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SUMMARY

Long-term depression (LTD) and long-term potentia-
tion (LTP) in the cerebellum are important for motor
learning. However, the signaling mechanisms con-
trolling whether LTD or LTP is induced in response
to synaptic stimulation remain obscure. Using a uni-
fied model of LTD and LTP at the cerebellar parallel
fiber-Purkinje cell (PF-PC) synapse, we delineate
the coordinated pre- and postsynaptic signaling
that determines the direction of plasticity. We show
that LTP is the default response to PF stimulation
above a well-defined frequency threshold. However,
if the calcium signal surpasses the threshold for
CaMKII activation, then an ultrasensitive ‘‘on switch’’
activates an extracellular signal-regulated kinase
(ERK)-based positive feedback loop that triggers
LTD instead. This postsynaptic feedback loop is sus-
tained by another, trans-synaptic, feedback loop that
maintains nitric oxide production throughout LTD
induction. When full depression is achieved, an
automatic ‘‘off switch’’ inactivates the feedback
loops, returning the network to its basal state and
demarcating the end of the early phase of LTD.

INTRODUCTION

The functional plasticity of neuronal synapses is indispensible for

learning and the encoding of memories (Nabavi et al., 2014).

Long-term depression (LTD) and long-term potentiation (LTP)

at the parallel fiber-Purkinje cell (PF-PC) synapse in the cere-

bellum are believed to play an important role in motor learning

(Ito, 2001; Yamaguchi et al., 2016; Kakegawa and Yuzaki,

2005; Malinow and Malenka, 2002; Sheng and Lee, 2001). Cere-

bellar plasticity is under climbing fiber (CF) control, with a cal-

cium threshold mirroring that of the hippocampus, determining

whether LTP or LTD is expressed (Coesmans et al., 2004; Mali-

now and Malenka, 2002). PF-PC LTD requires a local calcium

concentration above this threshold, mediated by concurrent

PF and CF activity at the PC, leading to protein kinase (PKC)-

mediated phosphorylation and endocytosis of amino-3-hy-

droxy-5-methylisoxazole-4-propionic acid receptors (AMPARs)

(Wang and Linden, 2000; Chung et al., 2003). Postsynaptic

LTP requires a lower calcium concentration and is induced
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by PF stimulation alone at 1 Hz for at least 5 min (Lev-Ram

et al., 2002) and can fully reverse LTD (Lev-Ram et al., 2003;

Coesmans et al., 2004). This form of LTP is mediated by the

N-ethylmaleimide-sensitive factor (NSF)-dependent insertion of

AMPARs into the postsynaptic membrane and dependent on

presynaptically generated nitric oxide (NO) (Kakegawa and Yu-

zaki, 2005; Bouvier et al., 2016; Lev-Ram et al., 1997).

As with hippocampal LTP, PF-PC LTD is thought to require two

distinct phases: early and late (Linden, 2012). Although little is

known about the late phase, beyond a requirement for protein

synthesis (Linden, 1996), the central engine driving the early

phase of cerebellar LTD is a positive feedback loop thatmaintains

PKCa activity for at least 20min during LTD induction (Tanaka and

Augustine, 2008; Linden and Connor, 1991; Antunes and De

Schutter, 2012). To achieve sustained activity, PKCa activates

the Ras-Raf-mitogen-activated protein kinase (MEK)-extracel-

lular signal-regulated kinase (ERK) pathway, leading to the activa-

tion of cytosolic phospholipase A2 (cPLA2) (Lin et al., 1993;

Tucker et al., 2009), which completes the loop by producing

arachidonic acid, which maintains PKC activity (Shinomura

et al., 1991; O’Flaherty et al., 2001). This positive feedback loop

is heavily suppressed under basal conditions by a number of

phosphatases, including protein phosphatase 1 (PP1) and protein

phosphatase 2A (PP2A), to prevent spontaneous activation (An-

tunes and De Schutter, 2012; Ajima and Ito, 1995). Release of

this suppression by inhibition of these phosphatases is as impor-

tant for LTD expression as calcium activation of PKCa (Ajima and

Ito, 1995; Ito, 2001). This phosphatase inhibition is driven primarily

by Ca2+/calmodulin-dependent protein kinase II (CaMKII), acti-

vated by calcium-dependent calmodulin (CaM) (Chin and Means,

2000; Grabarek, 2005; Hansel et al., 2006). CaMKII behaves as an

ultrasensitive switch that moves from very low basal activity to

full activity within a very narrow calcium concentration range

(Bradshaw et al., 2003; Kubota and Bower, 2001), making it an

excellent candidate for the molecular source of the calcium

threshold that determines whether LTP or LTD is generated by

synaptic activity. As demonstrated by Kawaguchi and Hirano

(2013), CaMKII gates LTD by negatively regulating phosphodies-

terase 1 (PDE1) (Hashimoto et al., 1989; Kitagawa et al., 2009)

and, thus, supports phosphatase inhibition by inhibiting the hy-

drolysis of cyclic guanosine monophosphate(cGMP).

