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Abstract—This study aims to investigate how adequate cognitive 

functions for recognizing, predicting and generating a variety of 

actions can be developed through iterative learning of action-

caused dynamic perceptual patterns. Particularly, we examined 

the capabilities of mental simulation of one’s own actions as well 

as the inference of others’ intention because they play a crucial 

role, especially in social cognition. We propose a dynamic neural 

network model based on predictive coding which can generate and 

recognize dynamic visuo-proprioceptive patterns. The proposed 

model was examined by conducting a set of robotic simulation 

experiments in which a robot was trained to imitate visually 

perceived gesture patterns of human subjects in a simulation 

environment. The experimental results showed that the proposed 

model was able to develop a predictive model of imitative 

interaction through iterative learning of large-scale spatio-

temporal patterns in visuo-proprioceptive input streams. Also, the 

experiment verified that the model was able to generate mental 

imagery of dynamic visuo-proprioceptive patterns without feeding 

the external inputs. Furthermore, the model was able to recognize 

the intention of others by minimizing prediction error in the 

observations of the others’ action patterns in an online manner. 

These findings suggest that the error minimization principle in 

predictive coding could provide a primal account for the mirror 

neuron functions for generating actions as well as recognizing 

those generated by others in a social cognitive context. 

 
Index Terms— Cognitive robotics, dynamic neural network, 

predictive coding, social cognition, cognitive system architectures 

and implementations.  

 

I. INTRODUCTION 

ECENTLY, studies on how various cognitive functions 

can be developed through the experience of acting and 

perceiving in the environment have been attracting more 

researchers in the fields of cognitive neuroscience and cognitive 

robotics [1-4]. In neuroscience, the brain functions for 

perception, action and their association have been widely 

studied. A representative study illustrating possible links 
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between perception, action, and cognition might be the one on 

the mirror neurons system (MNS) [5]. Mirror neurons were first 

discovered in area F5 of the monkey’s premotor cortex [6, 7] 

and it was reported that mirror neurons were activated while 

executing own actions as well as observing the same ones 

performed by others [8-11]. The MNS has been reported to be 

involved in several cognitive processes, including action 

understanding and intention recognition [5]. Other previous 

studies have also illustrated the roles of the perception-action 

link in many cortical functions, including working memory, 

attention, and in social interaction [2, 9, 12, 13]. In [2], the 

authors argued that “the brain basis of cognition can be 

understood in terms of interlinked action perception 

representations”. 
In this study, we investigate how the cognitive functions of 

agents for generating and recognizing actions can be developed 

from learning causal models between one’s own intentions and 

the resultant sensory outcomes perceived in dynamic visuo-

proprioceptive patterns in the course of iterative interactions 

between the agents and the environment. Particularly, we focus 

on how cognitive competency for mental simulation and 

intention recognition can be developed as they play an 

important role, particularly in social cognition [2, 13-23]. Let 

us consider mutual imitation between two agents as an example 

for such social cognitive tasks. Imitation is closely interlinked 

with cognitive development [24] and it is important in acquiring 

sensorimotor skills as well as in social learning [25, 26]. 

Imitation is not only simply copying other’s action but it 

requires a set of cognitive skills. That is, an agent is required to 

recognize the other’s intention by observing their behavior and 

also to anticipate the consequences of own actions to the others 

[17, 23, 26, 27]. Therefore, it would be desirable if the agent 

can extract meaningful features from sensory observation and 

predict other’s action as well as its own action [24]. 
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We propose a dynamic neural network model called P-

VMDNN (Predictive Visuo-Motor Deep Dynamic Neural 

Network). The proposed model is capable of learning large-

scale visuo-proprioceptive patterns in a holistic manner by 

means of the hierarchically coupled multi-modal structure. In 

our previous studies [28-30], we have shown that the deep 

dynamic neural network model was able to extract latent 

features in dynamic visuo-proprioceptive patterns and to 

associate visual perception with proprioception by introducing 

multiple-scales spatio-temporal structure. In our recent work 

[31], the model has been extended under the predictive coding 

framework [32-35] to endow the model with the capability of 

acquiring a predictive internal model of others which is 

essential in social interaction [1, 23, 33, 35]. Consequently, the 

model was able to not only perceive the dynamic visuo-

proprioceptive patterns but also predict them. In this study, we 

extend the previous model further based on the perception-

action circuits found in the mammalian brain [12], so that vision 

and proprioception could be more tightly integrated (See 

Section II.A for detail).  

We conducted a set of synthetic robotic experiments to 

examine the proposed model. In our experiment, a robot was 

trained to imitate gesture patterns of the human subjects in the 

simulation environment. We first examined how the proposed 

model could proactively reconstruct the learned visuo-

proprioceptive primitives without the external inputs but with a 

given intention through the top-down process. Then, we 

examined the role of minimizing prediction error in recognizing 

the intention in the observed visuo-proprioceptive patterns.  

There have been a few studies showing the implication of 

perception-action models on building embodied cognitive 

systems [19, 36-41]. Previous studies, however, often 

postulated separate learning processes for generation and 

recognition of actions [41] or a single pathway for multimodal 

patterns [39]. In addition, the computational model of the 

predictive coding framework which can handle large-scale 

pixel level visual stream patterns has not yet been fully 

addressed. The model proposed in the current study, however, 

can mirror generation and recognition processes for dealing 

with complex spatio-temporal patterns in visuo-proprioceptive 

input streams by using the predictive model developed from 

consolidative learning of the patterns.   

II. DYNAMIC NEURAL NETWORK MODEL 

A. Model Overview 

In this study, we extend an artificial neural network model 

called Predictive Visuo-Motor Deep Dynamic Neural Network 

(P-VMDNN) introduced in [31]. P-VMDNN is a dynamic 

neural network model which can build a predictive internal 

model of the environment through learning of large-scale 

spatio-temporal patterns of different modalities (vision and 

proprioception). For example, sequential patterns obtained 

from different sources (e.g., cameras and encoders embedded in 

a robot) can be learned in a holistic manner without any separate 

processing. P-VMDNN is an extension of our previous model 

[28-30] which consisted of the visual and proprioceptive 

pathways. In our previous studies [28-30], we showed how 

visual perception and proprioceptive information could be 

abstracted and associated in a spatio-temporally hierarchical 

structure. In our recent work [31], we extended the previous 

model under the predictive coding framework [32-35] to endow 

the model with the capability of predicting visuo-proprioceptive 

patterns. In this study, the model was improved to tightly 

integrate the visual and the proprioceptive pathways based on 

the findings in perception-action circuits in the mammalian 

brain [12]. 

