

Cµ1ν1...µsνs = CL
µ1ν1...µsνs + CR

µ1ν1...µsνs ;

CL
µ1ν1...µsνs =

1

4s
γα1β1
µ1ν1 . . . γαsβs

µsνs C
(2s,0)
α1β1...αsβs

;

CR
µ1ν1...µsνs =

1

4s
γα̇1β̇1
µ1ν1 . . . γα̇sβ̇s

µsνs C
(0,2s)

α̇1β̇1...α̇sβ̇s
.

(5.2)

The tensor field Cµ1ν1...µsνs has the symmetries of a generalized Weyl tensor: it is totally

traceless, antisymmetric within each µkνk index pair, symmetric under the exchange of

any two such pairs, and vanishes when antisymmetrized over any three indices. The right-

handed and left-handed parts of Cµ1ν1...µsνs are distinguished by their eigenvalues ±1 under

a Hodge dualization of any µkνk index pair:

−1

2
ǫµ1ν1

λρσxλC
R/L
ρσµ2ν2...µsνs = ±CR/L

ρσµ2ν2...µsνs , (5.3)

where the minus sign on the l.h.s. arises from the fact that the time component of xλ
is negative.

Let us now write the field equations satisfied by the field strengths (5.1). The scalar

field C(0,0) satisfies the wave equation for a conformally coupled massless scalar:

∇µ∇µC(0,0) = −2C(0,0) , (5.4)

while the fields with spin s > 0 satisfy the free massless equations:

∇α1

β̇ C
(2s,0)
α1α2...α2s

= 0 ; ∇β
α̇1 C

(0,2s)
α̇1α̇2...α̇2s

= 0 . (5.5)

5.2 The Penrose transform

The Penrose transform [6, 7] is a closed-form general solution to the field equations (5.4)–

(5.5) in terms of an even (but otherwise unconstrained) twistor function F (Y ). It is

important that F (Y ) is a holomorphic function, i.e. without additional dependence on

the complex-conjugate variable Y ; throughout this paper, we are taking this property of

twistor functions for granted.

More specifically, each of the individual fields (5.1), i.e. each separate helicity, is cap-

tured by a twistor function F (Y ) of a particular degree of homogeneity −2 ± 2s. A gen-

eral even function can be decomposed into eigenfunctions of the homogeneity operator

Y a(∂/∂Y a), with even integer eigenvalues. In this way, a general even function F (Y ) con-

tains a single free massless field of each helicity, i.e. precisely the higher-spin multiplet (5.1).

In the notations of this paper, the Penrose transform for each of the fields (5.1) reads:

C(2s,0)
α1...α2s

(x) = i

∫

PR(x)
d2uR

∂sFR(uL + uR)

∂uα1

L . . . ∂uα2s
L

∣
∣
∣
∣
uL=0

; (5.6)

Cα̇1...α̇2s

(0,2s) (x) = i(−1)s
∫

PR(x)
d2uR uα̇1

R . . . uα̇2s
R FR(uR) , (5.7)
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where FR(Y ) is an arbitrary even twistor function, and the factors of i and (−1)s are for

later convenience. The spin-0 field C(0,0) is contained in (5.6)–(5.7) a shared special case:

C(0,0)(x) = i

∫

PR(x)
d2uR FR(uR) . (5.8)

The R subscript in FR(Y ) is to indicate that the integrals in (5.6)–(5.8) are over the 2d

spinor subspace PR(x). An alternative transform, using PL(x) instead, reads:

Cα1...α2s

(2s,0) (x) = −i(−1)s
∫

PL(x)
d2uL uα1

L . . . uα2s
L FL(uL) ; (5.9)

C
(0,2s)
α̇1...α̇2s

(x) = −i

∫

PL(x)
d2uL

∂sFL(uL + uR)

∂uα̇1

R . . . ∂uα̇2s
R

∣
∣
∣
∣
∣
uR=0

, (5.10)

where FL(Y ) is again an arbitrary even twistor function, and we introduced an extra sign

factor for later convenience. The transforms (5.6)–(5.10) can also be written in Dirac-spinor

(i.e. twistor) indices, as:

C(2s,0)
a1...a2s(x)= i

∫

PR(x)
d2u

∂sFR(U)

∂Ua1 . . .∂Ua2s

∣
∣
∣
∣
U=u

=−i(−1)s
∫

PL(x)
d2uua1 . . .ua2sFL(u) ;

C(0,2s)
a1...a2s(x)= i(−1)s

∫

PR(x)
d2uua1 . . .ua2sFR(u)=−i

∫

PL(x)
d2u

∂sFL(U)

∂Ua1 . . .∂Ua2s

∣
∣
∣
∣
U=u

.

(5.11)

Here, the integrals automatically project the Dirac indices into the correct Weyl subspace

in each case.

Proving that the fields (5.6)–(5.10) indeed satisfy the field equations (5.4)–(5.5) is

rather straightforward. The main subtlety is the x-dependence of the spinor integration

range, which must be taken into account when taking spacetime derivatives. This can

be dealt with by same method as when deriving eq. (4.21), i.e. by performing a change of

variables that shifts the x-dependence into the integrand. The details, in a slightly different

language, can be found e.g. in [28].

The above presentation of the Penrose transform differs somewhat from the one nor-

mally given in a twistor-theory textbook. The first difference is that we’re starting in (A)dS

spacetime, and treating twistors as the spinors of the isometry group SO(1, 4). Normally,

one starts instead in flat spacetime, and treats twistors as the spinors of the conformal

group SO(2, 4) (which, with our EAdS4 signature, would actually be SO(1, 5)). As far as

the Penrose transform is concerned, this difference is merely superficial: both the trans-

form and the free massless field equations are conformally covariant, so that Minkowski and

(A)dS are equally good starting points. That being said, the unfolded, star-product-based

formalism of the next subsection is not covariant under the 4d conformal group; there, the

non-vanishing cosmological constant will be crucial.

Another difference between our presentation and the standard one is that the inte-

grals in (5.6)–(5.10) are over C2 spinor subspaces (with measure d2u), as opposed to their

projective CP
1 versions (with measure udu). Thus, we are using the (well-known, but not
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as common) “non-projective” version of the transform. The projective vs. non-projective

integrals are very closely related. In particular, the non-projective integrals (5.6)–(5.7) pick

out the component of the twistor function FR(Y ) with homogeneity −2±2s respectively, as

one can show by rescaling the integration variable. This is the already-mentioned relation

between helicity and the homogeneity of the twistor function. For a function FR(Y ) of the

“correct” homogeneity, the projective integral uRduR will agree with the non-projective

one up to numerical factors; essentially, the extra 1d integral in the non-projective case

can be treated as
∫
dα/α = ±2πi. For a function FR(Y ) of the “wrong” homogeneity,

the projective integral is ill-defined, while the non-projective one evaluates to zero. Thus,

the non-projective Penrose transform (5.6)–(5.10) is the same as the projective one, except

that it allows us not to worry about mixing different spins/homogeneities in the integrand.

Finally, as we repeatedly discuss in this paper, integrals of the form (5.6)–(5.10) suffer

from contour ambiguities. From the HS point of view, these are directly related to the

analogous ambiguity in the integral definition (4.5) of the star product. Due to these

contour ambiguities, the Penrose transform is more properly defined in terms of sheaf

cohomology. However, in keeping with the HS literature, we do not follow that more

rigorous path, and instead continue working with ordinary functions, while keeping the

ambiguity in mind. The advantage of this “naive” approach is that it allows us to treat

FL/R(Y ) and C(x;Y ) on an equal footing, as ordinary functions of the Y variable.

5.3 Unfolded formulation and the higher-spin-covariant perspective

The next step is to rephrase the dynamics of our free massless fields in unfolded form.

Let us introduce the full set of on-shell-inequivalent derivatives of the fields C(2s,0), C(0,2s)

for s ≥ 0:

(
C(2s+k,k)

)

α1...α2sβ1...βk

β̇1...β̇k = ik∇(β1

(β̇1 . . .∇βk

β̇k)C
(2s,0)
α1...α2s)

;
(
C(k,2s+k)

)β1...βk

β̇1...β̇kα̇1...α̇2s
= ik∇(β1

(β̇1
. . .∇βk)

β̇k
C

(0,2s)
α̇1...α̇2s)

,
(5.12)

where the factors of i are for later convenience. We now have a field C(m,n) for every pair

of integers m,n such that m+ n is even, i.e. one field for every integer-spin representation

of the bulk rotation group SO(4). We can neatly package these into a single scalar master

field C(x;Y ), which is an even function of the twistor coordinate Y :

C(x;Y ) =
∑

m,n

1

m!n!
C

(m,n)
α1...αmα̇1...α̇n

yα1

L . . . yαm
L yα̇1

R . . . yα̇n
R ; (5.13)

C
(m,n)
α1...αmα̇1...α̇n

= (PL)
a1

α1
. . . (PL)

am
αm(PR)

am+1
α̇1

. . . (PR)
am+n

α̇n

∂m+nC

∂Y a1 . . . ∂Y am+n

∣
∣
∣
∣
Y=0

,

where yL/R = PL/R(x)Y are the chiral components of Y at the point x. The field equa-

tions (5.4)–(5.5) and the definitions (5.12) are all encapsulated in the following unfolded

equation:

∇µC =
i

2
C ⋆ (yLγµyR) , (5.14)
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or, expressing yL and yR explicitly in terms of Y and x:

∇µC =
i

4
C ⋆ (Y γµxY ) . (5.15)

The star product in (5.15) breaks down into three terms of the form CY Y , (∂C/∂Y )Y and

∂2C/∂Y 2. Among these, the (∂C/∂Y )Y piece accounts for the x dependence of the chiral

decomposition Y = yL + yR in (5.13), while the other two account for the x dependence of

the component fields C(m,n) themselves. Specifically, the ∂2C/∂Y 2 term encodes the flat-

spacetime version of eqs. (5.4)–(5.12), while the CY Y term corrects the second derivatives

to account for the curvature of EAdS4.

Having written the unfolded equation in the form (5.15), we recognize from (4.21)

that it is solved by the chiral delta functions δ
L/R
x (Y ). Moreover, we see that the general

solution can be expressed as:

C(x;Y ) = FR(Y ) ⋆ iδRx (Y ) = i

∫

PR(x)
d2uR FR(Y + uR) e

iuRY , (5.16)

or, equivalently:

C(x;Y ) = −FL(Y ) ⋆ iδLx (Y ) = −i

∫

PL(x)
d2uL FR(Y + uL) e

iuLY , (5.17)

where the ±i factors are chosen for later convenience, and we used eqs. (4.15)–(4.16) to

obtain the explicit integral expressions. The spacetime-independent functions FL/R(Y ) are

Fourier transforms of each other:

FR(Y ) = −FL(Y ) ⋆ δ(Y ) . (5.18)

Moreover, using the decomposition (5.13), one can see that these functions are the same

as the FL/R(Y ) from section 5.2. Thus, we recognize eqs. (5.16)–(5.17) as the unfolded,

HS-covariant formulation of the Penrose transform!

It may seem strange that the unfolded equation (5.15) prefers C ⋆ (Y γµxY ) over

(Y γµxY ) ⋆ C. It turns out that the second possibility is in fact realized, if we replace

i → −i in the definition (5.12) of the unfolded fields. Equivalently, we can define an

alternative master field C̃ as:

C̃(x;Y ) =
∑

m,n

(−1)m

m!n!
C

(m,n)
α1...αmα̇1...α̇n

yα1

L . . . yαm
L yα̇1

R . . . yα̇n
R = C(x; yR − yL) = C(x;xY ) ,

(5.19)

for which the field equation and its solution read:

∇µC̃ = − i

4
(Y γµxY ) ⋆ C̃ ; (5.20)

C̃(x;Y ) = −iδRx (Y ) ⋆ FR(Y ) = iδLx (Y ) ⋆ FL(Y ) . (5.21)

In fact, it follows from (4.17) that the Penrose transform FL/R(Y ) is the same as

in (5.16)–(5.17).
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Since δRx (Y ) and δLx (Y ) square to unity, we can explicitly solve for the master field at

a point x′ in terms of the master field at a point x via:

C(x′;Y ) = C(x;Y ) ⋆ δRx (Y ) ⋆ δRx′(Y ) , (5.22)

where the two-point product δRx ⋆ δRx′ = δLx ⋆ δLx′ is given by the Gaussian (4.41):

δRx (Y ) ⋆ δRx′(Y ) = δLx (Y ) ⋆ δLx′(Y ) =
2

1− x · x′ exp
iY xx′Y

2(x · x′ − 1)
. (5.23)

It is simultaneously a solution to the unfolded equation (5.15) in x′ and to the “flipped”

equation (5.20) in x. The fact that the master field at x′ can be deduced from its value at

a single point x is a feature of the unfolded formalism.

Note that in all of the above, we did not require a higher-spin gauge connection.