Presynaptically generated NO has important roles in both

PF-PC LTD and LTP: NO supports feedback loop activation

during LTD induction by stimulating cGMPproduction via guanylyl

cyclase (GC) and is both necessary and sufficient for LTP (Lev-

Ram et al., 2002; Namiki et al., 2005; Kakegawa and Yuzaki,
).
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2005), with NO scavengers fully preventing LTP (Kakegawa and

Yuzaki, 2005; Bouvier et al., 2016). Unlike PF-PC LTD, NO does

not act via GC during LTP induction because postsynaptic LTP

is completely independent of the cGMP pathway (Lev-Ram

et al., 2002). Rather, NO nitrosylates NSF, enhancing its ability to

dismantle complexes of AMPAR and protein interacting with C ki-

nase 1 (PICK-1), promoting reinsertion of AMPARs into the post-

synapticmembrane (Huanget al., 2005;Hanley et al., 2002;Sossa

et al., 2007). NO is sufficient for LTP regardless of its source and

fully occludes 1-Hz-induced LTP (Lev-Ram et al., 2002). In both

LTD and during the standard 1-Hz LTP protocol, the generation

of NO is dependent on the retrograde transport of the postsynap-

tically generated cannabinoid 2-arachidonoylglycerol (2-AG)

(Wang et al., 2014; Safo and Regehr, 2005). 2-AG, which can be

synthesized from either diacylglycerol or arachidonic acid (AA)

(Wanget al., 2014;Suet al., 2013), activates presynapticCB1R re-

ceptors, leading to NO synthase (NOS) activation (Carney et al.,

2009). CB1R couples to Gi/o (Carney et al., 2009; Howlett et al.,

2010) and activatesphosphatidylinositol 3-kinase (PI3K) (Sánchez

et al., 2003; Stephens et al., 1997), leading to phosphatidylinositol

(3,4,5)-trisphosphate (PIP3) production and phosphoinositide-

dependent protein kinase-1 (PDK1) activation (Vanhaesebroeck

and Waterfield, 1999). Activated PDK1 then activates the serine/

threonine-specific protein kinase Akt (Jain and Bhalla, 2009;

Gómez del Pulgar et al., 2000), which phosphorylates and acti-

vates NOS (Dimmeler et al., 1999; Lipina and Hundal, 2017). The

role of the Akt pathway in NOS activation has previously been

demonstrated in granule cells (Ciani et al., 2002).

Here were present a trans-synaptic model of bidirectional

PF-PC plasticity (Figure 1) comprising 531 species, 376 reaction

parameters, and 1,100 unidirectional reactions. A number of the

key components of the network, including PKC, cPLA2, CaMKII,

and the presynaptic cascade leading to NOS activation, were

fully rebuilt to better reflect their true biochemical mechanism

and behavior. Aswell as replicating both LTD and LTP, ourmodel

reveals an ultrasensitive ‘‘on switch’’ and an automatic ‘‘off

switch’’ mechanism for the feedback loop, controlled by CaMKII

and phosphatase activity. Together, these switches demarcate

the beginning and end of the early phase of LTD expression. In

addition, our model provides a molecular explanation for the dif-

ferential roles of PP1 and PP2A in the regulation of LTD induction

and reconciles conflicting experimental data regarding the

importance of NO in cerebellar plasticity. Using PCs in vitro,

we also establish the importance of the NSF-AMPAR interaction

and the strict frequency dependence of PF-PC LTP and, in com-

bination with the results of our model simulations, reveal the

mechanism behind this in terms of stimulation-dependent NO

production. These results affirm the importance of coordination

between pre- and postsynaptic signaling cascades in controlling

bidirectional plasticity and uncover a possible trans-synaptic

feedback loop regulating pre-synaptic NO production.

RESULTS

Simulated PF Stimulation Induces LTP, whereas Paired
PF and CF Stimulation Induces LTD
The magnitude of depression achieved in experiments is depen-

dent on the specific LTD/LTP induction protocol employed and
varies significantly between labs. Depression between 30%

and 60% is typical (Tanaka et al., 2007; Matsuda et al., 2000),

although depression of more than 65% is also possible (Launey

et al., 2004). 1-Hz LTP typically produces a slower-building

20%–50% increase in synaptic efficacy (Lev-Ram et al., 2002).