The proposed model (Fig. 1) consists of the visual and 

proprioceptive pathways for perceiving and predicting the 

dynamic visual images and the proprioceptive signals (the 

perceptual outcome of the robot’s actions), respectively. Each 

pathway is composed of a set of layers and the layers at the 

same level are connected reciprocally, allowing the 

bidirectional flow of the visuo-proprioceptive signals. Note that 

the lateral connection existed only at the higher-level layers in 

the previous model [31] whereas the proposed model is 

equipped with the lateral connections at every level of the 

hierarchy. By means of those lateral connections, vision and 

proprioception can be associated within the model by learning 

the visuo-proprioceptive patterns simultaneously in the tightly 

coupled structure. 

There are several key features in the proposed model. First, 

the proposed model can learn high-dimensional visuo-

proprioceptive patterns in a holistic manner. In our previous 

studies [28-30], it was shown that end-to-end learning on the 

hierarchical model enabled the development of the functional 

hierarchy, such that the higher-level and lower-level layers 

 
Fig. 1.  The proposed model consists of the visual pathway (left) and the 
proprioceptive pathway (right). The visual pathway consists of Vision Input 

(VI), Vision Output (VO), Vision Fast (VF), Vision Middle (VM) and Vision 

Slow (VS) layers. The proprioceptive pathway consists of Proprioception Input 
(PI), Proprioception Output (PO), Proprioception Fast (PF), Proprioception 

Middle (PM) and Proprioception Slow (PS). The proposed model is an 

extension of our previous model [31] which has the lateral connection 
(horizontal arrows) at the higher-level layers only. The proposed model has 

been extended to have additional lateral connections at the middle-level and 

the lower-level layers based on the findings in perception-action circuits in 
[12]. 
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encoded the abstract and specific information of the patterns 

respectively. Second, the proposed model is able to generate 

visuo-proprioceptive prediction proactively with a given 

intention through the top-down process. Similarly to our 

previous model [31], the proposed model is also capable of 

mentally simulating the possible incoming dynamic visuo-

proprioceptive patterns without the external input from the 

environment [42-47]. The mental simulation capability is 

considered one of the important cognitive skills [2, 13, 43, 45-

48] and it is essential to successfully interact with a dynamic 

environment [17, 48, 49]. Third, the proposed model provides 

a mechanism for updating the internal states through 

minimizing the prediction error, which results in recognition of 

the underlying intention latent in the perceived dynamic visuo-

proprioceptive patterns. Recognizing others’ intentions by 

observing their action is an essential skill required for social 

cognition [15, 16, 20, 21]. Minimizing prediction error is at the 

essence of predictive coding [32-34] and Kilner, Friston and 

Frith [34] argued that the underlying cause of the observed 

action could be inferred by minimizing the prediction error. 

Similarly, the proposed model provides an online prediction 

error minimization mechanism by which the intention behind 

the observed visuo-proprioceptive patterns can be inferred by 

updating the neurons’ internal states in the direction of 

minimizing the prediction error. According to [34], the 

important aspect of predictive coding is that the same structure 

is employed in action generation as well as in action 

recognition. The proposed model utilizes the same neural 

architecture to generate the visuo-proprioceptive patterns and 

also to infer the cause of the perceived patterns. Finally, the 

lateral connections at all levels of the hierarchy were introduced 

in the proposed model to enable a tight coupling of vision and 

proprioception which is an essential component in cognitive 

development [3, 41, 50]. By means of the lateral connections in 

the proposed model, the visuo-proprioceptive information can 

flow bi-directionally at all levels of the hierarchy. As mentioned 

in [51], such a tight sensory-motor mapping can be simplified 

to a sensor-actuator function which can implement direct 

perception in the study on affordance [27, 52-54]. That is, 

situated behavior can be generated without complicated 

calculation, but by maintaining perceptual coordination [4]. 

B. Visual Pathway 

Through the visual pathway, the model perceives and 

predicts the dynamic pixel-level visual images. To construct the 

visual pathway, we employed the predictive coding-based 

recurrent neural network model called P-MSTRNN (Predictive 

Multiple Spatio-Temporal Scales Recurrent Neural Network) 

which could perceive and predict the dynamic pixel-level 

images [55]. Instead of employing the separate feature maps 

and the context maps as in [55], the visual pathway in the 

proposed model consists of a single type of feature maps 

equipped with the recurrent connections.  

In the proposed model, the visual pathway is composed of 

five layers: Vision Input and Output (VI, VO), Vision Fast (VF), 

Vision Middle (VM) and Vision Slow (VS). Each layer consists 

of a group of 2-dimensional feature maps retaining spatial and 

temporal information and those layers are imposed with 

different spatio-temporal constraints. A previous study [55] has 

emphasized the importance of the progressively slower 

dynamics (from the lower to the higher-level) in achieving the 

functional hierarchy. Similarly, the smaller time constants are 

assigned on the lower-level layers and the bigger time constants 

are assigned on the higher-level layers. The layers in the visual 

pathway are connected bi-directionally from the I/O layers (VI, 

VO) to the highest-level layer (VS). Also, the feature maps in 

each layer are equipped with the recurrent connections between 

the feature maps within the same layer.  