Instead, we directly wrote the linear field equations and their solutions in terms of gauge-

invariant field strengths on the background EAdS4 geometry. HS symmetry appears only as

a global symmetry of the equations, parameterized by a spacetime-independent even func-

tion ε(Y ). The Penrose transform FR(Y ) transforms under this symmetry in the adjoint:

δFR = ε ⋆ FR − FR ⋆ ε , (5.24)

and likewise for FL(Y ). The master field C(x;Y ) transforms in the “twisted adjoint”:

δC = ε ⋆ C − C ⋆ δRx ⋆ ε ⋆ δRx , (5.25)

where the product δRx ⋆ ε ⋆ δRx = δLx ⋆ ε ⋆ δLx can be evaluated as in (4.17).

In section 7, we will similarly describe the free U(N) vector model (with external

sources) in a language that renders global higher-spin symmetry manifest, while avoiding

any gauge redundancy.

5.4 Antipodal symmetry

A special role is played by solutions with the antipodal symmetry:

C(−x;Y ) = ±C(x;Y ) , (5.26)

The antipodal map xµ → −xµ is the central element of the spacetime symmetry group

O(1, 4). Under this map, the EAdS4 hyperboloid (3.1) is sent into its x0 < 0 counterpart.

Thus, strictly speaking, C(−x;Y ) is an analytic continuation of the solution C(x, Y ) into

the antipodal EAdS4. In the Poincare coordinates (3.4), the antipodal map corresponds

to the operation z → −z, which was invoked in the discussion [30] of higher-spin holog-

raphy. Indeed, as we will see in section 8.2, the two antipodal parities in (5.26) directly

correspond to the two types of asymptotic boundary data for each of the component fields

in C(x;Y ) [30]. A detailed analysis of this relation in the language of individual fields was

carried out in [31, 32] (see also [33]). The antipodal symmetry is also of significance in the

de Sitter context [32], as we will review in section 9.
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Let us now see how the symmetry (5.26) is expressed at the level of spacetime-

independent twistor functions. Plugging the identity δLx (Y ) = δR−x(Y ) into the Penrose

transform (5.16)–(5.18), we obtain that (5.26) is equivalent to any of the following:

FL(Y ) = ∓FR(Y ) ⇐⇒ FR(Y ) ⋆ δ(Y ) = ±FR(Y ) ⇐⇒ FL(Y ) ⋆ δ(Y ) = ±FL(Y ) . (5.27)

Taking the Penrose transform of (5.27), we can also express (5.26) as a star-product sym-

metry of C(x;Y ) at a single point x:

C(x;Y ) ⋆ δ(Y ) = ±C(x;Y ) . (5.28)

An arbitrary bulk solution C(x;Y ) can be decomposed into antipodally even and odd pieces

in the sense of (5.26)–(5.28). For the twistor functions FL/R(Y ), as well as for C(x;Y )

viewed as a function of Y at fixed x, the corresponding decomposition is accomplished by

the projectors P±(Y ) from (4.11).

That being said, we must emphasize that conditions such as (5.27)–(5.28), as well as

the projectors P±(Y ), should be handled with caution, due to contour ambiguities in the

star product, as well as in the delta functions δ(Y ), δ
L/R
x (Y ) themselves. When in doubt,

it is helpful to look back to the original condition (5.26) in spacetime. We will now present

a simple example that shows how (5.27)–(5.28) can fail to be well-defined linear properties,

or, equivalently, how P±(Y ) can fail to be well-defined projectors.

Consider a conformally-coupled massless scalar field, with field equation (5.4). An

important solution to this field equation is the boundary-to-bulk propagator 1/(ℓ · x). For
xµ timelike, i.e. on EAdS4 and its antipodal image, this propagator is non-singular, and is

odd under the antipodal map x → −x. Now, consider a superposition of such propagators,

obtained by integrating ℓµ over an S3 section of the R
1,4 lightcone, i.e. over the 3-sphere

(ℓ · ℓ = 0, ℓ ·x0 = −1), where x0 is some future-pointing unit vector. This can be expressed

as a conformally covariant d3ℓ integral by inserting 1/(ℓ · x0)2 into the integrand. The

result reads:

∫
d3ℓ

(ℓ · x0)2
1

(ℓ · x) = 4π2 ×
{

1/(x · x0 − 1) x future-pointing

1/(x · x0 + 1) x past-pointing
, (5.29)

where we recall that future-pointing vs. past-pointing xµ correspond to points on the

original EAdS4 vs. the antipodal one. The key property of the bulk solution (5.29) is

that it’s still odd under x → −x, but this is accomplished non-analytically: if we were

to analytically continue the solution from future-pointing x to past-pointing x, the result

wouldn’t have a definite antipodal parity. As an aside, note that the r.h.s. of (5.29) is just

a bulk-to-bulk propagator between x0 and x. Therefore, (5.29) is a simple example of the

split representation [34] of bulk-to-bulk propagators as boundary integrals.

Now, let us upgrade the statement (5.29) to the master-field level. The master field

for the boundary-to-bulk propagator 1/(ℓ · x) reads:

Cℓ(x;Y ) =
1

2
δℓ(Y ) ⋆ δLx (Y ) = −1

2
δℓ(Y ) ⋆ δRx (Y ) =

1

ℓ · x exp
iY ℓxY

2ℓ · x . (5.30)
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This is clearly antipodally odd, both in the spacetime sense of (5.26) and in the star-product

sense of (5.28):

Cℓ(x;Y ) ⋆ δ(Y ) = Cℓ(−x;Y ) = −Cℓ(x;Y ) . (5.31)

However, taking the linear superposition (5.29), we find:

∫
d3ℓ

(ℓ · x0)2
Cℓ(x;Y ) = 4π2 ×

{

C(−)
x0

(x;Y ) x future-pointing

C(+)
x0

(x;Y ) x past-pointing
, (5.32)

where C
(±)
x0 (x;Y ) is the master field corresponding to the bulk-to-bulk propagator

1/(x · x0 ± 1), which we encountered in (5.23):

C(−)
x0

(x;Y ) = −1

2
δLx0

(Y ) ⋆ δLx (Y ) = −1

2
δRx0

(Y ) ⋆ δRx (Y ) =
1

x · x0 − 1
exp

iY x0xY

2(x · x0 − 1)
;

C(+)
x0

(x;Y ) = +
1

2
δRx0

(Y ) ⋆ δLx (Y ) = +
1

2
δLx0

(Y ) ⋆ δRx (Y ) =
1

x · x0 + 1
exp

iY x0xY

2(x · x0 + 1)
.

(5.33)

We now see that while the spacetime antipodal symmetry C(−x;Y ) = −C(x;Y ) is pre-

served by the superposition (5.32), its star-product analogue C(x;Y ) ⋆ δ(Y ) = −C(x;Y )

is not. We also see exactly why this happens: the master field C
(±)
x0 (x;Y ) on each branch

contains only the local Taylor series of the bulk solution. Therefore, the master field at

each x “sees” the analytic continuation of the bulk solution from the neighborhood of x,

which does not have definite antipodal parity, instead of seeing the antipodally odd, but

nonanalytic, global superposition (5.32)–(5.33).

6 Higher-spin representation of spacetime symmetries and the Penrose

transform

As we’ve seen in eq. (4.6), the quadratic elements YaYb of the higher-spin algebra generate

the spacetime symmetry group SO(1, 4). In this section, we consider the finite group

elements that arise by exponentiating these generators (the completion of SO(1, 4) into

O(1, 4) will be addressed in section 6.2.1). In the process, we will clarify the role of the

delta functions δ(Y ), δ
L/R
x (Y ), δℓ(Y ) with respect to spacetime symmetries. This in turn

will lead us to the geometric interpretation (2.2)–(2.3) of the Penrose transform as a square

root of CPT.

6.1 Clifford algebra

As mentioned in eq. (2.1), HS algebra is just a simple variation on Clifford algebra, where

the vector γµ subject to anticommutation relations is replaced with a twistor Ya subject

to commutation relations. Correspondingly, our analysis below will closely mirror the

well-known geometric properties of Clifford algebra (for a particularly spirited review of
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these, see [35]). In Clifford algebra, commutation with the infinitesimal generators γ[µγν]/2

realizes the standard action of the orthogonal group — in our case, SO(1, 4):
[
1

2
γ[νγρ], γ

µ1 . . . γµn

]

= 2
(

δµ1

[ν γρ]γ
µ2 . . . γµn + . . .+ γµ1 . . . γµn−1δµn

[ν γρ]

)

. (6.1)

Alternatively, instead of starting with infinitesimal generators, one can construct SO(1, 4)

out of some fundamental finite transformations. In particular, the adjoint action of x =

xµγµ is a reversal of the subspace orthogonal to a unit vector xµ. In our conventions, with

xµ timelike, this reads explicitly as:

x γµ1 . . . γµnx = γ̃µ1 . . . γ̃µn , where γ̃µ ≡ −(δµν + 2xµxν)γ
ν . (6.2)

By combining two such reversals with respect to a pair of axes x, x′, one obtains a finite

rotation (or boost) by twice the angle between x and x′:

xx′γµ1 . . . γµnx′x = γ̃µ1 . . . γ̃µn , where γ̃µ ≡
(
δµν + 2xµxν + 2x′µx′ν + 4(x · x′)xµx′ν

)
γν .

(6.3)

In particular, a rotation by π (in a spacelike plane) can be represented by xx′ with x′

perpendicular to x. A rotation by 2π, represented by the algebra element xx′ = −1, is

obtained via x′ = −x. The infinitesimal generators γ[µγν]/2 can be obtained by expand-

ing (6.3) around x = x′.

In odd dimensions, such as our case with the embedding space R1,4, one can also go in

the opposite direction, and derive the reflection (6.2) by exponentiating the infinitesimal

generators. The way to do this in R
1,4 is to rotate by π in a pair of planes orthogonal

both to xµ and to each other. If the rotation is performed in both planes at once, then,

depending on the planes’ orientation, it will belong to either the left-handed or the right-

handed subgroup of the 4d rotations SO(4) = SO(3)L×SO(3)R around xµ. We then obtain

either x or −x as the reflection operator. When used in the adjoint, both x and −x produce

the same reflection (6.2).

For comparison with the higher-spin case below, let us perform this calculation explic-

itly. We choose a frame such that xµ = eµ0 , and use the representation (3.21) for the gamma

matrices. Now, consider e.g. a right-handed rotation along the bivector e1 ∧ e2 + e3 ∧ e4.

A rotation by an infinitesimal angle ε in each of the two planes e1 ∧ e2 and e3 ∧ e4 is

represented in Clifford algebra by:

1 +
ε

2
(γ1γ2 + γ3γ4) = 1− iε

(

0 0

0 σ3

)

. (6.4)

Exponentiating, we obtain the operator for rotation by a finite angle θ:

gθ = exp

(

−iθ

(

0 0

0 σ3

))

=

(

1 0

0 cos θ − i sin θ σ3

)

. (6.5)

In particular, for θ = π, we get the operator:

gπ =

(

1 0

0 −1

)

= −γ0 = −x . (6.6)
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Similarly, a left-handed rotation along the bivector e1 ∧ e2 − e3 ∧ e4 will produce +x as

the reflection operator. Note that g2π = 1, as it should be: while a single 2π rotation need

not take us back to the identity, a combination of 2π rotations in a pair of planes must

always do so.

So far, we considered the adjoint action gΓg−1 in Clifford algebra, where g represents

an SO(1, 4) group element. As we saw in (6.1) or (6.2), this realizes the standard action

of SO(1, 4) on the algebra element Γ, which consists of spin-0 and spin-1 pieces. The next

natural question is what happens if one acts instead in the fundamental, i.e. simply via gΓ.

The answer, of course, is that this transformation law describes spinors (or, in our case,

twistors). In particular, the reflection (6.2) is realized on twistors as U → ±xU .

When describing spinors from within the Clifford algebra itself (as Cartan had done

originally), the geometric structure of SO(1, 4) becomes obscured. That is why it’s better

to introduce separate indices for spinors, and to develop geometric intuition about spinor

space in its own right. As we will see below, the situation in higher-spin algebra is different:

there, the SO(1, 4) can be made manifest not only in the algebra’s adjoint representation,

but also in the fundamental. In both the Clifford and HS cases, while the adjoint action

of SO(1, 4) can be formulated on the individual vector γµ or twistor Ya, the fundamental

action mixes different powers of these objects.

6.2 Higher-spin algebra

Let us now perform the analogous analysis for HS algebra in place of Clifford algebra. Since

infinitesimal SO(1, 4) rotations are generated by YaYb, finite rotations will be generated,

via exponentiation, by Gaussian functions. In addition, we will find that various reflections

are represented by delta functions.

