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Abstract –We report a joint experimental and theoretical investigation of cyclic training of amor-
phous frictional granular assemblies, with special attention to memory formation and retention.
Measures of dissipation and compactification are introduced, culminating with a proposed scaling
law for the reducing dissipation and increasing memory. This scaling law is expected to be uni-
versal, and insensitive to the details of the elastic and frictional interactions between the granules.

“Memory” in materials physics is usually associated1

with the existence of macroscopic hysteretic responses [1].2

Two distinct states, separated by a potential barrier larger3

than the thermal energy scale, can be used as a memory4

encoding mechanism; magnetic hysteresis being the most5

famous example from physics and the basis for all mag-6

netic information storage media [2]. Memory formation7

and retention via hysteresis is a non-equilibrium process8

because the system requires external forcing to get across9

the energy barrier from one state to the other. Conse-10

quently, the notion of “universality” which provides fun-11

damental understanding of equilibrium transitions is very12

difficult to find in non-equilibrium hysteretic processes.13

Friction-induced hysteresis as well as memory in amor-14

phous granular media is well known in the context of rock15

geophysics [3] and engineering [4], but the mechanism of16

memory formation, its training, and eventual retention are17

not yet well understood. Furthermore, the strong protocol18

dependence and the granular pack’s preparation history19

immediately dash any hope of observing universal behav-20

ior in these systems. Here we focus on memory that is21

induced by training a frictional granular matter by cyclic22

loading and unloading [5–11]. In each such cycle dissipa-23

tion leads to hysteresis, but with repeated cycles the dis-24

sipation diminishes until the system retains memory of an25

asymptotic loaded state that is not forgotten even under26

complete unloading. We report and explain a universal27

power law associated with the reduced dissipation and in-28

Fig. 1: Representative coarse-grained (∆Φ = 5×10−3) hystere-
sis loops obtained experimentally upon uniaxial compression
and decompression of an amorphous configuration of frictional
disks as seen in Fig. 2. The pressure P is measured in N/m,
and Φ is dimensionless. Compression legs are in black and
decompression in red.

crease in memory which is expected to hold irrespective of 29

the details of the microscopic interactions. 30

The phenomenon under study is best introduced by the 31

experimental plots of pressure vs. packing fraction ob- 32

tained by compressing and decompressing uniaxially an 33

array of frictional disks [9], cf. Fig. 1. The experimen- 34

tal set up is detailed in the SI. A typical example of the 35
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experimental cell is shown in the upper panel of Fig. 2.36

Two opposing boundaries separated by chamber length L37

were movable while the other two (transverse) boundaries38

were held fixed. The two opposing movable boundaries39

provided uni-axial pack compression, through which the40

packing fraction Φ was controlled. Accordingly, we define41

the packing fraction Φ as the ratio of total area occupied42

by the disks to the chamber area bounded within the four43

boundaries, two of which are movable. Fig. 1 displays a44

typical series of consecutive loops of compression - decom-45

pression loops; the coarse-grained data was collected in46

quasi-static steps ∆Φ = 5×10−3 for representational pur-47

poses. The qualitative experimental observation is that48

the area in consecutive hysteresis loops diminishes mono-49

tonically while the packing fraction is increasing with ev-50

ery loop. This indicates that the system is compacted fur-51

ther with every loop and this process is accompanied by52

a reduction in the dissipation. The experimental results53

left however two open questions: (i) whether asymptoti-54

cally the dissipation vanished, such that every compression55

became purely elastic and the decompression to zero pres-56

sure left the system with perfect memory of the stressed57

configuration; and (ii) whether there is anything univer-58

sal in the way that the areas of the loops approaches its59

asymptote, be them finite or zero. To answer these ques-60

tion we performed numerical simulations that lead to the61

conclusion that (i) asymptotically the hysteresis loops are62

still dissipative due to frictional losses, but the structural63

rearrangements disappear and the neighbor list becomes64

invariant; and (ii) that the area An under the nth hys-65

teresis loop (which is a direct measure of the dissipation)66

decays as a power law to an asymptotic value according67

to68

An = A∞ +Bn−θ , θ ≈ 1. (1)

Here A∞ represents the dissipation due to frictional slips69

that exist even in the asymptotic loop, and it depends on70

the material properties. The second term in Eq. (1) is due71

to the successive compactification of the sample, and the72

constant B is also expected to depend on material proper-73

ties. The form of this law however is universal, expected74

to hold independently of the details of the microscopic75

interaction between the granules.76

The details of the numerical set up are provided in the77

SI. An example of an initial configuration is shown in the78

lower panel of Fig. 2. We assign Hertzian normal force79

F
(n)
ij and a Mindlin tangential force F

(t)
ij [12] to each binary80

contact ij. The tangential force is always limited by the81

Coulomb law82

F
(t)
ij ≤ µF

(n)
ij . (2)