At each time step t, the internal states 𝑢𝑖
𝑡𝑥𝑦

 and the activations 

v𝑖
𝑡𝑥𝑦

 of the neural units in each layer are computed as follows: 

𝑢𝑖
𝑡𝑥𝑦

= (1 −
1

𝜏𝑖
)𝑢𝑖

(𝑡−1)𝑥𝑦
 

+ 

{
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𝜏𝑖
( ∑ (𝑘𝑖𝑗 ∗ 𝑣𝑗
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𝑥𝑦

𝑗∈𝑉𝑀˅𝑉𝑆
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1
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𝜏𝑖
(∑(𝑘𝑖𝑗 ∗ 𝑣𝑗
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(1) 

v𝑖
𝑡𝑥𝑦

= 1.7159 × tanh (
2

3
𝑢𝑖
𝑡𝑥𝑦
)        (2) 

i denotes the index of the feature map, x and y denote the 

horizontal and vertical location of the neural unit on the feature 

map, τ denotes the time constant, kij is the kernel connecting jth 

feature map in Vj with the ith feature map in the current layer, 

* is the convolution operator, b is the bias and V is an input 

visual image. Note that the transposed convolution operation is 

performed in cases where the size of the input feature map is 

smaller than the size of the output feature map, such as for the 

top-down connections from the higher-level layers and the 

lateral connections from the proprioceptive pathway. In our 

previous study [31], the lateral connection existed at VS layer 

only. The proposed model is equipped with the additional 

lateral connections at VM and VF layers. To enhance the speed 

of convergence, the hyperbolic tangent recommended in [56] is 

used for the activation function (2). 

C. Proprioceptive Pathway 

The model perceives and predicts the perceptual outcomes of 

the robot’s action (i.e. proprioception) through the 

proprioceptive pathway. Note that the proposed model predicts 

the perceptual outcomes of the action, not the actual action. The 

actual action (controlling the robot’s joints) is accomplished by 

the motor control interface embedded in the robot which 

operates the robot’s actuators based on the proprioceptive 

prediction (joint angle positions) given from the model. In this 

sense, the proprioceptive output of the model can be considered 

as the kinematic level representation of the action which 

describes the trajectories of the movement in space and time 

[34, 57]. 

To construct the proprioceptive pathway, a dynamic neural 
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network called Multiple Timescales Recurrent Neural Network 

(MTRNN) [58] is used. MTRNN is a hierarchical continuous 

time recurrent neural network consisting of a set of layers 

imposed with different temporal constraints. In this sense, 

MTRNN is similar to P-MSTRNN which is used to construct 

the visual pathway. However, it should be noted that P-

MSTRNN imposes additional spatial constraints on neural 

activations so that it is more suitable to process pixel-level 

images of preserving local topology rather than a set of joint 

angles of robots without local topology. The distinctive feature 

of MTRNN is that it can self-organize a functional hierarchy in 

which the robot’s action can be hierarchically represented [58, 

59].  

In the proposed model, the proprioceptive pathway is 

composed of five layers: Proprioception Input and Output (PI, 

PO), Proprioception Fast (PF), Proprioception Middle (PM) and 

Proprioception Slow (PS). Each layer in the proprioceptive 

pathway is imposed with the different temporal constraints. 

More specifically, the progressively larger time constants from 

the lower-level layers to the higher-level layers are assigned as 

suggested in [28, 29, 58]. As a result, the neurons in the lower-

level layers with the smaller time constants exhibit relatively 

faster dynamics compared to the ones in the higher-level layers. 

The PI and PO layers are composed of the softmax neurons 

representing the sparse representation of the robot’s joint 

position values [42]. The neurons in the proprioceptive pathway 

have the recurrent connection between the neurons within the 

same layer. In addition, the neurons in each layer of the 

proprioceptive pathway have the bidirectional connection to the 

neurons in the neighboring layers as well as to the ones at the 

same level in the visual pathway (lateral connection).  

At each time step t, the internal states 𝑝𝑖
𝑡 and the activations 

𝑦i
t of the neurons in each layer are computed as follows: 

𝑝𝑖
𝑡 = (1 −
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exp(𝑝𝑖
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∑ exp(𝑝𝑗
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1.7159 × tanh(
2

3
𝑝𝑖
𝑡)                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

i denote the index of the neuron, wij is the weight connecting 

the jth neuron to the ith neuron and P is a proprioceptive input. 

The convolution terms in (3) refer to the lateral connection from 

the visual pathway. The softmax activation function is used at 

the output layer (PO) and the hyperbolic tangent recommended 

in [56] is used in the other layers as the activation function to 

enhance the speed of convergence. 

D. Forward Dynamics 

During the forward dynamics computation, the visual and 

proprioceptive predictions are generated with given inputs and 

the initial states of the model. The initial states refer to the 

internal states of the neural units at the beginning of the forward 

dynamics computation. To be more specific, the initial states 

(𝑢𝑖
𝑜𝑥𝑦
 and 𝑝𝑖

𝑜) are given to every layer of the model at the onset 

of computation (t = 0). Then, at each time step t, the visual input 

(a pixel-level grayscale image) and the proprioceptive input 

(the robot’s joint position values) are given to the vision input 

layer (VI) and the proprioception input layer (PI) respectively. 

Then, the internal states (𝑢𝑖
𝑡𝑥𝑦
 and 𝑝𝑖

𝑡) and the activations 

(v𝑖
𝑡𝑥𝑦
 and 𝑦i

t) of the neural units at each layer are calculated 

using (1) ~ (4). Note that the visuo-proprioceptive information 

flows bi-directionally through the lateral connections during the 

forward dynamics computation. 

In our study, two different methods of generating the visuo-

proprioceptive predictions are considered. The first method is 

called an open-loop generation or the sensory entrainment [19]. 

In this method, the input to the model (the visual images and 

the joint position values) represents robot’s current sensory 

perception obtained from the robot’s cameras and the encoders, 

and this external sensory information drives the neural 

dynamics of the model.  

Another method is called a closed-loop generation [19]. In 

this method, the input to the model is not from the external 

environment but from the model itself. That is, the visuo-

proprioceptive prediction generated at the current time step is 

fed back to the input of the model in the next time step. 

Therefore, the closed-loop generation method does not require 

the external inputs from the environment, resulting in the 

mental simulation capability where the dynamic visuo-

proprioceptive sequences can be anticipated [19, 42-48].  

In our experiments, the closed-loop generation was used 

during the training process to achieve the robust mental 

simulation capability. During the testing process, two different 

methods were used to illustrate the key characteristics of the 

proposed model. Specifically, the closed-loop and the open-

loop generation methods were used to examine the model ’s 

performance with and without a prediction error minimization 

mechanism respectively (See Section II.F for a prediction error 

minimization mechanism). 

E. Training the Model 

The model is trained in a supervised end-to-end manner in 

which the visual and the proprioceptive pathways are trained 

simultaneously by directly learning the dynamic visuo-

proprioceptive patterns [28]. In our experiment, the training 

data was collected during the tutoring process in which the 

robot was manually operated by the experimenter. This method 

is known as direct teaching or kinesthetic teaching [25, 60]. 