A single PF stimulation was modeled with a 1-ms glutamate

pulse (Doi et al., 2005) and a concurrent 1-ms Ca square pulse

reaching �200 nM (Doi et al., 2005). This PF-dependent Ca tran-

sient models the Ca influx through voltage-gated Ca channels

activated via glutamate-AMPAR-mediated local depolarization

(Eilers et al., 1995; Finch et al., 2012). CF activity was modeled

as a 2-ms square pulse of Ca, eliciting a maximum concentration

of�500 nM (Konnerth et al., 1992; Tanaka et al., 2007). When PF

stimulation was paired with CF stimulation (100 stimulations at

1 Hz with a 100-ms delay between the PF and CF stimulations)

(Chen and Thompson, 1995; Coesmans et al., 2004), the post-

synaptic density (PSD) AMPAR population declined to �60% of

its baseline value over�15min (Figure 2A). However, PF stimula-

tion alone (300 stimulations at 1 Hz) induced an�30% increase in

the PSDAMPARpopulation over�60min (Figure 2B). This poten-

tiation was preceded by an initial decline in the AMPAR PSD pop-

ulation during PF stimulation. This initial depression is caused by

transient calcium-mediated PKC activation during PF stimulation

and can be observed in a number of experimental studies of LTP

(e.g., Emi et al., 2013; Piochon et al., 2016; Bouvier et al., 2016).

Whether LTDor LTP is expressed is largely dependent onwhether

the calcium surpasses the threshold for CaMKII activation. Our

model includes a new 2-subunit CaMKII model that exhibits the

crucial ultrasensitive switching behavior, as observed experimen-

tally (Bradshaw et al., 2003; Figure 2C).

The Positive Feedback Loop Automatically Deactivates
after the Early Phase of LTD Induction
Following the LTD induction protocol, ERK is rapidly phosphor-

ylated, and this phosphorylation is maintained, indicating sus-

tained activation of the feedback loop and coinciding with a

strong inhibition of PP2A. However, �40 min following LTD in-

duction, ERK is rapidly and completely dephosphorylated, indi-

cating the loop’s spontaneous deactivation (Figure 3A). The

other loop components also follow this pattern of activation (Fig-

ure 3B). This ERK dephosphorylation is initiated shortly after the

complete inactivation of CaMKII (Figure 3A) and during a

rebound of PP2A activity. This suggests that inhibition of phos-

phatase activity by CaMKII disinhibits the feedback loop, gating

its activation, as reported previously (Kawaguchi and Hirano,

2013). However, after CaMKII is fully dephosphorylated, the

rebound in phosphatase activity again inhibits the loop, causing

it to deactivate (Figure 3C).

NO Supports LTD Induction by Facilitating Positive
Feedback Loop Activation but Is Not Required with
Strong Calcium Signals
During our simulated LTD protocol, NO facilitates sustained

activation of the postsynaptic feedback loop and LTD expres-

sion (Figures 4A and 4B). However, if NO generation is blocked,

then the positive feedback loop fails to activate, and LTD is

not expressed; although the PSD AMPAR population initially

declines, this is not maintained, and it returns to baseline
Cell Reports 22, 722–733, January 16, 2018 723



Figure 1. The Molecular Network Regulating PF-PC LTP and LTD

(A) Intracellular molecular network model, including both presynaptic and postsynaptic signaling cascades.

(B) AMPAR trafficking model, including regulation of AMPAR mobility by serine phosphorylation and exocytosis regulation by NO/NSF.
(Figures 4A and 4B). However, if the strength of the calcium tran-

sient is increased (e.g., by a square pulse at 5 mM for 10 s), then

the activation of the feedback loop is maintained for �30 min,

and LTD is successful (Figures 4B and 4C). This suggests that

NO is supporting the activation of the feedback loop when the
724 Cell Reports 22, 722–733, January 16, 2018
calcium transient is weak but is not necessary when calcium

levels are more elevated and/or sustained, as might be achieved

during calcium uncaging protocols. Experiments have shown

that deletion of either a-CaMKII (Hansel et al., 2006) or ~bCaMKII

(van Woerden et al., 2009) abolishes LTD and converts LTD to



Figure 2. Induction of LTD and LTP in the Model Simulation

(A) LTD is induced by concurrent PF (5 pulses, 100 Hz) and CF (1 pulse with

100-ms delay) stimulation.