As a first step, let us identify the higher-spin analog of xµγµ — the reflection that

reverses the subspace orthogonal to xµ. As discussed above, we can construct this group

element from the infinitesimal generators by performing a left-handed or right-handed

rotation by π in a pair of totally orthogonal planes. In the higher-spin algebra, such

rotations are generated by the bilinears yaLy
b
L or yaRy

b
R, respectively. As before, we fix

xµ = eµ0 , and use the representation (3.21) for the gamma matrices. A twistor Y a can now

be decomposed as:

Y a =








y0L
y1L
y0R
y1R








, (6.7)

where the top and bottom halves correspond to the left-handed and right-handed parts of

Y a at xµ. Now, consider again a right-handed rotation along the bivector e1 ∧ e2 + e3 ∧ e4.

In our chosen basis, we read off from eq. (4.6) that a rotation by an infinitesimal angle ε in

each of the two planes e1 ∧ e2, e3 ∧ e4 is represented in HS algebra by 1 + (ε/2)y0Ry
1
R. Ex-

ponentiating with the star product, we obtain the operator for rotation by a finite angle θ:

Rθ(Y ) = exp⋆

(
θ

2
y0R y1R

)

=
1

cos(θ/2)
exp

(

tan
θ

2
y0R y1R

)

. (6.8)
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One can verify this formula for the star-exponential by differentiating both sides with re-

spect to θ. Note the appearance of θ/2 in eq. (6.8), as opposed to θ in its Clifford-algebra

analog (6.5). In particular, for θ = 2π, we get:

R2π(Y ) = −1 . (6.9)

This signals a problem: even in a spinor representation, a 2π rotation in a pair of planes

must return the identity. To resolve this contradiction, we must recall from section 3.2.2

that the star product of Gaussians is only defined up to sign. Now that we understand

Gaussians as Spin(1, 4) elements, eq. (6.9) is teaching us that there is no globally consis-

tent way to fix this sign ambiguity. For instance, one attempt to fix the sign ambiguity

may be to define “the” Gaussian representing a Spin(1, 4) element as the one obtained by

the shortest direct route from the identity, i.e. by exponentiating a generator through the

smallest possible angle. However, this definition would break down for precisely the case

we’re interested in: the reversal −(δµν + 2xµxν) of a 4d subspace in R
1,4, which may be

realized as a rotation (6.8) with θ = π.

Consider, then, the rotation (6.8) with θ = π. In this limit, the coefficients both

outside and inside the exponent diverge, and the Gaussian becomes a delta function over

the yR spinor space: Rπ(Y ) ∼ δRx (Y ). To find the normalization, we integrate (6.8) over

yR using eq. (3.77):
∫

Rθ(yR) d
2yR =

±i

sin(θ/2)
. (6.10)

Thus, in the limit θ = π, the integral is ±i, and we identify the reflection operator as:

Rπ(Y ) = ±iδRx (Y ) . (6.11)

As we will shortly see, the sign ambiguity here cannot be fixed. If we were to construct

the reflection −(δµν + 2xµxν) via a left-handed rotation, we would instead get ±iδLx (Y ) as

the reflection operator. In other words, ±iδLx (Y ) and ±iδRx (Y ) in higher-spin algebra play

the same geometric role as do x and −x in Clifford algebra. In fact, we’ve already seen

in (4.17) that the adjoint action of ±iδ
L/R
x (Y ) directly realizes the reflection Y → ±xY :

(
±iδLx (Y )

)
⋆ f(Y ) ⋆

(
±iδLx (Y )

)−1

⋆
= δLx (Y ) ⋆ f(Y ) ⋆ δLx (Y ) = f(xY ) ;

(
±iδRx (Y )

)
⋆ f(Y ) ⋆

(
±iδRx (Y )

)−1

⋆
= δRx (Y ) ⋆ f(Y ) ⋆ δRx (Y ) = f(−xY ) .

(6.12)

As with eq. (6.2) in Clifford algebra, we can now take the reflection (6.12) as the funda-

mental geometric operation in place of the infinitesimal generators YaYb. In particular, the

product (4.41) of two reflections with respect to the unit vectors x, x′ gives a rotation in

the corresponding plane by twice the angle between x and x′:

(
±iδLx (Y )

)
⋆
(
∓iδLx′(Y )

)
=
(
±iδRx (Y )

)
⋆
(
∓iδRx′(Y )

)
=

2

1−x·x′ exp
iY xx′Y

2(x·x′−1)
. (6.13)

Note that in order to recover the identity in the limit x = x′, we must choose opposite

signs for the two reflection operators. This demonstrates that the sign ambiguity (6.11)

cannot be fixed consistently.
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As we can see, HS algebra is a kind of square root of Clifford algebra. In a sense, this

is already clear from the definitions (2.1), since spinors are the “square roots” of vectors.

However, the “square root” relationship between the algebras is more concrete than that.

Indeed, we see e.g. in (6.12) that the adjoint action of HS algebra realizes the fundamental

action of Clifford algebra on the twistor Y . We also saw the angle θ/2 appearing in (6.8)

as opposed to θ in (6.5), which led to a sign ambiguity on top of the ordinary double cover

SO(1, 4) → Spin(1, 4).

We are now ready to apply this section’s geometric viewpoint to linearized higher-

spin gravity. We recognize immediately that while the adjoint action (6.12) of ±iδL/R(Y )

directly realizes the reflection −(δµν + 2xµxν) on Y , the fundamental action (5.16)–(5.17)

realizes the Penrose transform. In this sense, the Penrose transform is the “square root”

of a reflection. While the adjoint reflection (6.12) acts on the argument Y , the Penrose

transform acts on functions f(Y ) as a whole. This must be the case, since the SO(1, 4)

transformation of an individual twistor does not have a square root: twistors are already

a square root of R1,4 vectors.

For the final touch to our interpretation of the Penrose transform, we should spell out

the spacetime significance of the reflection −(δµν + 2xµxν). So far, the vector xµ has been

timelike, representing a radius vector on the EAdS4 hyperboloid. However, eventually, the

more physical case is Lorentzian dS4 spacetime, given in R
1,4 by spacelike unit vectors

xµ. There, the subspace orthogonal to xµ is the dS4 tangent space at the point x, and

the reflection −(δµν + 2xµxν) is the de Sitter analog of CPT, with x as the origin. Our

statement (2.3) now follows: the Penrose transform is a square root of CPT.

6.2.1 Rotations by 2π and the antipodal map

So far in this section, we’ve been careful to distinguish SO(1, 4) from the full O(1, 4). The

geometric transformations we’ve constructed up to now only cover SO(1, 4), i.e the even

elements of O(1, 4). This includes the CPT reflections (6.2), (6.12), since they reverse an

even number of axes. To enlarge our scope to the full O(1, 4), we must add to our menu

its central element: the antipodal map xµ → −xµ, which reverses all 5 axes in R
1,4. On a

single twistor Y a, the only way to represent this transformation non-trivially is by complex

conjugation, which we will not consider here. With that option closed, we must resort,

as with the Penrose transform, to acting on whole functions f(Y ). In fact, in section 5.4,

we’ve already seen how this happens — the antipodal map on bulk master fields C(x;Y )

is realized by multiplying either C(x;Y ) itself or its Penrose transform by δ(Y ):

FL/R(Y ) → FL/R(Y ) ⋆ δ(Y ) ⇐⇒ C(x;Y ) → C(−x;Y ) = C(x;Y ) ⋆ δ(Y ) . (6.14)

This follows from decomposing δ(Y ) = δLx (Y ) ⋆ δRx (Y ), which can be interpreted as the

Penrose transform at x followed by the inverse transform at −x. Thus, while SO(1, 4) is

manifestly realized by the adjoint action of HS algebra, the antipodal map is realized by

acting with δ(Y ) in the fundamental.
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To complete the picture, it remains to understand the geometric role of δ(Y ) when

acting in the adjoint. As we can see from (4.10), the answer is simply a 2π rotation:

δ(Y ) ⋆ f(Y ) ⋆ δ(Y ) = f(−Y ) . (6.15)

This can again be understood in terms of the decomposition δ(Y ) = δLx (Y ) ⋆ δRx (Y ): the

product of two π rotations along e.g. the bivectors e1 ∧ e2 + e3 ∧ e4 and e1 ∧ e2 − e3 ∧ e4 is

simply a 2π rotation along e1 ∧ e2.

In light of the above two roles of δ(Y ), one can rephrase the
√
CPT nature of the

Penrose transform as follows: the Penrose transform is to CPT as the antipodal map is to

a 2π rotation.

6.3 The null limit

So far, we’ve considered spacetime symmetries through the lens of reflections around time-

like (or spacelike) vectors xµ. As we’ve seen, this geometry relates naturally to the bulk

higher-spin theory. To discuss the boundary theory, we must take the limit (3.6), where

the reflection vector xµ becomes null. The reflection matrix −(δµν + 2xµxν) then becomes:

−(δµν + 2xµxν) −→ 2

z2
(
−ℓµℓν +O(z2)

)
. (6.16)

The leading-order part of this matrix, renormalized so as to make it finite, is the degen-

erate “reflection matrix” −ℓµℓν , which projects any vector onto ℓµ. Combining two such

“reflections” with respect to a pair of null vectors ℓ, ℓ′, we get the matrix:

(−ℓµℓρ)(−ℓ′ρℓ′ν) ∼ −ℓµℓ′ν . (6.17)

Treating ℓ, ℓ′ as the null limits of highly boosted timelike vectors x, x′, we recognize the

matrix (6.17) as a boost by an infinite angle in the ℓ ∧ ℓ′ plane (again, renormalized for

finiteness). This boost shrinks ℓ′µ to zero, stretches ℓµ to infinity, and leaves untouched

the subspace orthogonal to both. As a result, the renormalized matrix −ℓµℓ′ν leaves the ℓµ

component finite, while annihilating both the ℓ′µ and orthogonal components.

The degenerate “reflections” −ℓµℓν and “infinite boosts” −ℓµℓ′ν satisfy a “forgetful

property”: any linear operation sandwiched between two reflections is reduced to the cor-

responding boost (6.17). Explicitly, for any matrix Mµ
ν , we trivially have:

(−ℓµℓρ)M
ρ
σ(−ℓ′σℓ′ν) ∼ −ℓµℓ′ν . (6.18)

In Clifford algebra, the analog of the matrix −ℓµℓν is the algebra element ℓ = ℓµγµ; in

higher-spin algebra, the corresponding element is the boundary spinor delta function δℓ(Y ).

These algebra elements and their products do not quite represent SO(1, 4) transformations,

but renormalized limiting cases thereof. In fact, the renormalization is different in the

different algebras: −ℓµℓν , ℓ and δℓ(Y ) all scale differently with ℓµ. Thus, it is tempting to

apply the geometry of (6.16)–(6.18) in the context of Clifford or HS algebra, but one must

be mindful that not every property might carry over.
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It turns out that the HS algebra element δℓ(Y ) closely resembles in its properties the

“null reflection” matrix −ℓµℓν , while the Clifford algebra element ℓ does not. In Clifford

algebra, the analog of the “forgetful property” (6.18) does not hold: the products ℓΓℓ′

are not all proportional to each other, but span a 4d subspace, parameterized by varying

Γ over the Clifford algebra of the 3d hyperplane orthogonal to ℓ, ℓ′. In contrast, in HS

algebra, the “forgetful property” does hold, as we’ve seen in eq. (4.46): all products of the

form δℓ ⋆ f ⋆ δℓ′ are proportional to each other, since they must lie in the intersection of the

subalgebras A+(ℓ) ∩ A−(ℓ
′). In particular, the product of three “null reflections” behaves

similarly in spacetime and in HS algebra:

(−ℓµℓρ)(−ℓ′ρℓ′σ)(−ℓ′′σℓ′′ν) = −(ℓ · ℓ′)(ℓ′ · ℓ′′)ℓµℓ′′ν
vs.

δℓ(Y ) ⋆ δℓ′(Y ) ⋆ δℓ′′(Y ) = ±i

√

− ℓ · ℓ′′
2(ℓ · ℓ′)(ℓ′ · ℓ′′) δℓ(Y ) ⋆ δℓ′′(Y ) ,

(6.19)

where the different proportionality coefficients arise from the different scaling properties of

−ℓµℓν and δℓ(Y ).

6.4 Manifest SO(1, 4) in the higher-spin fundamental

We are now ready to understand the geometric action (2.5) of CPT— and thus of the entire

SO(1, 4) — on the boundary two-point product (2.4) in the higher-spin fundamental. In

other words, we wish to calculate the action δℓ ⋆ δℓ′ ⋆ δ
R
x of the CPT operator δRx (Y ) on the

boundary two-point product δℓ(Y ) ⋆ δℓ′(Y ). The first step is to notice that the boundary-

bulk product δℓ′ ⋆ δRx can be reduced to a boundary-boundary product. Specifically, we

can read off from (4.39)–(4.40) the identity (switching temporarily from ℓ′ to ℓ to simplify

notations):

δℓ(Y ) ⋆ δRx (Y ) = −2(ℓ · x) δℓ(Y ) ⋆ δℓ̃(Y ) , (6.20)

where ℓ̃µ is the result of the CPT reflection −(δµν + 2xµxν) acting on the null vector ℓµ:

ℓ̃µ = −ℓµ − 2(ℓ · x)xµ . (6.21)

In the context of EAdS4 geometry, ℓ̃ is the second boundary endpoint of the geodesic that

begins at ℓ and passes through x.