During the tutoring process, the experimenter demonstrated 

how to imitate the gestures by guiding the robot. While the 

robot was being guided by the experimenter, dynamic visual 

images perceived from the robot’s camera were jointly 
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collected with the joint position values from the encoders in the 

robot’s joints at each time step.  

During the training, the model is trained to generate a one-

step look-ahead visuo-proprioceptive prediction using 

backpropagation through time (BPTT) [61]. The model’s 

learnable parameters, such as kernels (k), weights (w), biases 

(b) and the initial states (𝑢𝑖
0𝑥𝑦
 and 𝑝𝑖

0) of the neurons are 

optimized to minimize the error defined as the sum of the errors 

in the visual pathway (EV) and the proprioceptive pathway (EP). 

Note that the initial states at every layer are obtained for each 

training sequence by computing the partial derivative of the 

error with respect to them (𝑢𝑖
0𝑥𝑦

= {𝑢𝑖1
0𝑥𝑦
, 𝑢𝑖2

0𝑥𝑦
, … , 𝑢𝑖𝑁

0𝑥𝑦
},

𝑝𝑖
0 = {𝑝𝑖1

0 , 𝑝𝑖2
0 , … , 𝑝𝑖𝑁

0 } where N is the number of the training 

sequence) to generate the different visuo-proprioceptive 

patterns in the closed-loop manner. The error in each pathway 

is defined as the discrepancy between the predicted and the 

teaching signal (i.e. training data) as follows. 
𝐸 = 𝐸𝑉 + 𝐸𝑃 (5) 

𝐸𝑉 = ∑∑∑(�̅�𝑖
𝑡𝑥𝑦

− 𝑣𝑖
𝑡𝑥𝑦
)
2

𝑥𝑦𝑡

 (6) 

𝐸𝑃 = ∑∑�̅�𝑖
𝑡𝑙𝑜𝑔

�̅�𝑖
𝑡

𝑦𝑖
𝑡

𝑖𝑡

 (7) 

Where �̅� and �̅� denote the visual and proprioceptive teaching 

signal respectively. Note that the error in the proprioceptive 

pathway is represented by the Kullback-Leibler divergence 

between the teaching signal �̅� and the proprioceptive output y 

(7). 

F. Inferring Internal States through Minimizing Prediction 

Error 

Prediction error minimization is at the core of predictive 

coding [32-34]. Kilner, et al. [34] argued that one could infer 

the underlying cause of an observed action by minimizing the 

prediction error while observing the action. The proposed 

model provides a similar mechanism called an error regression 

scheme (ERS) [42, 62] by which the model minimizes the 

prediction error in an online manner.  

Previous studies [42, 62] have shown that the higher-level 

intention in the observed sensorimotor patterns could be 

recognized by minimizing the prediction errors in an online 

manner. Note that the higher-level intention refers to internal 

cause enabling proactive generation of the visuo-proprioceptive 

patterns and they are specified as the internal states [62]. The 

previous studies have demonstrated the ERS with the single 

modality patterns [42] or in the single pathway that processed 

the multi-modal patterns [62]. In contrast, the ERS used in this 

study can be conducted with the visuo-proprioceptive patterns 

processed in the different pathways. In this sense, the ERS in 

our model is also different from the mental state inference 

(MSI) model [10, 63] which operates on the output in “visual-

like coordinates”. 

The ERS consists of two distinct processes: the top-down and 

the bottom-up processes. In the top-down process, the model 

generates the visuo-proprioceptive predictions in the closed-

loop manner with the given internal states representing the 

intention. In other words, the model predicts the perceptual 

consequence of the intended action as similar to the generative 

or the forward models [3, 34]. In the bottom-up process, the 

desired visuo-proprioceptive sequence is given and the 

prediction error between the desired and the predicted sequence 

is calculated. Then, the prediction error back-propagates from 

the output layers to the higher-level layers along the pathways, 

and the internal states of the neurons are updated in the direction 

of minimizing the prediction error at the output level. During 

the ERS, the top-down and the bottom-up processes are 

iteratively conducted to minimize the prediction error and to 

infer the possible cause of the observed visuo-proprioceptive 

patterns.  

To implement the ERS, two hyper-parameters are required: 

the size of the temporal window and the number of iteration. 

The temporal window with the size of W represents the 

immediate past from the time step t-W to the current time step 

t. The number of iteration denotes the number of updates of the 

internal states conducted at each step during the ERS.  

More precisely, at each time step t, the model generates the 

visuo-proprioceptive outputs (from t-W to t) with the initial 

states of the temporal window ut-W in the closed-loop manner 

(top-down). Note that the initial states of the temporal window 

ut-W refer to the internal states of the neurons in every layer at 

time step t-W. Then, the prediction error within the temporal 

window is computed (8) ~ (10) and back-propagates to update 

the initial states ut-W in the direction of minimizing the 

prediction error (bottom-up) with a learning rate η as illustrated 

in (11). As a result, the neural activation at all levels, as well as 

the visuo-proprioceptive predictions inside the temporal 

window, are updated. This process is iteratively conducted as 

specified by the number of iteration.  

By means of the ERS, the proposed model is capable of 

updating the current intention to match the intention behind the 

perceived visuo-proprioceptive patterns through minimizing 

the perceptual prediction error generated in the immediate past. 

Note that only the initial states of the window ut-W are optimized 

during the ERS and the other learnable parameters are remained 

fixed during the ERS. 
𝑃𝐸𝑡 = 𝑃𝐸𝑉,𝑡 + 𝑃𝐸𝑃,𝑡 (8) 

𝑃𝐸𝑉,𝑡 = ∑ ∑∑(�̅�𝑖
𝑠𝑥𝑦

− 𝑣𝑖
𝑠𝑥𝑦
)
2

𝑥𝑦

𝑡

𝑠=𝑡−𝑊

 (9) 

𝑃𝐸𝑃,𝑡 = ∑ ∑�̅�𝑖
𝑠𝑙𝑜𝑔

�̅�𝑖
𝑠

𝑦𝑖
𝑠

𝑖

𝑡

𝑠=𝑡−𝑊

 (10) 

𝑢𝑡−𝑊 = 𝑢𝑡−𝑊 − 𝜂
𝜕𝑃𝐸𝑡
𝜕𝑢𝑡−𝑤

 (11) 

III. EXPERIMENTS 

A. Experiment Settings 

We conducted a set of experiments using the iCub simulator 

[64] to examine the proposed model. iCub [65] is a humanoid 

robot designed for cognitive and developmental robotics 

research and the iCub simulator provides a virtual environment 

where many of the robot’s functionalities including perception 

and action can be examined. In addition, the iCub simulator and 

the real robot share the same controller interfaces, so that the 

model examined in the simulation environment can be easily 

extended to a real robot setting. Consequently, iCub and its 
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simulator have been widely used in research on cognitive 

robotics and autonomous systems [36, 38, 66-69].  