(B) LTP is induced by PF stimulation alone (300 pulses, 1 Hz).
LTP. We were able to replicate this effect by removing CaMKII

from the model (Figure 4D).

Phosphatase Activity Suppresses the Feedback Loop
under Basal Conditions and Regulates Its Activation
and Inactivation
To explore the role of phosphatase activity in suppressing spon-

taneous activation of the feedback loop under basal conditions,

we selectively inhibited either PP1 or PP2A from 20 min during

basal recycling. Inhibition of PP1 had no effect, whereas sus-

tained inhibition of PP2A resulted in an �30% reduction of the

PSD AMPAR population over 30min (Figure 5A). This depression

resulted from the spontaneous and sustained activation of the

feedback loop independent of CaMKII activity, indicated by sus-

tained phosphorylation of ERK and PKC activation (Figure 5B).

Because the feedback loop off switch is normally dependent

on the rebound of phosphatase activity following CaMKII deac-

tivation, the feedback loop remains active indefinitely under

these conditions. Inhibition of PP1, however, failed to cause

loop activation. Similarly, inhibition of either PP5 or MAP kinase

phosphatase (MKP) had no effect, indicating that PP2A has the

primary role in suppressing the feedback loop under basal con-

ditions. However, varying the concentration of PP1 (50%, 100%,

200%, and 400% of the wild-type concentration) revealed a role

in regulating the activation and deactivation of the feedback

loop, with lower concentrations delaying loop inactivation and

higher concentrations blocking activation entirely (Figure 5C).

Reducing the PP1 concentration below 50% of the wild-type

concentration had no significant additional effect on loop

inactivation, indicating that PP2A is the primary phosphatase in

driving loop inactivation, with PP1 providing a supporting regula-

tory role.

1-Hz LTP Requires the Interaction between NSF
and GluA2
It has been reported previously that LTP is triggered by the appli-

cation of an NO donor at the PF-PC synapse and that NSF-

dependent insertion of GluA2-containing AMPARs into synapses

mediates this form of LTP (Kakegawa and Yuzaki, 2005). To test

whether LTP triggered by 1-Hz PF stimulation also relies on the

NSF-GluA2 interaction, we added a peptide that interferes with

the interaction, pep2m (Noel et al., 1999; L€uthi et al., 1999), to

the internal solution during LTP induction. The amplitudes of

excitatory postsynaptic currents evoked by PF stimulation (PF-

EPSCs) were normalized immediately prior to LTP induction. In

the presence of pep2m, PF-EPSC amplitudes were decreased

around 30–40 min after establishing a whole-cell configuration,

and a further slight reduction of PF-EPSC was observed after

1-Hz PF stimulation (Figure 6A). This reduction in EPSC in the

presence of pep2m is likely a result of compromised exocytosis

and could be replicated in our simulations. In contrast, when a

control peptide (pep4c) was used, basal PF-EPSCs were not

affected, and LTP was successfully induced by 1-Hz PF stimula-

tion (Figure 6A). The amplitudes calculated 20–30 min after PF
(C) Ultrasensitive activation of CaMKII with calcium concentration. Shown is a

comparison of 2-subunit CaMKII model and experimental data (Bradshaw

et al., 2003).
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Figure 3. Time Course of Feedback Loop Components during LTD

Induction

(A) Time courses of active PP2A and phosphorylated CaMKII and ERK during

the early phase of LTD induction.

(B) Time courses of PKC, MEK, and cPLA2 activation during the early phase of

LTD induction.

(C) The feedback loop is highly excitable and requires constant basal sup-

pression by phosphatase activity to avoid spontaneous activation. Activated

CaMKII (CaMKII*) suppresses phosphatase activity, removing the ‘‘brakes’’

from the loop, leading to rapid and sustained activation. CaMKII deactivation

later causes a rebound in phosphatase activity that switches off the loop.
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stimulation were significantly smaller in the presence of pep2m

than those in the presence of pep4c. These results suggest

that LTP triggered by 1-Hz PF stimulation is mediated by NSF-

dependent insertion of AMPARs into synapses.

LTP Induction in PCs Has a Strict Frequency
Dependence
Previous studies have shown that postsynaptically expressed

LTP can be triggered at PF-PC synapses by 300 PF pulses at

1 Hz (Lev-Ram et al., 2002; Coesmans et al., 2004; Belmeguenai

andHansel, 2005), but the frequency dependence of LTP has not

been studied more systematically. We confirmed the LTP induc-

tion by the 1-Hz PF stimulation protocol (Figures 6B and 6C).