Within the geometric framework of this section, the equality (6.20) is not surprising.

Up to renormalization, the product δℓ(Y )⋆δRx (Y ) represents an infinite boost in the timelike

plane ℓ∧x. The same boost can also be represented by δℓ(Y )⋆δℓ̃(Y ), where ℓ̃ is the second

null vector in this plane. That is precisely the statement of eqs. (6.20)–(6.21). Returning

now to the task of calculating δℓ ⋆ δℓ′ ⋆ δ
R
x , we use (6.20) and then (4.48) to find:

δℓ(Y )⋆δℓ′(Y )⋆δRx (Y )=−2(ℓ′ ·x)δℓ(Y )⋆δℓ′(Y )⋆δℓ̃′(Y )=±i

√

ℓ·ℓ̃′
ℓ·ℓ′ δℓ(Y )⋆δℓ̃′(Y ) . (6.22)
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We have thus confirmed the first equation in (2.5):

K(ℓ, ℓ′;Y ) ⋆ iδRx (Y ) = ±K(ℓ, ℓ̃′;Y ) , (6.23)

where:

K(ℓ, ℓ′;Y ) ∼
√
−ℓ · ℓ′ δℓ(Y ) ⋆ δℓ′(Y ) . (6.24)

For multiplication on the left, we similarly derive:

iδRx (Y ) ⋆ K(ℓ, ℓ′;Y ) = ±K(ℓ̃, ℓ′;Y ) , (6.25)

and identical formulas hold for δLx (Y ) in place of δRx (Y ). Note that the sign ambiguities

in (6.23), (6.25) cannot be consistently resolved. If we insisted on choosing a particular

sign, then applying e.g. eq. (6.23) twice, we would find a contradiction with the identity

δRx ⋆ δRx = +1.

As promised, we see that the CPT reflection operators ±iδ
R/L
x (Y ), acting onK(ℓ, ℓ′;Y )

in the higher-spin fundamental, have the effect of applying CPT to one of the two boundary

points ℓ, ℓ′. Thus, when acting on these bilocals, the Penrose transform is manifestly a

square root of CPT. Furthermore, since all of SO(1, 4) can be constructed by combining

reflections around different points x, we conclude that the same is true for a general SO(1, 4)

operator g: acting with g on K(ℓ, ℓ′;Y ) in the higher-spin fundamental will result in the

corresponding SO(1, 4) transformation of one of the two points ℓ, ℓ′. We can verify this

directly by applying the SO(1, 4) generators (4.6) to find the result quoted in (2.6):

Mµν ⋆ K(ℓ, ℓ′;Y ) = ℓµ
∂K

∂ℓν
− ℓν

∂K

∂ℓµ
;

−K(ℓ, ℓ′;Y ) ⋆ Mµν = ℓ′µ
∂K

∂ℓ′ν
− ℓ′ν

∂K

∂ℓ′µ
.

(6.26)

Note that in this case, there are no sign ambiguities in the star products, since

Mµν ∼ Y γµνY is polynomial in Y .

7 The CFT in higher-spin-covariant twistor language

7.1 Overview

In this section, we express the 3d free U(N) vector model in twistor language, making its

higher-spin conformal invariance manifest. We represent the conformal 3-sphere on which

the CFT lives as the projective lightcone (ℓµℓ
µ = 0, ℓ0 > 0, ℓµ ∼= λℓµ) in R

1,4. Thus, we are

using the “embedding-space formalism” for CFT (see e.g. [36]). In section 7.2, we express

our CFT in the standard language of local operators and sources. In section 7.3, as a first

step towards the twistor formalism, we express the theory and its correlators at separated

points in a bilocal language. For the very special case of a free vector model, this language

is more natural than the standard local one, because all single-trace operators are quadratic

in the fundamental fields. Our bilocal formalism is inspired by the one in [21]. However,

unlike the authors of [21], we do not treat the bilocal operators as a new “fundamental”
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field. Instead, we treat them straightforwardly as composite operators, coupled to bilocal

sources. Of course, these quadratic CFT operators do become fundamental fields once

we switch to the bulk description. In this sense, the CFT is a “square root” of the bulk

theory. The results of the present section can be viewed as a consequence of this “square

root” relation, combined with the “square root” relation (2.2)–(2.3) between the Penrose

transform and CPT.

The local and bilocal languages for the CFT share some qualitative features. The

bilocal sources, like the local gauge potentials, are gauge-redundant (in fact, their gauge

redundancy is even larger). Conversely, the bilocal operators, like the local conserved

currents, satisfy constraints. Finally, as discussed in section 2.3, in a region with non-

vanishing (either local or bilocal) sources, one would need contact terms to obtain finite

and conserved expectation values for the local currents.

In section 7.4, having established the bilocal language, we use it as a springboard

towards a fully nonlocal, twistorial formulation of the CFT. In this formulation, the sources

are no longer gauge-redundant, while the single-trace “currents” are constraint-free. At

the same time, the theory’s global higher-spin symmetry becomes manifest. Our transform

between the twistor and bilocal formulations is a boundary version of the bulk Penrose

transform. Since the CFT is free even when the bulk is interacting, this boundary/twistor

transform allows us to express the full partition function in the twistor language. Finally,

as we discuss in section 8.5, the twistor language appears to automatically include all the

necessary contact terms, so that we end up with conserved currents even at finite sources.

7.2 Local language

We begin with the action of N free massless scalars in the fundamental representation of

an internal U(N) symmetry:

SCFT = −
∫

d3ℓ φ̄I�φI . (7.1)

Here, I = 1, . . . , N is an internal index; φI and their complex conjugates φ̄I are dynamical

fields with conformal weight ∆ = 1/2. We consider only U(N) singlets to be observable

(for example, one might imagine that the U(N) is gauged with a very weak coupling). The

single-trace primaries of the theory (7.1) consist of an infinite tower of conserved currents

j(s), one for each spin s. To write these out explicitly, we can use a flat 3d frame as in (3.7),

with 3d spatial indices (i, j, k, . . . ). Then the spin-s current j(s) reads [37, 38]:

j
(s)
k1...ks

=
1

(2i)s
φ̄I

(
s∑

m=0

(−1)m
(
2s

2m

)
←

∂ (k1 . . .
←

∂ km

→

∂ km+1
. . .

→

∂ ks) − traces

)

φI . (7.2)

Here, the 1/is prefactor ensures that j(s) is real, while the 1/2s prefactor is chosen for

agreement with the bulk asymptotics in section 8.4. We include in (7.2) also the case

s = 0, i.e. the scalar “current” j(0) = φ̄Iφ
I . The spin-1 current j

(1)
i is 1/2 times the

ordinary charge current for the U(1) component of U(N):

j
(1)
i =

1

2i
φ̄I

↔

∂ iφ
I , (7.3)
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while the spin-2 current j
(2)
ij is 2 times the theory’s stress-energy tensor:

j
(2)
ij = 2Tij ; Tij = −1

8

(

φ̄I∂i∂jφ
I + φI∂i∂jφ̄I − 6∂(iφ̄I∂j)φ

I + 2gij∂kφ̄I∂
kφI

)

. (7.4)

For the stress tensor and the conserved currents of spin s > 2, there are various related

definitions that all satisfy a conservation law. The definition (7.2) is the unique one that

is totally symmetric and traceless. In particular, the stress tensor (7.4) is the one derived

by varying the metric in a theory of free massless scalars with conformal coupling.

When we’re not using the explicit formula (7.2) with its flat 3d derivatives, we can use

R
1,4 indices (µ, ν, . . . ) for the currents j(s), as in section 3.1.2. Introducing sources A

(s)
µ1...µs

for the single-trace operators (7.2), the free action (7.1) becomes:

SCFT = −
∫

d3ℓ φ̄I�φI −
∫

d3ℓ
∞∑

s=0

A(s)
µ1...µs

(ℓ) jµ1...µs

(s) (ℓ) . (7.5)

The sources A
(s)
µ1...µs are spin-s gauge potentials. In particular, A

(1)
µ is an ordinary U(1)

gauge potential (times 2), while A
(2)
µν is a metric perturbation (times 1/2).

7.3 Bilocal language

Having formulated our theory in the ordinary language of local operators and sources, let

us now present its much simpler formulation in terms of bilocals. The idea is to notice

that the local primaries j
(s)
µ1...µs(ℓ) are just a complicated-looking Taylor expansion of the

two-point inner product φI(ℓ)φ̄I(ℓ
′). Note that before imposing the free field equations

�φI = 0, there is not enough information in the totally symmetric and traceless j
(s)
µ1...µs(ℓ)

to encode all possible configurations of φI(ℓ)φ̄I(ℓ
′). However, after imposing the field

equations, there is too much information. The currents j
(s)
µ1...µs(ℓ) then satisfy constraints,

i.e. conservation laws. In this situation, we might as well directly use the bilocal φI(ℓ)φ̄I(ℓ
′)

as our basic single-trace operator. The role of current conservation laws is then played by

the field equations themselves. Coupling a bilocal source Π(ℓ′, ℓ) to the bilocal operator

φI(ℓ)φ̄I(ℓ
′), we write the CFT action in the form:

SCFT[Π(ℓ
′, ℓ)] = −

∫

d3ℓ φ̄I�φI −
∫

d3ℓ′d3ℓ φ̄I(ℓ
′)Π(ℓ′, ℓ)φI(ℓ) . (7.6)

The “conservation laws” (actually, just field equations) on φI(ℓ)φ̄I(ℓ
′) induce a gauge re-

dundancy on Π(ℓ′, ℓ):

Π(ℓ′, ℓ) → Π(ℓ′, ℓ) +�ℓf(ℓ
′, ℓ) +�ℓ′g(ℓ

′, ℓ) . (7.7)

In the large-N limit, there are no constraints on φI(ℓ)φ̄I(ℓ
′) other than the field equations,

and thus (7.7) captures the full gauge redundancy of Π(ℓ′, ℓ). For finite N , this is not

the case: for example, for N = 1, the product φ(ℓ)φ̄(ℓ′) is determined by two functions

φ(ℓ), φ̄(ℓ) of a single point ℓ. Thus, for finite N , the redundancy in Π(ℓ′, ℓ) is greater.

However, even then, this redundant parameterization of the single-trace sources remains

legitimate.
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Figure 1. The Feynman diagram for a single-trace contribution tr(GΠ)n to the CFT partition

function, drawn for n = 4. Dashed lines represent the bilocal sources Π(ℓ′, ℓ). Solid lines represent

propagators G(ℓ, ℓ′). Note that the diagram is in coordinate space rather than momentum space,

and there is no loop integration involved.

The partition function of the theory (7.6) is very easy to write down in the bilocal

language. First, we write the action in a “matrix” notation:

SCFT[Π(ℓ
′, ℓ)] = −φ̄I(�+Π)φI , (7.8)

where φ(ℓ) is viewed as an infinite-dimensional vector, φ̄(ℓ) as a dual vector, and �,Π

as matrices/operators. The Gaussian path integral over φ and φ̄ immediately gives the

partition function in the form:

ZCFT[Π(ℓ
′, ℓ)] ∼ (det (�+Π))−N ∼ (det (1 +GΠ))−N = exp (−N tr ln(1 +GΠ)) , (7.9)

where G = �
−1 is the boundary-to-boundary propagator:

G(ℓ, ℓ′) = − 1

4π
√
−2ℓ · ℓ′

, (7.10)

i.e. G(r, r′) = −1/(4π|r− r′|) in the flat frame (3.7).

The partition function (7.9) is a combination of single-trace pieces of the form tr(GΠ)n,

which can be represented by “1-loop” Feynman diagrams as in figure 1. The U(N) “color”

factor is taken into account by the N in the exponent in eq. (7.9).

Any UV divergences in the CFT’s Feynman diagrams (such as the diagram in figure 1)

are associated with the short-distance divergence of the propagator (7.10), i.e. with the

limit where some of the “external legs” of the Π(ℓ′, ℓ) factors coincide. As long as we are

only interested in the bilocal source couplings (7.6) and partition function (7.9), these short-

distance singularities don’t seem to require any special treatment: the propagator (7.10)

behaves as ∼ 1/r, which is integrable under the 3d volume measure ∼ r2dr. Thus, the

partition function (7.9) is well-defined without any contact-term corrections.