In our experiments, the robot was trained to imitate the 

gestures of the human subjects displayed on the screen (Fig. 2 

(a)). In the imitation task, the model predicted not only its own 

movement (proprioceptive prediction) but also the movement 

of the human subject on the screen (visual prediction). The 

training data was composed of a set of the visuo-proprioceptive 

patterns collected from the tutoring process prior to training. 

During the tutoring process, the robot was operated manually 

by the experimenter to imitate the gestures of the human 

subjects on the screen (i.e. kinesthetic teaching [60]). At each 

step of the tutoring process, the visual images perceived from 

the robot’s camera showing the gestures of the human subjects 

were jointly collected with the joint position values from the 

encoders in the robot’s joints.  

Regarding the robot’s visual perception, we used the camera 

embedded in the left eye of the robot and the obtained visual 

images were converted to grayscale, resized to 64 (w) × 48 (h) 

and normalized to −1 to 1. Regarding the robot’s behavior, we 

used the five joints (shoulder’s pitch, roll, yaw, elbow, wrist’s 

pronosupination) in each arm (a total number of 10 joints). To 

enhance learning, we used the sparse representation of the joint 

position values as illustrated in [42]. Each joint position value 

was converted into a sparse form represented by the 10 softmax 

neurons. Accordingly, there were 100 softmax neurons in the PI 

and PO layers that consisted of 10 groups, each representing a 

joint position value. Each group was composed of 10 softmax 

neurons. 

Table I shows the values of the network’s hyper-parameters 

including the number and the size of the feature maps and the 

neurons, kernels, weights and the time constants. Those values 

were found empirically in our preliminary experiments and they 

were used throughout our experiments. Regarding the time 

constant settings, we assigned progressively larger time 

constants from the lower levels to the higher levels in each 

pathway as suggested in [28, 29, 55, 58].  

B. Experiment 1. Mental Simulation of the Visuo-

Proprioceptive Patterns 

1) Top-down Proactive Generation of the Visuo-

proprioceptive Patterns  

In the first experiment, we examined the model’s mental 

simulation capability [43-48]. During the training, the robot 

was trained to imitate nine different types of gesture 

demonstrated by three human subjects (Fig. 2 (b)). 

Consequently, a total number of 27 visuo-proprioceptive 

sequences were used in the training. Those gestures consisted 

of the different arm movements: side right, side left, side both, 

up right, up left, up both, wave right, wave left and wave both. 

Each human subject showed slight differences in appearance 

including amplitude and speed of the gestures. Tensorflow [70] 

was used during the training and the model was trained for 

100,000 epochs using the ADAM optimizer [71] with the 

learning rate of 0.0001. At the beginning of the training, the 

learnable parameters were initialized with the neutral values. 

Note that the different initial states were obtained for each 

training sequence, resulting in 27 initial states for each training 

data. After the training, the model generated the trained 

sequences in the closed-loop manner with the given initial states 

obtained during the training. 

The result verified the mental simulation capability of the 

proposed model. Fig. 3 depicts the visuo-proprioceptive 

predictions generated in the closed-loop manner (see the 

supplementary video also). Note that the trajectories of the 10 

joints in the model’s proprioceptive predictions are depicted on 

the same scale although they have different ranges of joint 

 
Fig. 2.  The experiment setting. (a) The iCub simulator environment showing 

the human gesture on the screen and the robot. (b) The example of the nine 
gestures used in the imitation task. 

  

TABLE I 
THE PARAMETER SETTING USED IN OUR EXPERIMENTS 

  Visual Pathway 

  VI VO VF VM VS 

Time Constants 1 1 2 4 8 

Feature 

Maps 

Number 1 1 4 8 12 

Size 64×48 64×48 60×44 29×21 13×9 

Top-Down 

Kernel 

Size - 5×5 4×4 5×5 - 

Stride - 1,1 2,2 2,2 - 

Bottom-Up 

Kernel 

Size - - 5×5 4×4 5×5 

Stride - - 1,1 2,2 2,2 

Recurrent  

Kernel 

Size - - 2×2 2×2 2×2 

Stride - - 1,1 1,1 1,1 

Lateral    

Kernel 

Size - - 60×44 29×21 13×9 

Stride - - 1,1 1,1 1,1 

  Proprioceptive Pathway 

  PI PO PF PM PS 

Time Constants 1 1 2 4 8 

Number of Neurons 100 100 30 20 10 

Top-Down Weights - 30×100 20×30 10×20 - 

Bottom-Up Weights - - 100×30 30×20 20×10 

Recurrent Weights - - 30×30 20×20 10×10 

Lateral 

Kernel 

Size - - 60×44 29×21 13×9 

Stride - - 1,1 1,1 1,1 
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angles. With the given initial states, the model was able to 

generate a set of the dynamic visuo-proprioceptive patterns 

proactively in a top-down manner without the external inputs. 

That is, based on the model’s own intention specified as the 

initial states, the model anticipated the consequence of its own 

action (proprioceptive prediction) as well as of other’s action 

(visual prediction). Furthermore, the visual prediction 

generated during the mental simulation was in synchrony with 

the proprioceptive prediction, implying the coordinated and the 

tightly coupled vision and proprioception. In addition, as can be 

seen from Fig. 3, the different shapes between the human 

subjects were preserved in the visual prediction. 

To investigate how the robot’s ‘intention’ was encoded 

within the model, we conducted a principal component analysis 

(PCA) on the initial states. Fig. 4 illustrates the internal 

representation of the initial states of the visual pathway (VF, VM 

and VS). In Fig. 4, the X and the Y axes indicate the first and 

the second principal components respectively. The colors 

denote the types of gesture and the alphabet character indicates 

the human subject. 