Consistent with previous reports, the LTP was expressed post-

synaptically because paired pulse facilitation (PPF) ratios were

not altered by the stimulation (see Fig. S1). To test the frequency

dependence of LTP induction, 0.5- or 0.67-Hz (2 or 1.5 s be-

tween stimuli) PF stimulation was applied instead of 1-Hz stimu-

lation. However, neither frequency of stimulation was successful

in triggering LTP. In addition, even when 0.5-Hz stimulation was

applied 600 times, LTP was not triggered. The averaged PF-

EPSC amplitudes calculated at 20–30 min after 1-Hz stimulation

was significantly different from those after 0.5- or 0.67-Hz stim-

ulation (Figures 6B and 6C). Thus, it seems that there is a

threshold of PF stimulation frequency for triggering LTP and

that the threshold is higher than the resting firing frequency of

granule cells (Powell et al., 2015; Chen et al., 2017; Chadderton

et al., 2004).

The Postsynaptic Feedback Loop Is Nested within a
trans-Synaptic Feedback Loop Controlling NO
Production
In agreement with our experimental observations and others

(Lev-Ram et al., 2002), 100 PF pulses at 1 Hz was insufficient

to elicit LTP in our model simulations, as was 300 pulses at either

0.5 or 0.67 Hz (Figure 6D). These LTP induction conditions are

unsuccessful because they fail to induce sufficient levels of NO

in the postsynaptic cytosol, with the NO concentration remaining

below 0.07 mM, whereas 300 pulses at 1 Hz induce a NO spike

reaching 0.21 mM (Figure 6E). This train of PF stimuli induces

cPLA2 activation, via Ca, that is maintained throughout the stim-

ulation period but rapidly drops off when stimulation ends (Fig-

ure 6F). Thus, the production of NO during PF stimulation is

entirely stimulation-dependent: NO is only produced and accu-

mulates during stimulation and immediately begins to decline af-

ter the stimulation period. In contrast, during LTD induction, NO

continues to rise to �0.35 mM post-induction before slowly



Figure 4. NO and CaMKII (via PDE1) Cooperate to Support Feedback Loop Activation

(A) Blocking NO production causes the initial reduction in PSD AMPAR population to revert toward basal levels.

(B) Failure of LTD when NO is blocked is caused by a failure of sustained postsynaptic feedback loop activation, reported as active ERK. However, a strong

calcium signal can obviate the requirement for NO and induce sustained loop activation even in its absence.

(C) Even in the absence of NO, a strong calcium signal (5 mM for 10 s) can successfully induce LTD.

(D) Removal of CaMKII from the model causes conversion of LTD to LTP.
declining (Figure 7A). This result uncovers a possible trans-syn-

aptic feedback loop responsible for maintaining high NO levels

during LTD induction (Figure 7B).

DISCUSSION

The default response to increased PF stimulation at PCs is LTP

because calcium levels remain below the threshold for CaMKII

activation but become high enough to activate cPLA2 and stim-

ulate the production of 2-AG via AA (Wang et al., 2014; Su et al.,

2013). This explains why deletion of CaMKII converts LTD to LTP

under LTD induction conditions (van Woerden et al., 2009); the

network driving LTD is only activated when CaMKII is activated.

In the absence of CaMKII, potentiation is the default response to

PF stimulation, whether alone or accompanied by concurrent CF

stimulation. Our model simulations were able to replicate this

important effect. Although b-CaMKII-null mice also exhibit a
switch in the opposite direction, from LTP to LTD under LTP in-

duction conditions, this is caused by the extraneous activation of

a-CaMKII rather than any particularly interesting network effect

(van Woerden et al., 2009). Because PF activity is a unilateral

driver of LTP, we predicted a sharp threshold for LTP induction

above the PF resting firing rate of 0.1–0.5 Hz (Chadderton

et al., 2004; Chen et al., 2017; Powell et al., 2015), which our ex-

periments in PCs were able to demonstrate. Our model simula-

tions revealed that subthreshold PF stimulation frequencies fail

to induce sufficient NO to trigger LTP; the production of NO dur-

ing LTP induction is entirely dependent on continuous PF stimu-

lation at a suprathreshold frequency, with NO levels building dur-

ing stimulation but dropping off as soon as stimulation ends.

CaMKII activation, as a result of suprathreshold calcium in-

crease, acts as the switch from the default LTP to LTD (van

Woerden et al., 2009). CaMKII suppresses phosphatase activity,

leading to the disinhibition and activation of the postsynaptic
Cell Reports 22, 722–733, January 16, 2018 727



Figure 5. Phosphatase Regulation of Feedback Loop Activation and

Deactivation

(A) Sustained inhibition of PP2A induces LTD.