In contrast, the conserved local currents (7.2), the local source couplings (7.5) and the

bilocal gauge symmetry (7.7) are all given up to contact terms, i.e. assuming separated

points. We will not investigate these contact terms directly here. Instead, we will now

switch to twistor language, where the need for contact terms, even for calculating local

currents, seems to disappear entirely.
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7.4 Twistor language

7.4.1 From bilocals to twistor functions

So far, we’ve made manifest the conformal O(1, 4) symmetry of the theory (7.6), but not

its higher-spin extension. To this end, we will now employ the HS algebra of section 4. The

boundary two-point products of section 4.4 will play a central role. First, let us package

the bilocal source Π(ℓ′, ℓ) into a twistor function Π(Y ):

F (Y ) =

∫

d3ℓ d3ℓ′K(ℓ, ℓ′;Y )Π(ℓ′, ℓ) , (7.11)

where the bilocal kernel K(ℓ, ℓ′;Y ) is given by:

K(ℓ, ℓ′;Y ) = −
√
−2ℓ · ℓ′
4π

δℓ(Y ) ⋆ δℓ′(Y ) = − 1

π
√
−2ℓ · ℓ′

exp
iY ℓℓ′Y

2ℓ · ℓ′ . (7.12)

The kernel K(ℓ, ℓ′;Y ) is an even function of Y , and has conformal weight ∆ = 1/2 with

respect to each of the boundary points ℓ, ℓ′.

The transform (7.11) involves a loss of information: the original bilocal Π(ℓ′, ℓ) is a

function of 6 coordinates, while F (Y ) only depends on 4. Nevertheless, we will see that

F (Y ) is sufficient to express the partition function, i.e. it is a complete encoding of the

“physically relevant” data in Π(ℓ′, ℓ). In fact, our transform can be viewed as stripping

away the gauge redundancy in Π(ℓ′, ℓ). Indeed, we see from eq. (4.43) that K(ℓ, ℓ′;Y )

satisfies, up to contact terms, the same field equations �ℓK = �ℓ′K = 0 as the bilocal

operator φI(ℓ)φ̄I(ℓ
′). Therefore, F (Y ) is invariant under the gauge symmetry (7.7). Thus,

at large N , F (Y ) constitutes a non-redundant parameterization of the theory’s sources

(recall that at finite N , there is additional redundancy in Π(ℓ′, ℓ), which is not captured by

eq. (7.7)). What’s more, while the gauge redundancy is lost, the true global HS symmetry

can now be made manifest. Indeed, we will see below that the partition function in terms

of F (Y ) is manifestly HS-invariant, with F (Y ) transforming in the adjoint.

The remaining question is whether F (Y ) constructed through (7.11) is an arbitrary

even function of Y , i.e. whether the functions K(ℓ, ℓ′;Y ) form a spanning set for the HS

algebra. Skipping slightly ahead in the narrative, the answer is essentially yes. Specifically,

there’s a one-to-one correspondence between F (Y ) and linearized bulk solutions (via the

Penrose transform), and a one-to-one correspondence between linearized bulk solutions and

allowed configurations of the linearized expectation values of the local currents j
(s)
µ1...µs(ℓ).

More precisely, the above statements are almost true, due to a pair of related subtleties.

First, the Penrose transform involves contour ambiguities. Second, the one-to-one map-

ping between expectation values 〈j(s)µ1...µs(ℓ)〉 and bulk solutions involves a requirement

of regularity on EAdS4, without which one loses the relationship between the boundary

data corresponding to 〈j(s)µ1...µs(ℓ)〉 and the boundary data corresponding to the sources

A
(s)
µ1...µs(ℓ). This regularity on EAdS4 can be enforced by an iǫ prescription on boundary-

to-bulk propagators, i.e. it is yet another contour issue. Again related to the above is the

question of how F (Y ) behaves under the “antipodal map” F (Y ) → F (Y ) ⋆ δ(Y ). As we

can see from (4.26), K(ℓ, ℓ′;Y ) is odd under this map, at least for ℓ 6= ℓ′:

K(ℓ, ℓ′;Y ) ⋆ δ(Y ) = −K(ℓ, ℓ′;Y ) ∀ℓ 6= ℓ′ . (7.13)
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However, as we’ve seen in section 5.4, one cannot conclude the same for a linear superpo-

sition such as (7.11), and in fact F (Y ) ⋆ δ(Y ) cannot be defined consistently for generic

functions F (Y ).

To summarize, the encoding (7.11) of the CFT sources into a twistor function F (Y ) is

1) complete, 2) free of the infinite-dimensional HS gauge redundancy, 3) capturing all the

gauge-invariant information, 4) making global HS symmetry manifest, and 5) constraint-

free, up to a set of closely related subtleties regarding contour choices, analiticity and

discrete symmetries.

7.4.2 The partition function in twistor language

In this section, we express the CFT partition function in terms of F (Y ). Remarkably, this

can be done by rewriting each individual element in the CFT Feynman diagrams as an

HS-covariant operation. The mechanism is captured by the following pair of identities:

tr⋆K(ℓ, ℓ′;Y ) = 4G(ℓ, ℓ′) ; (7.14)

K(ℓ1, ℓ
′
1;Y ) ⋆ K(ℓ2, ℓ

′
2;Y ) = G(ℓ2, ℓ

′
1)K(ℓ1, ℓ

′
2;Y ) . (7.15)

Here, the trace identity (7.14) is just a restatement of eq. (4.44). The star-product iden-

tity (7.15) follows from applying the three-point product formula (4.48) twice:

δℓ1(Y ) ⋆ δℓ′1(Y ) ⋆ δℓ2(Y ) ⋆ δℓ′2(Y ) =
1

2

√

(ℓ1 · ℓ′2)
(ℓ1 · ℓ′1)(ℓ′1 · ℓ2)(ℓ2 · ℓ′2)

δℓ1(Y ) ⋆ δℓ′2(Y ) . (7.16)

Here, we fix the sign ambiguity by considering the divergent limit where ℓ′1 = ℓ2, which we

regularize via ℓ′µ1 = ℓµ2 = zxµ, with xµ a highly boosted timelike unit vector, and z → 0.

The positive sign in (7.16) then follows from the identity δRx ⋆ δRx = +1. Note that this

choice of sign in (7.16) is incompatible with any global fixing of the original sign ambiguity

in (4.48); indeed, any such fixing would have given us a factor of (±i)2 = −1. This is yet

another example where certain sign ambiguities in the star product must be maintained

for overall consistency.

Having established the identity (7.15), we note that the star product there radically

alters the spatial dependence of the K’s. Indeed, the K factors on the l.h.s. have essential

singularities at ℓ1 = ℓ′1 and ℓ2 = ℓ′2, while the r.h.s. has an essential singularity at ℓ′1 = ℓ2
and a simple pole at ℓ′1 = ℓ2. This is an example of how the star product’s nonlocality in

twistor space can get translated into nonlocality in spacetime.

We are now ready to employ eqs. (7.14)–(7.15) to compute the CFT partition function.

The single-trace products that form the building blocks of ZCFT, i.e. the one-loop Feynman

diagrams from figure 1, can be rewritten as:

tr(GΠ)n =
1

4
tr⋆

(

F (Y ) ⋆ F (Y ) ⋆ . . . ⋆ F (Y )
︸ ︷︷ ︸

n times

)

. (7.17)

Thus, the CFT Feynman diagrams make equally good sense in both the bilocal and higher-

spin languages. In fact, the correspondence is at the level of individual diagram elements:
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via the identities (7.14)–(7.15), every individual star product or higher-spin trace can be

identified with a G(ℓ, ℓ′) propagator in the Feynman diagram.

The entire partition function (7.9) can now be written in HS language, yielding the

result (2.9):

ZCFT[F (Y )] ∼ exp

(

−N

4
tr⋆ ln⋆[1 + F (Y )]

)

= (det⋆[1 + F (Y )])−N/4 . (7.18)

Here, ln⋆[1 + F (Y )] is defined by substituting star products in the Taylor expansion of

ln(1 + x), and we introduce the “star determinant” det⋆ f ≡ exp(tr⋆ ln⋆ f).

The partition function (7.18) is manifestly invariant under global HS symmetry, with

the source F (Y ) transforming in the adjoint:

δF (Y ) = ε(Y ) ⋆ F (Y )− F (Y ) ⋆ ε(Y ) ; δZCFT = 0 . (7.19)

Conversely, the symmetry (7.19) completely fixes the invariant traces (7.17) as the only

possible ingredient in the partition function (up to a possible δ(Y ) factor inside the trace;

however, see eq. (7.13) and the surrounding discussion). For this reason, the traces (7.17)

were introduced from a bulk perspective in [16, 39] as the unique expressions for the n-point

functions, with only their coefficients left undetermined. Here, we derived the traces (7.17)

directly from the boundary CFT, allowing us to fix their coefficients by writing down the

full partition function (7.18).

7.4.3 The single-trace currents in twistor space

We can construct a “current” operator conjugate to the source F (Y ) as an HS-covariant

variational derivative:

Φ(Y ) =
D

DF (Y )
, (7.20)

where the derivative D/Df(Y ) a functional Θ[f(Y )] is defined via:

δΘ = tr⋆

(
DΘ

Df(Y )
⋆ δf(Y )

)

. (7.21)

As we can see from (4.7), this implies that D/Df(Y ) is actually a Fourier transform of the

ordinary variational derivative:

D

Df(Y )
=

∫

d4UeiY U δ

δf(U)
. (7.22)

The expectation value 〈Φ(Y )〉 reads:

〈Φ(Y )〉 = D lnZCFT

DF (Y )
= −N

4
[1 + F (Y )]−1

⋆ =
N

4

(
−1 + F (Y ) +O(F 2)

)
. (7.23)

In particular, the linear piece of 〈Φ(Y )〉 is just a constant multiple of F (Y ). There is in

fact no other possibility compatible with HS symmetry (again, with the subtle exception

of multiplication by δ(Y ), which we will touch on again in section 8).
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For comparison, in the original bilocal language of eqs. (7.6)–(7.9), the current conju-

gate to Π(ℓ′, ℓ) is simply the bilocal operator φI(ℓ)φ̄I(ℓ
′):

φI(ℓ)φ̄I(ℓ
′) =

δ

δΠ(ℓ′, ℓ)
; (7.24)

〈
φI(ℓ)φ̄I(ℓ

′)
〉
=

δ lnZCFT

δΠ(ℓ′, ℓ)
= −N(1 +GΠ)−1G

= N

(

−G(ℓ, ℓ′) +

∫

d3ℓ1d
3ℓ2G(ℓ, ℓ1)Π(ℓ1, ℓ2)G(ℓ2, ℓ

′) +O(Π2)

)

.

(7.25)

The currents Φ(Y ) and φI(ℓ)φ̄I(ℓ
′) are related via the chain rule for variational derivatives:

φI(ℓ)φ̄I(ℓ
′) =

∫

d4Y
δF (Y )

δΠ(ℓ′, ℓ)

δ

δF (Y )
=

∫

d4Y K(ℓ, ℓ′;Y )

∫

d4Ue−iY UΦ(U)

= tr⋆
(
Φ(Y ) ⋆ K(ℓ, ℓ′;Y )

)
.

(7.26)

Equivalently, the perturbation of F (Y ) that couples to the operator φI(ℓ)φ̄I(ℓ
′) is simply:

δF (Y )

δΠ(ℓ′, ℓ)
=

δ
(
φI(ℓ)φ̄I(ℓ

′)
)

δΦ(Y )
= K(ℓ, ℓ′;Y ) . (7.27)

Since the source F (Y ) is gauge-invariant (at large N) and constraint-free, we conclude

that the operator Φ(Y ) is constraint-free (at large N) and gauge-invariant. In contrast,

the bilocal φI(ℓ)φ̄I(ℓ
′), which depends on 6 rather than 4 coordinates, is constrained by

field equations. In regions where the source Π(ℓ′, ℓ) vanishes, φI(ℓ)φ̄I(ℓ
′) inherits from

K(ℓ, ℓ′;Y ) the source-free wave equation (4.43) at ℓ 6= ℓ′. The same is not true in regions

with non-vanishing Π(ℓ′, ℓ), even though this is not evident from eq. (7.26). The important

subtlety here is that the star product has the power to reshuffle the singularity structure

in the ℓ, ℓ′ dependence, as in (7.15). The true spatial dependence of φI(ℓ)φ̄I(ℓ
′) in regions

where Π(ℓ′, ℓ) is non-vanishing can be seen from the expansion (7.25).

8 Holography

We are now ready to tie together our treatments of the bulk and boundary. Normally in

AdS/CFT, one thinks in terms of local bulk fields, each of which is associated with asymp-

totic boundary data of two types, i.e. two complementary conformal weights. For massless

fields in AdS4, these conformal weights are integers, and the corresponding boundary data

takes on an additional layer of meaning. For the conformally coupled massless scalar, the

conformal weights are ∆ = 1, 2; we refer to the corresponding boundary data as Dirichlet

and Neumann, since that is their precise nature under a bulk conformal transformation

that turns the asymptotic boundary into an ordinary hypersurface. For gauge fields with

spin s ≥ 1, the two different conformal weights arise for the gauge potential; in terms of

the field strength, they correspond to its electric and magnetic parts, which have the same

conformal weight but different parities.