The PCA results showed that each layer encoded the different 

level of the representation. In the lowest-level layer (VF), the 

internal representations of the training sequences belonging to 

the same human subject were distributed closely. In VM, those 

representations started to form the clusters. Finally, the clusters 

reflecting the type of the gesture appeared in the highest-level 

layer (VS). This implies that the abstract information, such as 

the type of the gesture was encoded in the higher-level layer 

whereas the specific information, such as the shape of a specific 

human subject was encoded in the lower-level layer. In turn, 

this result suggests that the functional hierarchy was self-

organized within the model.  

2) Mental Simulation of the Sequential Visuo-proprioceptive 

Patterns 

To investigate the functional hierarchy of the model, we 

trained the model further with an additional training data. A 

total number of 27 visuo-proprioceptive patterns were used and 

those patterns were generated by concatenating the three visuo-

proprioceptive sequences (primitives) randomly. That is, each 

sequential pattern in this experiment contained randomly 

selected three visuo-proprioceptive patterns of a randomly 

selected human subject. The model’s learnable parameters were 

initialized with the ones obtained from the previous training. 

Then, the network was trained for 50,000 epochs in the closed-

loop manner using the ADAM optimizer [71] with the learning 

rate of 0.0001. Similar to the previous training, the different 

initial states were obtained for each training data during the 

training. After the training, the model generated the trained 

sequences in the closed-loop manner with the given initial states 

obtained during the training (mental simulation). 

Fig. 5 illustrates some examples of the visuo-proprioceptive 

predictions generated in the closed-loop method. The result 

confirmed the model’s mental simulation capability (See the 

supplementary video also). With the given initial states, the 

model was able to generate the visuo-proprioceptive patterns 

consisting of the different primitive sequences and transitions 

between them. Similar to the previous experiment, the visual 

prediction generated during the closed-loop method was in 

synchrony with the proprioceptive prediction, implying the 

coordinated vision and proprioception. Furthermore, it was 

observed that the model was able to generate the sequential data 

of the different human subject, suggesting that the low-level 

representation (appearance of the human subjects) were also 

preserved in the visual predictions. 

In order to clarify the internal dynamics, we conducted a 

PCA on the neural activation in the highest-level vision layer 

(VS) and the lowest-level layers (VF and PF). Fig. 6 illustrates 

the development of the internal representations for the exemplar 

cases. The result showed that the sequential training data was 

hierarchically represented within the model. The lower-level 

layers (VF and PF) were directly related to the current visuo-

proprioceptive sequence being generated whereas the higher-

level layer (VS) showed the switch between the primitive 

sequences. In other words, the low-level representation of the 

visuo-proprioceptive patterns was encoded in the lower-level 

layers meanwhile the higher-level representation was encoded 

in the higher-level layer. This result implies the self-organized 

functional hierarchy within the model. It is assumed that the 

functional hierarchy could be self-organized by means of the 

spatio-temporal hierarchy achieved the different spatio-

temporal constraints imposed on each level of the model. As a 

result, the model was capable of learning compositional visuo-

proprioceptive sequences by means of the self-organized 

 
Fig. 3.  The visuo-proprioceptive predictions generated in the closed-loop 
method (mental simulation). 

 

 
Fig. 4.  PCA plot on the initial states of each primitive in the visual pathway 
(VF, VM and VS). The horizontal and the vertical axes indicate the first and the 

second principal component respectively. The alphabet character denotes the 

human subject and the colors and the shapes indicate the type of gesture. 
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hierarchy as in [4]. This result is also in line with the previous 

studies [55, 58, 59] that showed the hierarchical representation 

of the action. In sum, the first experiment verified that the 

proposed model was capable of mentally simulating the 

perceptual consequences of the action in a coordinated manner 

by utilizing the self-organized functional hierarchy.  

C. Experiment 2. Inferring Intention States by Prediction 

Error Minimization 

In Experiment 2, we investigated the model’s capability of 

inferring the underlying intention in the observed visuo-

proprioceptive patterns by means of the prediction error (PE) 

minimization mechanism (i.e. error regression scheme, ERS. 

See Section II. F). Since the proposed model generated both 

visual and proprioceptive prediction, the two different 

conditions were examined: minimizing the visual PE and 

minimizing the proprioceptive PE. 

1) Minimizing the Visual Prediction Error  

In the minimizing the visual PE condition, it was assumed 

that the robot observed the human subject’s gestures displayed 

on the screen. Then, the visual prediction error defined as the 

discrepancy between the perceived and the predicted visual 

images (gestures of the human subject) was minimized through 

updating the initial states of the error regression window. Note 

that the model generated both visual and proprioceptive 

predictions in the closed-loop manner, meaning that the visual 

observation was used as the target signal for computing the 

prediction error, not as the input to the model.  

The learnable parameters except the initial states were 

initialized to the values obtained from the previous experiment. 

The initial states of the neurons at each layer were initialized 

with the neutral values. During the ERS, the size of the temporal 

window was set to 20 steps and the initial states of the temporal 

window were updated 50 times at each time step using the 

ADAM optimizer [71] with the learning rate of 0.1. Note that 

only the initial states of the window were updated in the 

direction of minimizing the prediction error during the ERS. 

Two visuo-proprioceptive sequences consisting of the five 

sequential primitive visuo-proprioceptive sequences were used 

during the ERS. One sequence consisted of the visuo-

proprioceptive patterns used in the previous experiment (i.e. 

learned human subject data) whereas another sequence 

consisted of the novel visuo-proprioceptive patterns (i.e. 

unlearned human subject data). 

To examine the importance of minimizing visual PE, we also 

examined the model’s performance without minimizing the 

visual prediction error (sensory entrainment). In the sensory 

entrainment condition, the visual prediction was generated in 

the open-loop manner, meaning that the visual input (pixel-

level image) was given from the external source (camera) at 

each time step. On the other hand, the proprioceptive prediction 

was generated in the closed-loop manner by feeding the 

proprioceptive output at the current time step to the 

proprioceptive input at the next time step.  