(B) Sustained inhibition of PP2A induces feedback loop activation, indicated

by sustained ERK phosphorylation and PKC activation.

(C) Effect of PP1 inhibition on loop activation and inactivation following the LTD

induction protocol. PP1 regulates loop activation, with increasing levels of

active PP1 reducing the time during which the loop is active or blocking

activation entirely.
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positive feedback loop that sustains PKC activity. The critical

role of this feedback loop in driving early PF-PC LTD is well-es-

tablished (Tanaka et al., 2007; Tanaka and Augustine, 2008), and

our model reveals how CaMKII acts as the ultrasensitive on-

switch (Bradshaw et al., 2003) for this loop. In previously pub-

lished models of cerebellar plasticity, when activated, the loop

remains active indefinitely, with no known mechanism of deacti-

vation. However, experiments show that active PKC is no longer

required beyond the early phase of LTD (Tanaka and Augustine,

2008; Tsuruno and Hirano, 2007). PKC inhibitors applied shortly

after LTD induction cause the EPSC to recover and LTD to fail,

but inhibition of PKC, when depression has reached its maximal

level, has no effect on its maintenance (Tanaka and Augustine,

2008). It thusmakes sense that the feedback loop ought to deac-

tivate after the early phase of LTD induction is complete.

Congruent with these experimental observations, our model re-

veals a rapid and automatic off-switch for the feedback loop that

defines the end of the early phase of LTD and heralds entry into

the late phase.

This off-switch is driven by the rebound in phosphatase activ-

ity following CaMKII inactivation. Under basal conditions, these

phosphatases actively suppress the key components of the

feedback loop and prevent its spontaneous activation. Indeed,

PP2A inhibition alone will elicit robust PF-PC LTD (Launey

et al., 2004), presumably resulting from spontaneous loop acti-

vation, in addition to unopposed AMPAR-GluA2-S880 phos-

phorylation (Kohda et al., 2013; Gallimore et al., 2016). Inhibition

of PP1, in contrast, has no effect (Launey et al., 2004). We were

able to replicate these experimental results and explain the dif-

ferential effects of PP1 and PP2A inhibition: removal of PP2A

during basal AMPAR recycling resulted in significant depression

in our model simulation, whereas removal of PP1 had no effect.

This is because only PP2A removal caused the feedback loop to

spontaneously activate, independent of CaMKII, indicating that

PP2A is the primary phosphatase in basal suppression of the

loop, specifically by suppressing MEK and cPLA2 activity, with

other phosphatases, such as PP1 and calcineurin, supporting

the role of PP2A. This result contrasts with Belmeguenai and

Hansel (2005), who did not observe spontaneous LTD by PP2A

inhibition alone in cerebellar slice preparations. However,

PP2A inhibition resulted in significant depression under LTP in-

duction conditions, indicating that PF stimulation was required

to activate the PKC feedback loop under their experimental con-

ditions. These contrasting experimental results might suggest

that the balance of phosphatase activity is variable under

differing physiological conditions and might be regulated by still

unknown mechanisms. These complex effects of phosphatase

activity on the feedback loop are further complicated by the

observation that the calcium threshold for CaMKII activation



Figure 6. LTP Is Mediated by the NSF Interaction with GluA2 AMPARs and Is Triggered by 1-Hz but Not 0.5- or 0.67-Hz PF stimulation
(A) Time course of changes in PF-EPSCs in the presence of pep2m (n = 5) or pep4c (n = 5). The 1-Hz PF stimulation triggered LTP in the presence of pep4c but

not in the presence of pep2m. PF-EPSC amplitudes are normalized to their mean prestimulation levels. The histogram showsmean (±SEM) PF-EPSC amplitudes

20–30 min after PF stimulation. *p < 0.05.

(B) Time course of changes in PF-EPSCs after a different frequency of PF stimulation. LTP was triggered by 300 PF stimulation at 1 Hz (n = 7) but not by 300 (n = 4)

or 600 (n = 6) PF stimulation at 0.5 Hz or 300 PF stimulation at 0.67 Hz (n = 6).

(C) Averaged PF-EPSC amplitudes calculated 20–30 min after PF stimulation.

(legend continued on next page)
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Figure 7. A trans-Synaptic Positive Feedback Loop Regulates LTP

and LTD

(A) LTP induction is accompanied by stimulus-dependent NO generation that

declines immediately after the PF stimulation ends. However, LTD induction

generates sustained increases in NO.