In different setups, HS gravity is dual to a variety of vector models. The free vector

model (7.5) is the simplest case, which, from the bulk point of view, relies on two choices.
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First, one must choose the bulk interactions to be those of the type-A (i.e. parity-even)

model; this will not make an explicit appearance in the present paper, since we only consider

the bulk interactions indirectly, through the CFT. Second, one must choose Neumann

boundary conditions for the scalar, and magnetic boundary conditions for the gauge fields

of spin s ≥ 1, i.e. treat the Neumann & magnetic boundary data as external sources, while

the Dirichlet & electric boundary data will correspond to the CFT operators. As discussed

in [30], this is the choice of boundary data that preserves (global) HS symmetry, which is

then reflected in the CFT.

In the present section, we will describe the HS/free-CFT holography from the twistorial

perspective of sections 5, 7. We will then make contact with the standard language of bulk

fields vs. local CFT operators by comparing the bulk fields’ Dirichlet/electric boundary

data with the expectation values of the CFT currents.

8.1 The basic dictionary

The fundamental entry in our holographic dictionary is to identify the twistor function

F (Y ) that encodes the CFT sources in (7.11) with either of the two functions FR/L(Y )

that define the linearized bulk solution in (5.16)–(5.17):

F (Y ) = FR(Y ) or F (Y ) = FL(Y ) . (8.1)

In terms of the bulk master fields C(x;Y ), this implies:

F (Y ) = −iC(x;Y ) ⋆ δRx (Y ) or F (Y ) = iC(x;Y ) ⋆ δLx (Y ) . (8.2)

With the substitution (8.2), the CFT partition function (7.18) becomes a nonlinear func-

tional of the linearized bulk solution, as envisaged in [16, 39]:

Z ∼
(
det⋆[1−iC(x;Y )⋆δRx (Y )]

)−N/4
or Z ∼

(
det⋆[1+iC(x;Y )⋆δLx (Y )]

)−N/4
. (8.3)

As in [16, 39], the partition function (8.3) is given in terms of the master field at any single

bulk point x, which, by virtue of the unfolded formulation, encodes the entire linearized

bulk solution. In this way, having placed the bulk and boundary on a common footing via

twistor functions, we are able to express the full partition function, including the effects of

bulk interactions, in bulk terms.

To establish the relation (8.1), we will calculate on both sides the linearized expecta-

tion values of the local HS currents j
(s)
µ1...µs(ℓ), as induced by the bilocal source Π(ℓ′, ℓ) at

separated points. On the bulk side, this means calculating the electric field strengths at

infinity. The distinction between FR(Y ) and FL(Y ) in (8.1) does not affect these expec-

tation values. This distinction is instead related to the value of the boundary gauge fields

A
(s)
µ1...µs(ℓ), as well as to the contour issues discussed in section 7.4.1. This is because the

two choices (8.1) are related by F (Y ) → −F (Y ) ⋆ δ(Y ), or, in terms of the bulk fields, by

C(x;Y ) → −C(−x;Y ). The electric field strengths at infinity and the CFT currents are

unaffected by this transformation, since they are associated [30, 31] with the antipodally

odd part of the bulk solution.
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In a sense, an explicit calculation of
〈

j
(s)
µ1...µs(ℓ)

〉

on both sides of the duality is ac-

tually unnecessary. The results are guaranteed to agree, simply because the higher-spin

algebra contains every spin exactly once (actually twice for s ≥ 1, corresponding to the

two helicities; however, we can then use parity to distinguish their “electric” combination

from the “magnetic” one). This is as it should be: since the higher-spin/free-CFT duality

is in a sense the simplest of all holographic models, it should appear trivial — as trivial as

eq. (8.1) — once the correct language has been identified.

Thus, in practice, our calculation of the boundary currents will serve two aims: to

provide a consistency check for the formalism, and to fix the proportionality coefficients

between the boundary currents and the bulk electric fields at infinity.

8.2 Asymptotics of the bulk fields

In this section, we express the asymptotic boundary data of a bulk solution C(x;Y ) in

terms of the twistor function FR(Y ) (a similar analysis applies for FL(Y ), with some sign

changes). In accordance with the standard AdS/CFT prescription, we will focus on the

asymptotics of the “fundamental” massless bulk fields (5.1), as opposed to the unfolded

tower of derivatives (5.12). As a result, our expressions will generally not be HS-covariant,

i.e. they will contain spinor integrals that cannot be reduced to star products.

8.2.1 Spin 0

The conformally-coupled massless scalar C(0,0)(x) = C(x; 0) admits boundary data of two

types: “Dirichlet data” ϕ(ℓ) with conformal weight ∆ = 1 and “Neumann data” π(ℓ) with

weight ∆ = 2. At a bulk point x, the value of the scalar field can be found from the Penrose

transform (5.16) or (5.8) as:

C(x; 0) = i tr⋆
(
FR(Y ) ⋆ δRx (Y )

)
= i

∫

PR(x)
d2uR FR(uR) . (8.4)

The Dirichlet boundary data can be read off directly from the bulk-to-boundary

limit (3.6), (4.25):

ϕ(ℓ) = lim
x→ℓ/z

1

z
C(x; 0) = i tr⋆ (FR(Y ) ⋆ δℓ(Y )) = i

∫

P (ℓ)
d2uFR(u) . (8.5)

The Neumann boundary data will be given by the second term in the Taylor series in z:

C(x; 0) = zϕ(ℓ) + z2π(ℓ) +O(z3) . (8.6)

To extract it, we must take the bulk-to-boundary limit more carefully, as in (3.59), using a

second boundary point n to define the direction from which x approaches ℓ. Under (3.59),

the chiral projector PR(x) takes the form:

PR(x) =
1

2z
(ℓ+ z + z2n) =

1

z
P (ℓ) +

1

2
(1 + zn) . (8.7)

– 50 –



J
H
E
P
0
1
(
2
0
1
8
)
1
0
0

We can now rewrite the PR(x) integral in (8.4) as an integral over P (ℓ), via the change of

variables:

uR = 2PR(x)u = (1 + zn)u . (8.8)

The measures d2u and d2uR turn out to be related by a factor of z:

d2uR =
PR
ab(x) du

a
Rdu

b
R

2(2π)
=

2PR
ab(x) du

adub

2π
=

znab du
adub

2π
= zd2u . (8.9)

Here, in the third equality, we used duadu
a = 0 for u ∈ P (ℓ), while the fourth equality

follows from contracting eq. (3.44) with nab. The bulk scalar (8.4) thus becomes:

C(x; 0) = iz

∫

P (ℓ)
d2uFR

(
(1 + zn)u

)
= zφ(ℓ) + iz2nab

∫

P (ℓ)
d2uua

∂FR(U)

∂U b

∣
∣
∣
∣
u

+O(z3) ,

(8.10)

from which we extract:

π(ℓ) = inµγabµ

∫

P (ℓ)
d2uua

∂FR(U)

∂U b

∣
∣
∣
∣
u

. (8.11)

Now, recall that nµ is an arbitrary null vector satisfying ℓ·n = −1/2. Since the result (8.11)

should not depend on the choice of n, we can rewrite it as:

π(ℓ)ℓµ = − i

2
γabµ

∫

P (ℓ)
d2uua

∂FR(U)

∂U b

∣
∣
∣
∣
u

. (8.12)

One can verify explicitly, using integration by parts, that the antisymmetric traceless part

of the integral in (8.12) is indeed proportional to ℓab (or, equivalently, that it vanishes upon

contraction with ℓbc).

Finally, let us point out the relation between the Dirichlet/Neumann boundary data

and antipodal symmetry [30, 31, 33]. The Dirichlet data ϕ(ℓ) and the Neumann data π(ℓ)

are associated with antipodally odd and even solutions respectively, in the sense that odd

solutions have only ϕ(ℓ) non-vanishing, and even solutions have only π(ℓ) non-vanishing.

As discussed in [32], this property can be deduced from the fact that the conformal weight

of ϕ (π) is an odd (even) positive integer. In our present language, the antipodal symmetry

of ϕ and π can be seen in two ways. First, one can read off from (8.5), (8.12) the properties:

ϕ(−ℓ) = −ϕ(ℓ) ; π(−ℓ) = π(ℓ) , (8.13)

where we used the fact that the measure (3.44) is odd under ℓµ → −ℓµ. Second, we can

apply the antipodal map to the bulk solution via FR(Y ) → FR(Y ) ⋆ δ(Y ), which again

results in:

ϕ(ℓ) → −ϕ(ℓ) ; π(ℓ) → π(ℓ) . (8.14)

In deriving this result, it is crucial to keep track of the sign factor in (3.48).
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8.2.2 Spin ≥ 1: chiral field strengths

The asymptotics for all the gauge fields with spin s ≥ 1 can be described in a unified

way using master fields. From the Penrose transform (5.16), we extract two generating

functions for the field strengths at a bulk point x:

C(x;yL)= i

∫

PR(x)
d2uRFR(yL+uR) ; C(x;yR)= i

∫

PR(x)
d2uRFR(uR)e

iuRyR . (8.15)

Here, yL (yR) is a left-handed (right-handed) spinor at x. The Taylor coefficients of C(x; yL)

and C(x; yR) with respect to their spinor variables encode respectively the left-handed and

right-handed field strengths C
(2s,0)
α1...α2s(x), C

(0,2s)
α̇1...α̇2s

(x) via eq. (5.13). The zeroth-order Taylor

coefficient in both C(x; yL) and C(x; yR) is the spin-0 field C(x; 0).

As a step towards taking the boundary limit, let us note that the integrals in (8.15)

do not change if we add to yL or yR a spinor of the opposite chirality. In other words, the

chiral master fields (8.15) can be extended trivially into functions of an entire twistor Y :

CL(x;Y ) = C(x;PL(x)Y ) = i

∫

PR(x)
d2uR FR(Y + uR) ;

CR(x;Y ) = C(x;PR(x)Y ) = i

∫

PR(x)
d2uR FR(uR) e

iuRY .

(8.16)

In the bulk-to-boundary limit (3.6), the left-handed and right-handed fields (8.16) become:

CL(x;Y ) = z CL(ℓ;Y ) +O(z2) ; CL(ℓ;Y ) = i

∫

P (ℓ)
d2uFR(Y + u) ; (8.17)

CR(x;Y ) = z CR(ℓ;Y ) +O(z2) ; CR(ℓ;Y ) = i

∫

P (ℓ)
d2uFR(u) e

iuY , (8.18)

where the factor of z arises from the ratio of the measures d2uR and d2u. The boundary

master fields CL/R(ℓ;Y ) have conformal weight ∆ = 1, and depend only on the P ∗(ℓ) spinor

component y∗ of the twistor Y :

CL/R(ℓ, Y + u) = CL/R(ℓ;Y ) ∀u ∈ P (ℓ) . (8.19)

The Taylor expansion of CL/R(ℓ; y∗) in powers of y∗ generates the individual left-

handed/right-handed field strengths of various spins. The fields defined in this way have

spinor indices in P (ℓ), as in the jℓ representation of boundary currents from section 3.4.1.

The asymptotic field strengths CL/R(ℓ; y∗) satisfy a Gauss law, i.e. each of the com-

ponent fields with spin s ≥ 1 has a vanishing divergence. To express and verify this

fact explicitly, we must first use eq. (3.47) or (3.51) to convert the component fields into

spinors with indices in P ∗(ℓ). This is equivalent to converting CL/R(ℓ; y∗) into a function

of y ∈ P (ℓ):

CL/R(ℓ;Y ) = C∗
L/R(ℓ;P (ℓ)Y ) , (8.20)
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where C∗
L/R(ℓ, y) can be given explicitly as:

C∗
L(ℓ; y) = −i

∫

d4V FR(V )

∫

P ∗(ℓ)
d2u∗ eiu

∗(P (ℓ)V−y) ;

C∗
R(ℓ; y) = i

∫

P ∗(ℓ)
d2u∗ FR(P (ℓ)u∗) eiu

∗y .

(8.21)

The vanishing of the divergence (3.58) for each of the component field strengths can now

be expressed as:

ℓµγ
µν
ab

∂3C∗
L/R(ℓ; y)

∂ℓν∂ya∂yb
= 0 , (8.22)

and one can easily check that this constraint is in fact satisfied by the expressions (8.21).

Taking the ∂/∂ℓ derivative of an integral over P ∗(ℓ) requires some care, due to the ℓ-

dependence of the integration domain. The trick is to fix the integration range to some

arbitrary 2d subspace of twistor space, which may then represent P ∗(ℓ) for different values

of ℓ. One should keep track, however, of the ℓ-dependence (3.46) of the integration measure.