The result showed that the model was able to predict the 

movements of the human subject successfully by minimizing 

the visual prediction error (Table II). In the case of the learned 

human subject gesture (Fig. 7 (a)), the model was able to 

reconstruct the gestures showing the shape of the specific 

human subject (MSE = 0.0046). Moreover, the model generated 

the proprioceptive prediction that corresponded to the visual 

prediction, resulting in successful imitation in both learned 

(MSE = 78.92) and unlearned (MSE = 269.91) subject cases 

(See the supplementary video).  

In the sensory entrainment condition, however, the model 

was not able to generate neither the visual nor the 

proprioceptive predictions, leading to unsuccessful imitation. 

This result shows the importance of the prediction error 

minimization in communication and interaction between the 

two agents. Interestingly, in the sensory entrainment condition 

of the unlearned subject case (the bottom row in Fig. 7 (b)), the 

shape of the human subject that appeared in the visual 

TABLE II 
AVERAGE MEAN SQUARED ERROR (MSE) IN THE MINIMIZING VISUAL 

PREDICTION ERROR CONDITION 

 Learned Subject Unlearned Subject 

 Vision Proprioception Vision Proprioception 

Error 

Regression 
0.0046 78.92 0.0063 269.91 

Sensory 

Entrainment 
0.0259 1067.58 0.0374 964.05 

 

 
Fig. 5.  The closed-loop generation of the sequential visuo-proprioceptive 

patterns. 
  

 
Fig. 6. The PCA plot showing the development of internal representations in 

VS, VF and PF for the exemplar cases (sequential patterns). The x axis indicates 
the time step and the blue and the red colors denote the first and the second 

principal component respectively.  
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prediction was different from the shape of the human subject in 

the target sequence, but it was closer to one of the trained 

human subjects. This implies that the model predicts the visual 

image not by simply mapping from the visual input in a 

 
Fig. 7.  The visuo-proprioceptive predictions generated in the minimizing visual prediction error condition, tested with (a) the learned human subject gestures 

and (b) the unlearned human subject gestures. 
 

 
Fig. 8.  PCA plot showing the internal representation emerged after the training (solid lines) and during the ERS in the visual PE minimization (dashed lines). 

The X and Y axes indicate the first and the second principal component respectively. The colors denote the type of the gesture. The black arrows in Vision Slow 

(VS) indicate the direction of temporal evolution. 
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previous step, but by recalling the visual representation 

acquired from the training. 

In order to clarify the internal dynamics during the ERS, we 

conducted a PCA on the neural activation at the highest-level 

of the visual pathway (VS) and the lowest-level layers (VF and 

PF). Fig. 8 illustrates the internal representations emerged after 

the training (solid lines) and the ones emerged during the ERS 

(dashed lines). The horizontal and the vertical axes indicate the 

first and the second principal components respectively and the 

colors denote the type of gesture. It was observed the internal 

representations emerged during the ERS were close to the ones 

emerged after the training (i.e. overlapping between the solid 

and the dashed lines in the plots). This result suggests that the 

visual image showing the human subject’s gesture was 

successfully recognized by recalling the corresponding internal 

representations in the model’s repertoire acquired during the 

training. Consequently, the visual prediction of the other’s 

action, as well as the proprioceptive prediction of its own 

action, could be generated, resulting in successful imitation.  

2) Minimizing the Proprioceptive Prediction Error 

In the minimizing the proprioceptive PE condition, it was 

assumed that the desired joint position values were provided 

from the environment and the discrepancy between the 

perceived and the predicted proprioceptive signals was 

minimized through updating the initial states of the error 

regression window. This condition emulates the situation in 

which the user grasps the robot’s arms and moves as he/she 

wants while the robot is imagining the visual imagery of the 

human subject’s gesture that corresponds to the given 

proprioceptive signal. During the ERS, the model generated 

both visual and proprioceptive predictions in the closed-loop 

manner, meaning that the desired proprioceptive pattern was 

used as the target signal for computing the prediction error, not 

as the input to the model. The same network examined in the 

visual PE minimization condition was used in the 

proprioceptive PE minimization condition. A visuo-

proprioceptive sequence consisting of the five sequential 

primitive visuo-proprioceptive sequences was used during the 

ERS. Note that the sequence was different from the training 

data.  

We also examined the model’s performance without 

minimizing the proprioceptive PE (sensory entrainment). In the 

sensory entrainment condition, the proprioceptive prediction 

was generated in the open-loop manner, meaning that the 

proprioceptive input (joint position values) was given from the 

external source (encoders) at each time step. On the other hand, 

the visual prediction was generated in the closed-loop manner 

by feeding the visual output at the current time step to the visual 

input at the next time step.  

Fig. 9 illustrates the target visuo-proprioceptive patterns 

(top), the visuo-proprioceptive predictions generated under the 

minimizing proprioceptive PE condition (middle) and the 

sensory entrainment condition (bottom). In the proprioceptive 

PE minimization condition, the model successfully generated 

the proprioceptive predictions (MSE = 2.70), showing that the 

model was able to adapt to the incoming proprioceptive signals.  

Interestingly, the model was also able to generate the visual 

prediction showing the human subject’s gesture which 

corresponded to the proprioceptive prediction. Although the 

visual prediction was a bit noisy, the gestures appeared in the 

visual prediction were still identifiable (See the supplementary 

video also). As similar to the previous experiment, it is assumed 

that minimizing the proprioceptive PE induced the recall of the 

proprioceptive representation as well as the visual 

representation of the corresponding gesture and in turn, the 

prototypical shape of the corresponding human subject’s 

gestures appeared in the visual prediction. Without the PE 

minimization condition (sensory entrainment), however, 

neither the proprioceptive (MSE = 801.42) nor the visual (MSE 

= 0.0314) predictions were generated successfully, highlighting 

the importance of the PE minimization.  

IV. DISCUSSION 

In this study, we proposed a dynamic neural network model 

which could build a predictive internal model of the 

environment from consolidative learning of spatio-temporal 

patterns. The experimental findings illustrated several key 

characteristics of the proposed model.  