(B) A trans-synaptic feedback loop, within which the postsynaptic PKC loop is

nested, produces sustained increases in NO throughout LTD induction. This

loop is driven by retrograde 2-AG activation of presynaptic CB1R, leading to

NOS activation.
can itself shift as a result of inhibitory T305 autophosphorylation,

depending on the frequency of PF stimulation. This threshold

shift to higher calcium concentrations during high-frequency

PF stimulation allows the CF signal to remain instructive in LTD

induction over a wide range of PF stimulation frequencies (Pio-

chon et al., 2016).

Although NO-mediated activation of the cGMP/PKG pathway

undoubtedly supports phosphatase inhibition, it remains a

matter of debate as to whether NO provides an indispensible

or supporting role in LTD induction. Although PF-PC LTD was

found to be absent in mice and rats lacking neuronal NO syn-

thase (Boxall and Garthwaite, 1996; Lev-Ram et al., 1997),

LTD induction protocols using calcium uncaging alone are

well-established (Tanaka et al., 2007). A recent study posited
(D) LTP induction in our model simulations requires 300 pulses at 1 Hz. 100 pulse

0.67 Hz fail to induce LTP.

(E) Only 300 pulses at 1 Hz generate high levels of NO, with lower pulse frequen

(F) PF stimulation at 1 Hz for 5 min elevates and maintains cPLA2 activity throu

accumulate, leading to the activation of presynaptic NOS and NO production.
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that NO supports LTD induction when the calcium pulse is

marginally supra-threshold or transient but unnecessary when

the calcium concentration is high or sustained (Bouvier et al.,

2016). This makes sense because calcium uncaging protocols

are able to rapidly discharge large quantities of calcium into

the cytosol that are more likely to reach high and sustained

levels, obviating the requirement for elevated NO. However, un-

der normal physiological conditions, the relatively weak calcium

signal generated by paired PF and CF activity fails to generate

sustained CaMKII activity. Under these conditions, concurrent

activation of the presynaptic NOS pathway is required to

augment CaMKII-mediated phosphatase inhibition. These re-

sults are congruent with and extend those of Kawaguchi and

Hirano (2013), who showed previously that CaMKII and NO

cooperate in releasing the feedback loop from phosphatase

suppression during LTD induction.

Given that LTP is driven by a low postsynaptic calcium con-

centration below the LTD threshold, it is perhaps surprising

that calcium uncaging protocols fail to induce LTP under low-

calcium conditions. Although the presynaptic terminals respon-

sible for NO production are present and, presumably, functional

in cerebellar slice preparations, neither LTP nor LTD is triggered

below the threshold for CaMKII activation in these uncaging pro-

tocols (Tanaka et al., 2007). However, our model resolves this

apparent anomaly by revealing how LTP is dependent on the

sustained activation of cPLA2 by repeated PF stimulation (and,

thus, calcium elevation) over several minutes, whereas uncaging

protocols typically increase calcium for only a few seconds. 1-Hz

PF stimulation over 5 min maintains cPLA2 activity and gener-

ates a large, entirely stimulation-dependent increase in post-

synaptic NO. If the frequency of PF stimulation is below the

1 Hz threshold, or if the number of pulses is below 300, then

insufficient NO is generated, and LTP fails. In contrast to this

stimulation-dependent NO spike during LTP induction, our

model simulations reveal sustained NO production during LTD

induction long after the PF-CF stimulation ends. This suggests

that the postsynaptic PKC feedback loop is nested within a

larger trans-synaptic positive feedback loop that maintains

NOS activity and, thus, NO production during the entire early

phase of LTD. Because NO has a crucial role in supporting

loop activation by the activation of GC and because GC deacti-

vates within seconds of NO removal (Newton et al., 2010; Bell-

amy and Garthwaite, 2001), it is plausible that sustained NO

levels help to prevent the premature inactivation of the postsyn-

aptic PKC feedback loop. In contrast, because LTP relies on the

nitrosylation of NSF, and the half-life of nitrosylated proteins in

plasma is typically at least 40 min (Stamler et al., 1992), the sus-

tained production of NO throughout LTP induction is not

required. In our model, nitrosylated NSF has a half-life of around

50 min, which is in line with experiments showing that NSF is de-

nitrosylated within 3 hr following nitrosylation (Ito et al., 2011) but

with a sufficient lifetime for LTP to be fully expressed.
s at 1 Hz are not sufficient to induce LTP. Likewise, 300 pulses at either 0.5 or

cies or numbers failing to generate NO levels above 0.07 mM.

ghout this period by repeated Ca spikes. This allows AA and, thus, 2-AG to



EXPERIMENTAL PROCEDURES

All procedures involving mice were performed according to the guidelines of

the Institutional Animal Care and Use Committee of the Korea Institute of

Science and Technology.