Finally, let us show how the boundary fields encoded in CL/R(ℓ;Y ) can be arrived at

through tensor language. We approach the boundary as in section 3.4.2, moving the bulk

point x along towards the boundary point ℓ along the outwards-pointing tangent vector tµ.

In the orthonormal tangent frame tµ, eµi , the components of the field strengths C
L/R
µ1ν1...µsνs

will scale as zs+1 (this can be derived e.g. from the 4d conformal invariance of the free

massless field equations). On the other hand, in a fixed frame in R
1,4, the basis vector tµ

behaves asymptotically as tµ → ℓµ/z, while the other basis vectors eµi remain constant.

Thus, in the fixed frame, C
L/R
µ1ν1...µsνs will be dominated by components where the largest

possible number of indices is pointing along tµ. This leaves us with the asymptotics:

CL/R
µ1ν1...µsνs(x) = zs+1

(

2st[µ1
δρ1ν1] . . . t[µs

δρsνs] C
L/R
ρ1...ρs(ℓ) +O(z)

)

= z
(

2sℓ[µ1
δρ1ν1] . . . ℓ[µs

δρsνs] C
L/R
ρ1...ρs(ℓ) +O(z)

)

.
(8.23)

Here, in the first line, we insist on keeping the leading-order term within the tangent space

of EAdS4 at x; in the second line, we drop this requirement and substitute tµ → ℓµ/z.

The tensors CL/R
µ1...µs(ℓ) are totally symmetric and traceless, with indices along eµi . More

covariantly, these are boundary tensors in the sense of (3.13)–(3.14), with conformal weight

∆ = s + 1. The equivalence (3.14) is associated with the different directions from which

we could approach the boundary point ℓ. Converting (8.23) into spinor form as in (5.2),

we get:

C(2s,0)
a1...a2s(x) = z CL

a1...a2s(ℓ) +O(z2) ; C(0,2s)
a1...a2s(x) = z CR

a1...a2s(ℓ) +O(z2) , (8.24)

where CL
a1...a2s(ℓ) are totally symmetric boundary spinors with conformal weight ∆ = 1 and

with indices in P (ℓ):

CL/R
a1...a2s(ℓ) = γµ1ν1

a1a2 . . . γ
µsνs
a2s−1a2sℓµ1

. . . ℓµsCL/R
ν1...νs(ℓ) . (8.25)
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We can now pack these into master fields, in analogy with (5.13):

CL/R(ℓ;Y ) =
∞∑

s=0

1

(2s)!
Y a1 . . . Y a2s CL/R

a1...a2s(ℓ) . (8.26)

It is clear from eqs. (5.13) and (8.24) that the boundary master fields constructed in this

way coincide with the ones in (8.17)–(8.18).

8.2.3 Spin ≥ 1: electric and magnetic field strengths

A more standard decomposition of the asymptotic field strengths is into their electric

and magnetic parts. These are given by the sum and difference of the chiral field

strengths (8.17)–(8.18):

E(ℓ;Y ) = CR(ℓ;Y ) + CL(ℓ;Y ) ; B(ℓ;Y ) = CR(ℓ;Y )− CL(ℓ;Y ) . (8.27)

E(ℓ;Y ) and B(ℓ;Y ) again have conformal weight ∆ = 1, and depend only on the P ∗(ℓ)

spinor component of Y . Thus, their Taylor coefficients in Y are totally symmetric spinors

with indices in P (ℓ), which encode the electric and magnetic field tensors for the vari-

ous spins. The (higher-spin) electric and magnetic Gauss laws follow directly from those

for CL/R(ℓ;Y ).

Let us unpack the definitions (8.27) by working out their implications in tensor lan-

guage. First, we identify the spin-0 components of E(x;Y ) and B(x;Y ):

E(ℓ; 0) = 2ϕ(ℓ) ; B(ℓ; 0) = 0 . (8.28)

Thus, the spin-0 component of E is proportional to the Dirichlet data for the bulk scalar,

while the spin-0 component of B vanishes. Next, we turn to the nonzero-spin components.

Consider the bulk spin-s field strength tensor (5.2). On a “time slice” (in quotes, since our

bulk is Euclidean) with outward-pointing normal tµ, the field strength decomposes into

electric and magnetic parts:

Eν1ν2...νs(x) = tµ1tµ2 . . . tµsCµ1ν1µ2ν2...µsνs(x) ; (8.29)

Bν1ν2...νs(x) = tµ1tµ2 . . . tµs

(

−1

2
ǫµ1ν1

λρσxλ

)

Cρσµ2ν2...µsνs(x) . (8.30)

Thanks to the (anti)-self-duality (5.3) of the field strength’s right-handed and left-handed

components, this can be expressed equivalently as:

Eν1...νs(x) = tµ1 . . . tµs
(
CR
µ1ν1...µsνs(x) + CL

µ1ν1...µsνs(x)
)
;

Bν1...νs(x) = tµ1 . . . tµs
(
CR
µ1ν1...µsνs(x)− CL

µ1ν1...µsνs(x)
)
.

(8.31)

Here, we can already see the origin of eqs. (8.27). To make the relation explicit, let us

work out the asymptotics of Eµ1...µs(x) and Bµ1...µs(x) as our “time slice” approaches the

boundary. From eq. (8.23), we can read off immediately:

Eµ1...µs(x) = zs+1Eµ1...µs(ℓ) +O(z2) ; Bµ1...µs(x) = zs+1Bµ1...µs(ℓ) +O(z2) , (8.32)
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where:

Eµ1...µs(ℓ) = CR
µ1...µs

(ℓ) + CL
µ1...µs

(ℓ) ; Bµ1...µs(ℓ) = CR
µ1...µs

(ℓ)− CL
µ1...µs

(ℓ) . (8.33)

To arrive at eqs. (8.27), all that remains is to convert the boundary tensors Eµ1...µs(ℓ) and

Bµ1...µs(ℓ) into spinor form as in (8.25):

Ea1...a2s(ℓ) = γµ1ν1
a1a2 . . . γ

µsνs
a2s−1a2sℓµ1

. . . ℓµsEν1...νs(ℓ) ;
Ba1...a2s(ℓ) = γµ1ν1

a1a2 . . . γ
µsνs
a2s−1a2sℓµ1

. . . ℓµsBν1...νs(ℓ) ,
(8.34)

and then package them into master fields as in (8.26):

E(ℓ;Y ) =
∞∑

s=0

1

(2s)!
Y a1 . . . Y a2s Ea1...a2s(ℓ) ;

B(ℓ;Y ) =

∞∑

s=0

1

(2s)!
Y a1 . . . Y a2s Ba1...a2s(ℓ) .

(8.35)

Finally, we should address the antipodal symmetry of E(ℓ;Y ) and B(ℓ;Y ). The an-

tipodal map FR(Y ) → FR(Y )⋆δ(Y ) sends each of the integrals (8.17)–(8.18) into −1 times

the other:

CL(ℓ;Y ) → −CR(ℓ;Y ) ; CR(ℓ;Y ) → −CL(ℓ;Y ) (8.36)

We can therefore read off from (8.27) that the electric fields E(ℓ;Y ) are antipodally odd,

while the magnetic fields B(x;Y ) are antipodally even [31]:

E(ℓ;Y ) → −E(ℓ;Y ) ; B(ℓ;Y ) → B(ℓ;Y ) . (8.37)

The same conclusion can be reached by the alternative methods that we’ve used for the

spin-0 boundary data, i.e. by sending ℓµ → −ℓµ or examining the parity of the conformal

weights of E(ℓ;Y ) and B(ℓ;Y ). From this point of view, the different antipodal parities of

E(ℓ;Y ) and B(ℓ;Y ) arise from the antipodally odd ǫµ1ν1
λρσxλ factor in the definition (8.30)

of the magnetic fields.

8.3 Electric fields at infinity from a bilocal boundary source

Now that we’ve defined the electric fields at infinity, let us evaluate them for the particular

case of a bilocal source concentrated at a pair of points ℓ0, ℓ
′
0. Thus, in the language of

eq. (7.11), we choose the CFT sources as:

Π(ℓ′, ℓ) = δ5/2,1/2(ℓ, ℓ0) δ
5/2,1/2(ℓ′, ℓ′0) =⇒ F (Y ) = K(ℓ0, ℓ

′
0;Y ) , (8.38)

where the superscripts on the delta functions indicate their conformal weight with respect

to each argument. Now, according to our holographic dictionary (8.1), we should construct

the linearized bulk solution as the (right-handed or left-handed) Penrose transform of the

twistor function F (Y ):

C(x;Y ) = iK(ℓ0, ℓ
′
0;Y ) ⋆ δRx (Y ) or C(x;Y ) = −iK(ℓ0, ℓ

′
0;Y ) ⋆ δLx (Y ) . (8.39)
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As we’ve seen in section 6.4, the result in both cases reads:

C(x;Y ) = ±K(ℓ0, −ℓ′0 − 2(ℓ′0 · x)x; Y )

=
∓1

π
√

2[ℓ0 · ℓ′0 + 2(ℓ0 · x)(ℓ′0 · x)]
exp

iY [ℓ0ℓ
′
0 + 2(ℓ′0 · x)ℓ0x]Y

2[ℓ0 · ℓ′0 + 2(ℓ0 · x)(ℓ′0 · x)]
,

(8.40)

where the overall sign is ambiguous due to an intrinsic ambiguity in the star product. The

bulk solution (8.40) can be termed a “boundary-boundary-bulk” propagator. Note that

one shouldn’t conclude from the expression (8.40) that this propagator is even under the

antipodal map x → −x: the sign ambiguity in (8.40) can be resolved in opposite ways

for future-pointing vs. past-pointing xµ. In fact, we should conclude from (7.13) that the

propagator (8.40) satisfies C(x;Y ) ⋆ δ(Y ) = −C(x;Y ), i.e. that it’s antipodally odd. This

will be substantiated by our analysis of the solution’s asymptotic behavior.

The next step is to extract the left-handed and right-handed field strengths, as in

eq. (8.16). Substituting Y → PL/R(x)Y into the propagator (8.40), we get:

CL(x;Y )=
∓1

π
√

2[ℓ0 ·ℓ′0+2(ℓ0 ·x)(ℓ′0 ·x)]
exp

iY [ℓ0ℓ
′
0+(ℓ′0 ·x)ℓ0x−(ℓ0 ·x)ℓ′0x−ℓ0ℓ

′
0x]Y

4[ℓ0 ·ℓ′0+2(ℓ0 ·x)(ℓ′0 ·x)]
;

CR(x;Y )=
∓1

π
√

2[ℓ0 ·ℓ′0+2(ℓ0 ·x)(ℓ′0 ·x)]
exp

iY [ℓ0ℓ
′
0+(ℓ′0 ·x)ℓ0x−(ℓ0 ·x)ℓ′0x+ℓ0ℓ

′
0x]Y

4[ℓ0 ·ℓ′0+2(ℓ0 ·x)(ℓ′0 ·x)]
,

(8.41)

where the only difference between the two expressions is in the sign of the last term in

the exponent’s numerator. We can now take the bulk-to-boundary limit (3.6) as in (8.17)–

(8.18), to get the asymptotic chiral field strengths:

CL(ℓ;Y ) = CR(ℓ;Y ) =
∓1

2π
√

(ℓ0 · ℓ)(ℓ′0 · ℓ)
exp

iY [(ℓ′0 · ℓ)ℓ0ℓ− (ℓ0 · ℓ)ℓ′0ℓ]Y
8(ℓ0 · ℓ)(ℓ′0 · ℓ)

. (8.42)

From these, we find the electric and magnetic boundary data as in (8.27):

E(ℓ;Y ) =
∓1

π
√

(ℓ0 · ℓ)(ℓ′0 · ℓ)
exp

iY [(ℓ′0 · ℓ)ℓ0ℓ− (ℓ0 · ℓ)ℓ′0ℓ]Y
8(ℓ0 · ℓ)(ℓ′0 · ℓ)

; (8.43)

B(ℓ;Y ) = 0 ∀ℓ 6= ℓ0, ℓ
′
0 , (8.44)

where we’re careful to note that the magnetic field strengths vanish away from the source

points ℓ0, ℓ
′
0. Our analysis here doesn’t capture the behavior at the source points them-

selves, and in fact we expect nonzero delta-function-like magnetic fields with support on

ℓ0, ℓ
′
0. Since B(ℓ;Y ) is associated with antipodally even solutions, its vanishing substan-

tiates our identification of the propagator (8.39)–(8.40) as antipodally odd. The possible

non-vanishing of B(ℓ;Y ) at the source points themselves is related to the subtle interplay

between antipodal symmetry and analyticity, which we discussed in section 5.4.

Let us now extract the various tensor components of the electric master field (8.43).