In Experiment 1, it was verified that the proposed model was 

able to anticipate the possible incoming visuo-proprioceptive 

 
Fig. 9.  Visuo-proprioceptive predictions generated in the proprioceptive PE minimization condition (the middle row) and the sensory entrainment condition (the 
bottom row). Note that the desired visual output was depicted to illustrate the desired type of gesture. 
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patterns through mental simulation (closed-loop generation) in 

a top-down manner. With the given intention specified as the 

initial states, the proposed model was able to generate visuo-

proprioceptive predictions for each primitive sequences as well 

as the transition between the sequences in the compositional 

sequences. The mental simulation experiments also revealed 

that vision and proprioception were tightly coupled within the 

model. It is assumed that the coordinated visuo-proprioceptive 

representations were acquired during the consolidative learning 

of the patterns on the tightly coupled structure.  

In addition, the experimental results showed the self-

organized functional hierarchy of the proposed model. The 

analysis on the neural activation revealed that the visuo-

proprioceptive patterns were hierarchically represented at each 

level of the model. That is, the lower-level layers encoded the 

low-level details of the visuo-proprioceptive patterns (e.g., the 

initial states grouped by the human subject in Fig. 4) whereas 

the higher-level layers encoded the abstract information of the 

patterns (e.g., the initial states grouped by the type of the gesture 

in Fig. 4). This finding is in line with the previous studies [28, 

29, 55, 58, 59] and supports the notion of a hierarchical 

representation of actions [34, 57, 72, 73].  

The findings in Experiment 2 highlighted the importance of 

the prediction error minimization, supporting the predictive 

coding account of the MNS as proposed in [34]. First, the 

results showed the role of the prediction error minimization in 

recognition of the intention in the observed patterns. The 

underlying intention in the perceived visuo-proprioceptive 

pattern was recognized by minimizing prediction error between 

the perceived and the predicted patterns. By recognizing the 

intention in the observed patterns, the model was also able to 

predict the possible incoming patterns in the next time step. 

Second, it was observed that minimizing the prediction error in 

one modality induced the recall of the corresponding 

representation in another modality acquired during the training. 

In the visual PE minimization condition, corresponding 

proprioceptive prediction was generated while the visual 

prediction error was minimized. Similarly, in the proprioceptive 

PE minimization condition, the model was able to generate the 

visual imagery showing the human subject’s gesture that 

corresponded to the proprioceptive signals. Previous studies 

have shown the similar findings such that the activation in the 

cortical motor region was modulated when the actions that 

existed in the motor repertoire were recognized [74-76].  

The importance of the prediction error minimization 

mechanism was further highlighted by comparing the model’s 

performance in the sensory entrainment condition (i.e. without 

minimizing prediction error). Although the model was 

equipped with the same perception-action link, the MNS-like 

activity was not developed in the sensory entrainment condition 

in our experiments. Therefore, the MNS-like activity of the 

proposed model can be considered as the consequence of the 

several key features of the model, including the cortical 

connectivity, consolidative learning of the visuo-proprioceptive 

patterns and the PE minimization mechanism as suggested in 

the previous studies [2, 34].  

In Experiment 2, the model was also able to respond to the 

gestures of the unknown human subject, illustrating the 

generalization capability of the proposed model. In our 

preliminary experiment with only one human subject data, we 

observed that the performance of the model with unknown 

human subject’s data degraded. The generalization 

performance of the proposed model is expected to be enhanced 

by incorporating more training data as demonstrated in [55].  

Note that the proposed model exploited the same neural 

architecture for generating the visuo-proprioceptive patterns as 

well as for recognizing the intention in the perceived visuo-

proprioceptive patterns. It has been argued that the same neural 

substrate is shared for both perception and production of actions 

[7, 8]. In sum, the findings highlight the importance of the 

prediction error minimization mechanism in terms of inferring 

higher-level intention as well as recalling the corresponding 

visuo-proprioceptive representations acquired during the 

training. 

There are several directions suggested for future research. 

First, the speed of the ERS should be improved to apply the 

proposed model in a real robot setting. Minimizing prediction 

error in our method requires iterative optimization at each time 

step. A different optimization technique can be examined to 

enhance the speed of the ERS so that it can be applied in real-

time interaction. Second, the scalability of the proposed model 

in the different settings can be also examined. For instance, self-

other distinction based on prediction error as suggested in [1] 

can be examined where visual input contains not only the 

gesture of other’s but also robot’s own. In addition, the 

proposed model can be examined under the circumstances 

where interaction between robots and humans goes through 

multiple developmental stages.  

V. CONCLUSION 

In this study, we investigated how the cognitive-like 

functions, such as mental simulation and intention recognition 

could be developed from consolidative learning of the low-level 

sensorimotor information under the predictive coding 

framework. We proposed a dynamic neural network model 

called P-VMDNN (Predictive Visuo-Motor Deep Dynamic 

Neural Network) which could perceive and predict the dynamic 

visuo-proprioceptive patterns. The experimental results 

validated several core features of the proposed model. First, the 

proposed model was able to develop the predictive internal 

model of the environment by directly learning the visuo-

proprioceptive patterns acquired from the interaction with the 

environment. Due to the spatio-temporal hierarchy of the 

proposed model, the functional hierarchy was self-organized in 

a way that the visuo-proprioceptive patterns were encoded at 

the different level of the representation within the model. 

Second, the experimental results verified the mental simulation 

capability of the proposed model. With a given intention 

represented as the initial states, the model generated visuo-

proprioceptive predictions proactively through the top-down 

process. By feeding its own output to input in the next time step 

(closed-loop generation), the model was capable of mentally 

simulating its own action (proprioceptive prediction) as well as 
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other’s action (visual prediction) without inputs from the 

external world. Third, the experimental results highlighted the 

importance of minimizing prediction error in terms of inferring 

higher-level intention from the observed patterns as well as 

recalling the corresponding visuo-proprioceptive 

representations acquired during the training. The higher-level 

intention in the observed patterns was recognized in the process 

of minimizing prediction error through updating the internal 

states. It was also observed that updating the internal states to 

minimize the prediction error in one modality induced the recall 

of the corresponding representation of another modality, 

resulting in the generation of the corresponding perceptual 

sequences. To conclude, the current study suggests how 

artificial agents can develop higher-level cognitive functions 

from learning to perceive and predict the dynamic sensorimotor 

information. In addition, the findings of the current study 

support the predictive coding account of the mirror neuron 

system as proposed in [34]. The future study should involve 

with scaling of the proposed model experimented with real 

robots allocated with a much longer time period for 

developmental tutoring as well as interaction with human 

subjects. 
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