Fresh sagittal slices of the cerebellumwere prepared from 21- or 22-day-old

C57BL/6 mice of either sex. Slices were bathed in artificial cerebrospinal fluid

(ACSF) containing 125 mM NaCl, 2.5 mM KCl, 1.3 mM MgCl2, 2 mM CaCl2,

1.25mMNaH2PO4, 26mMNaHCO3, 20mMglucose, and 0.01mMbicuculline

methochloride (Tocris Bioscience). Patch pipettes (resistance, 5–9 MU) were

filled with 130 mM potassium gluconate, 2 mM NaCl, 4 mM MgCl2, 4 mM

Na2-ATP, 0.4 mM Na-GTP, 20 mM HEPES (4-(2-hydroxyethyl)-1-piperazinee-

thanesulfonic acid) (pH 7.2), and 0.5 EGTA. For the experiments using peptide,

pep2m or pep4c (200 mM, Tocris Bioscience) along with Alexa 568 (125 mM,

Thermo Fisher Scientific) was included in the internal solution.

Patch-Clamp Recording

Whole-cell patch-clamp recordings were made from PCs in cerebellar sagittal

slices that were visually identified under a microscope (Olympus BX61WI or

Nikon FN1). PFs were activated to evoke PF-EPSCs in PCs (holding potential

of �70 mV) with a glass stimulating electrode on the surface of the molecular

layer. PF-EPSCs were acquired and analyzed using pClamp software (Molec-

ular Devices). To measure the PPF ratios, PF-EPSCs were evoked by a pair of

PF stimulations with a 100-ms interval. LTP was triggered by 300 PF stimula-

tions at 1 Hz. To test the frequency dependence, the PF stimulation was

applied 300 or 600 times at 0.5 or 0.67 Hz. Data were acceptedwhen the series

resistance changed by <30%, the input resistance was >70 megaohms (MU)

and the holding current changed by <20%. The criteria were pre-established.

When pep2m or pep4c was included in the internal solutions, recording was

started around 30 min after establishing the whole-cell configuration and

continued for another 30 min before applying 1-Hz PF stimulation to allow

the peptide to diffuse into the recording PCs.

Statistical Analysis

The sampling distribution was not tested because of small sample numbers.

Instead, statistical differences were determined by Mann-Whitney test (for

two-group comparisons) and one-way ANOVA followed by uncorrelated

Fisher’s least significant difference (LSD) test (for more than two-group com-

parisons), which does not require normal distribution and is not very sensitive

to deviations from normality, respectively. Analyses were performed using

GraphPad Prism 6 and OriginPro software for a statistical significance level

of p < 0.05. n represents the number of cells recorded.

Model Background and Construction

The complete differential equation model (ModelDB: 235376) was built in a

modular fashion, consisting of a single well-mixed compartment containing

seven integratedmodules (in addition to other regulatory components; Figure 1):

(1) AMPAR trafficking model

(2) Calcium model, including metabotropic glutamate receptor (mGluR)

and inositol trisphosphate receptor (IP3R)

(3) Postsynaptic positive feedback loop with phosphatase regulation

(4) CaMKII model with regulatory components

(5) NO/cGMP pathway

(6) NO/NSF/PICK-1 model to implement LTP

(7) Presynaptic cascade to activate NOS (via CB1R)

The complete model was implemented in the MATLAB Simbiology package

using the ODE15s solver and comprised 531 species, 358 reaction parame-

ters, and 1,120 individual reactions (Figure 1). A more detailed description of

the model construction can be found in the Supplemental Experimental

Procedures. All model species, parameters, and reactions are listed in

Tables S1, S2, and S3, respectively.

Simulation of LTD and LTP Induction

We modeled PF stimulation with a 1-ms glutamate pulse combined with a

1-ms Ca square pulse reaching �200 nM, and CF activity was modeled as a
10-ms square pulse of calcium, eliciting a maximum concentration of

�500 nM (Konnerth et al., 1992; Tanaka et al., 2007). To simulate LTP, the

PSD AMPAR population was allowed to equilibrate for 20 min, and then

300 PF pulses alone were applied at 1 Hz (other frequencies were also

explored, as discussed in the Results). LTD induction was simulated by

applying 100 PF and CF pulses (concurrent but with a 100 ms delay) at 1 Hz.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and three tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2017.12.084.
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