We begin with the spin-0 Dirichlet data (8.28):

ϕ(ℓ) =
1

2
E(ℓ; 0) = ∓1

2π
√

(ℓ0 · ℓ)(ℓ′0 · ℓ)
. (8.45)
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To extract the components with spin s > 0, we expand (8.43) into a Taylor series in Y and

compare with (8.35):

Ea1...a2s(ℓ)=
∓is(2s)!γ

(a1a2
µ1ν1 . . .γ

a2s−1a2s)
µsνs

8ss!π
√

(ℓ0 ·ℓ)(ℓ′0 ·ℓ)

(
ℓµ1ℓν10
ℓ0 ·ℓ

− ℓµ1ℓ′ν10

ℓ′0 ·ℓ

)

. . .

(
ℓµsℓνs0
ℓ0 ·ℓ

− ℓµsℓ′νs0

ℓ′0 ·ℓ

)

(8.46)

Next, we use (8.34) to convert from spinors to tensors:

Eµ1...µs(ℓ) =
∓is(2s)!

8ss!π
√

(ℓ0 · ℓ)(ℓ′0 · ℓ)

(
ℓµ1

0

ℓ0 · ℓ
− ℓ′µ1

0

ℓ′0 · ℓ

)

. . .

(
ℓµs
0

ℓ0 · ℓ
− ℓ′µs

0

ℓ′0 · ℓ

)

− traces . (8.47)

The trace pieces that are subtracted in (8.47) can be represented using any 3d metric of

the form ηµν + 4ℓ(µnν), where nµ ∈ R
1,4 is a null vector satisfying ℓ · n = −1/2. Different

choices of this 3d metric lead to tensors Eµ1...µs(ℓ) that are equivalent under (3.14).

Finally, let us make the boundary tensors (8.47) more concrete by translating them

into flat 3d boundary coordinates. To do this, we express ℓ0, ℓ
′
0 and ℓ in the flat conformal

frame (3.7). As it stands, the tensor (8.47) is not tangential to the flat section (3.8) of

the R
1,4 lightcone. However, this can be fixed by adding a suitable multiple of ℓµ to each

tensor factor in (8.47). The ℓµ0/(ℓ0 · ℓ) factors then become:

ℓµ0
ℓ0 · ℓ

∼= ℓµ0 − ℓµ

ℓ0 · ℓ
=

1

|r− r0|2
(
r2 − r20 , 2(r− r0) , −(r2 − r20)

)
, (8.48)

and likewise for the ℓ′µ0 /(ℓ′0 · ℓ) factors. Plugging these back into (8.47) and keeping only

the values µ = 1, 2, 3 for each index, we end up with the 3d tensor:

Ek1...ks(r)=
∓is(2s)!

22s−1s!π|r−r0||r−r′
0
|

×
(
(r−r0)k1
|r−r0|2

− (r−r′
0
)k1

|r−r′
0
|2

)

. . .

(
(r−r0)ks
|r−r0|2

− (r−r′
0
)ks

|r−r′
0
|2

)

−traces .

(8.49)

This time, the subtracted trace pieces can be written out unambiguously, using the flat

3d metric δij . For completeness, we translate into the flat frame also the scalar boundary

data (8.45):

ϕ(r) =
∓1

π|r− r0||r− r′
0
| . (8.50)

Note that eqs. (8.49)–(8.50) have the same geometric structure as a 3-point function be-

tween two spin-0, ∆ = 1/2 operators at r0, r
′
0
and a spin-s, ∆ = s+ 1 operator at r. This

“coincidence” is of course predetermined by the boundary conformal symmetry.

8.4 Boundary currents from a bilocal source

In this section, we calculate the linearized expectation values of the CFT currents induced

by the bilocal source (8.38). First, we write the linearized expectation value of the bilocal

operator (7.25):

〈
φI(ℓ)φ̄I(ℓ

′)
〉

linear
= NG(ℓ, ℓ′0)G(ℓ0, ℓ

′) =
N

32π2
√

(ℓ′0 · ℓ)(ℓ0 · ℓ′)
, (8.51)

where we ignore both the zeroth order and all orders higher than 1 in the source dependence.
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Translating (8.51) into the flat boundary coordinates (3.7), we get:

〈
φI(r)φ̄I(r

′)
〉

linear
=

N

16π2|r− r′
0
||r′ − r0|

. (8.52)

The Taylor expansion of this around r = r′ reads:

〈

φI(r)
←

∂ i1 . . .
←

∂ im

→

∂ j1 . . .
→

∂ jn φ̄I(r)

〉

linear

=
(−1)m+n(2m)!(2n)!N

2m+n+4π2m!n!

× (r− r′
0
)i1 . . . (r− r′

0
)im(r− r0)j1 . . . (r− r0)jn

|r− r′
0
|2m+1|r− r0|2n+1

+ trace terms ,

(8.53)

where by “trace terms” we mean terms proportional to the flat 3d metric δij . We can now

combine the derivatives (8.53) to obtain the spin-s currents (7.2):

〈

j
(s)
k1...ks

(r)
〉

linear
=

(2s)!N

4s+2isπ2

s∑

m=0

(−1)s−m

m!(s−m)!

×
(r−r′

0
)(k1 . . .(r−r′

0
)km(r−r0)km+1

. . .(r−r0)ks)

|r−r′
0
|2m+1|r−r0|2(s−m)+1

−traces .

(8.54)

The above sum evaluates neatly into:

〈

j
(s)
k1...ks

(r)
〉

linear
=

is(2s)!N

4s+2s!π2|r−r0||r−r′
0
|

×
(
(r−r0)k1
|r−r0|2

− (r−r′
0
)k1

|r−r′
0
|2

)

. . .

(
(r−r0)ks
|r−r0|2

− (r−r′
0
)ks

|r−r′
0
|2

)

−traces .

(8.55)

If we had taken into account the source-independent term in the bilocal
〈
φI(ℓ)φ̄I(ℓ

′)
〉
,

we would have gotten an additional divergent contribution to the spin-0 “current”

〈j(0)(r)〉 = 〈φI(r)φ̄I(r)〉, with no change to the currents of spin s > 0.

Comparing now with the results (8.49)–(8.50) for the asymptotics of the linearized

bulk fields, we find:

〈
φI(r)φ̄I(r)

〉

linear
= ∓ N

16π
ϕ(r) ;

〈

j
(s)
k1...ks

(r)
〉

linear
= ∓ N

32π
Ek1...ks(r) . (8.56)

where, in the second equality, we take s > 0. We’ve thus demonstrated the proportionality,

and found the proportionality coefficients, between the Dirichlet/electric boundary data

and the linearized expectations values of the corresponding single-trace operators. The

s-independence of the coefficients in (8.56) results from the particular normalization choice

in our definition (7.2) of the CFT currents.

The sign ambiguity in (8.56), which we’ve been carrying from eq. (8.40), can be fixed by

hand by comparing with the standard dictionary in the spin-2 case, i.e. the correspondence

between the bulk graviton and the CFT stress tensor. To do this, we’d have to fix a sign

convention for the relation between the Weyl tensor Cµνρσ and the corresponding bulk

metric perturbation. In any case, this fixing of the signs doesn’t seem essential: in GR, the

sign of the metric perturbation only becomes meaningful at the interacting level, where

detailed analogies with HS gravity are not very useful.
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8.5 General boundary currents and the extent of the holographic dictionary

Let us now extract the general lessons from our calculation in sections 8.3–8.4. In analogy

with the bulk asymptotics E(ℓ;Y ) and B(ℓ;Y ), let us define local master-field operators on

the CFT side via:

J(ℓ;Y ) =
i

8π

∫

P (ℓ)
d2u

(
Φ(u) eiuY +Φ(Y + u)

)
; (8.57)

H(ℓ;Y ) =
i

2πN

∫

P (ℓ)
d2u

(
Φ(u) eiuY − Φ(Y + u)

)
. (8.58)

From eq. (7.23), we see that at first order in the sources, these operators have the expec-

tation values:

〈J(ℓ;Y )〉linear =
iN

32π

∫

P (ℓ)
d2u

(
F (u) eiuY + F (Y + u)

)
; (8.59)

〈H(ℓ;Y )〉linear =
i

8π

∫

P (ℓ)
d2u

(
F (u) eiuY − F (Y + u)

)
. (8.60)

The Y dependence of these master fields is only through the spinor component y∗ ∈ P ∗(ℓ).

The implication of the result (8.56) is that, in regions where the source Π(ℓ′, ℓ) van-

ishes, 〈J(ℓ;Y )〉linear encodes the linearized currents
〈

j
(s)
µ1...µs(ℓ)

〉

linear
in the same sense that

E(ℓ;Y ) encodes the electric boundary data Eµ1...µs(ℓ), up to the sign ambiguity in the Pen-

rose transform (8.40). At the same time, in complete analogy with E(ℓ;Y ) and B(ℓ;Y ),

the tensor components of the operators (8.57)–(8.58) are automatically divergence-free.

Putting everything together, we see that J(ℓ;Y ) encodes a tower of spin-s conformal pri-

maries j
(s)
µ1...µs(ℓ), conserved to all orders in the source Π(ℓ′, ℓ), which at linear order cor-

rectly reproduce the expectation values of the CFT currents in regions where Π(ℓ′, ℓ) van-

ishes. The most natural conclusion, then, is that J(ℓ;Y ) encodes the conserved CFT cur-

rents to all orders in the source, with all the necessary contact terms automatically included.

As for the master field H(ℓ;Y ), the result of section 8.3 implies that its linearized

expectation value vanishes in regions with Π(ℓ′, ℓ) = 0. By construction, 〈H(ℓ;Y )〉linear
is proportional to the magnetic boundary data B(ℓ;Y ). Thus, we expect that in regions

with Π(ℓ′, ℓ) 6= 0, it will encode the linearized magnetic field strengths associated with the

source. This is the reason for our choice of coefficient in (8.58): we wanted to emphasize

that H(ℓ;Y ) is more closely related to the source F (Y ) than to the “current” Φ(Y ). The

interpretation of the full non-linear expectation value of H(ℓ;Y ) is not entirely clear to

us. Perhaps the most natural possibility is that it still encodes the source’s magnetic field

strength, but with the non-abelian structure of higher-spin symmetry taken into account.

9 Discussion

In this paper, we’ve shown how a twistorial description underlies both bulk and bound-

ary pictures in the higher-spin/free-CFT holography. In particular, our boundary/twistor

transform (7.11), (7.26) does the same for single-trace bilocals in the free U(N) vector

model as the Penrose transform has done for free massless fields in 4d.

Our main evidence that the bulk and boundary pictures as derived from twistor space

are indeed holographically equivalent is the calculation of linearized boundary currents
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away from sources. Beyond this, much of the relationship between our twistor language

and the standard local descriptions was left implicit. It should be worthwhile to explore

this relationship further. In particular, one would like to express the boundary sources’

local field strengths in the bilocal language, and compare to the twistorial expression (8.58).

One should also understand explicitly the local currents in regions where the source doesn’t

vanish, and then check how (or whether) eq. (8.57) contains the necessary information about

contact terms.

On the bulk side, the main missing component in our approach, as in [16], is the relation

to the nonlinear Vasiliev equations. The unbroken global HS symmetry has allowed us to

“cheat” by encoding the interactions as functionals of the linearized master fields. However,

to make contact with the broader realm of higher-spin theory, one should understand

how to go back and forth between this approach and Vasiliev’s picture of nonlinear bulk

master fields.

From a fundamental perspective, the picture we laid out in this paper is very appealing:

all the three geometric frameworks of bulk, boundary and twistor space are manifestly

unified. Furthermore, the twistor function F (Y ) provides a clean diff-invariant & gauge-

invariant encoding of the physical data on both bulk and boundary. Ideally, one would

like to apply this kind of picture to more realistic holographic models, which contain

General Relativity in the bulk. However, at the moment, it is unclear to us how that might

happen. In our construction, we relied heavily on the fact that the boundary CFT is a free

vector model — that is what allowed the bilocal formulation of the single-trace operators.

Similarly, in the bulk, we made crucial use of the unfolded formulation of HS theory. It is

what enabled us to cleanly encode a linearized bulk solution in terms of a master field at a

single point x, which we could then use as an input for the “bulk” partition function (8.3).

While there are many reasons to study HS theory, the author’s personal motivation

is that it provides the only known working model of dS4/CFT3 [40]. In that context, I

am pursuing a program [32] to extract the physics inside observers’ cosmological horizons.

A key component in this program is the idea [41] to replace dS4 with its “folded-in-half”

version dS4/Z2, where the Z2 refers to the antipodal map xµ → −xµ. In [32], we managed

to derive the physics inside the horizon in this picture for the linearized limit of HS gravity,

i.e. for free massless fields in the bulk. The motivation of the present work was to develop

tools in order to translate those preliminary results into the twistor language of HS theory,

and then extend them beyond the linearized limit. It is our hope that the language we

developed here will prove powerful enough for the task.
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