In uniaxial straining the pressure is increased by push-83

ing two opposite walls of the system towards each other.84

In each cycle we first reach a chosen maximal pressure85

by quasi-static steps. After each compression step, the86

system is allowed to relax to reach a new mechanical equi-87

librium in which the global stress tensor is measured by88

Fig. 2: Upper panel: An example of a typical initial configura-
tion in the experiment. Lower panel: An example of a typical
initial configuration in the numerical simulation.

averaging the dyadic products between all the binary con- 89

tact forces and the vectors connecting the centers of mass 90

in a given volume. The trace of this stress tensor is the 91

new pressure P . After a full compression leg, a cycle is 92

completed by decompressing back to zero pressure, where 93

the next compression cycle begins. The packing fraction 94

Φ is monitored throughout this process. Each such cy- 95

cle traces a hysteresis loop in the P − Φ plane, see Fig. 3 96

as an example. The area within each hysteresis loop is a 97

measure of the dissipation, which in general stems from 98

two sources. One is plastic events in which the neighbor 99

lists change in an irreversible fashion, and the other is 100

due to frictional losses when the frictional tangential force 101

exceeds the allowed Coulomb limit. The training of the 102

system is exemplified by the fact that the dissipation as 103

measured by the area An of the nth cycle reduces with n 104

and reaches an asymptotic value when n→∞. Measuring 105

the area in the nth loop we find that it follows a power 106

law decay in the form of Eq. (1) The data supporting this 107

power law are exhibited in Fig. 4. From this data we can 108

conclude that θ ≈ 1 and that the scaling law appears uni- 109

versal with respect to changes in the value of µ. A further 110

evidence of universality is obtained by changing the size 111

distribution of disks, choosing a multi-dispersed system 112

with radii ratios 1, 1.1, 1.2 and 1.4. Identical power laws 113

were found. To understand the scaling law we need to 114
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Fig. 3: A succession of hysteresis loops as measured in the
numerical simulation. Blue symbols are compression legs and
red symbols decompression legs. Here µ = 0.1.

identify the two important processes that take place dur-115

ing the cyclic training. One is compactification. In every116

compression leg of the cycle the system compactifies, until117

a limiting Φ value is reached for the chosen maximal pres-118

sure. To quantify this process we can measure the volume119

fraction Φn(Pmax) at the highest value of the pressure in120

the nth cycle. Define then a new variable121

Xn ≡ Φn+1(Pmax)− Φn(Pmax) . (3)

This new variable is history dependent in the sense that122

Xn+1 = g(Xn) where the function g(x) is unknown at123

this point. This function must have a fixed point g(x =124

0) = 0 since the series
∑
nXn must converge; for any125

given chosen maximal pressure there is a limiting volume126

fraction that cannot be exceeded. Near the fixed point,127

assuming analyticity, we must have the form128

Xn+1 = g(Xn) = Xn − CX2
n + · · · . (4)

The solution of this equation for n large is129

Xn =
C−1

n
. (5)

This is the source of the second term in Eq. (1), which130

stems from the compactification and reduces the amount131

of dissipation due to irreversible plastic rearrangements. A132

direct measurement ofXn as a function of n is shown in the133

log-log plot presented in Fig. 5, supporting the generality134

of this power law. Without any reason for non-analyticity135

in the function g(Xn) this conclusion is firm. It should be136

noted at this point that the scaling laws Eqs. (1) and (5)137

must contain some logarithmic corrections, since the har-138

monic series does not converge, but the series
∑
nXn must139

converge to get an asymptotic value of Φmax. Indeed, the140

scaling laws measured above consistently show exponents141

slightly smaller than -1, and therefore the series of Φn con-142

verges. It is very likely that this small difference is due to143
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Fig. 4: The power law for the decaying areas under the hys-
teresis loops as measured in the numerical simulation. Here
µ = 0.1, Black dots are data and the red line is the best fitting
power law y = 0.095X−1.03. The observed lot is independent
of µ, cf. the SI.

logarithmic corrections to the scaling law which cannot be 144

computed from the simple theory presented here. 145

The first term in Eq. (1), on the other hand, is due to 146

the frictional dissipation. In uniaxial compression there is 147

a shear component, and the shear stress loads the tangen- 148

tial contacts. Whenever the tangential force exceeds the 149

Coulomb limit Eq. (2), the system dissipates some energy 150

to a frictional slip. Even if the neighbor list becomes in- 151

variant at large values of n, the loading of the system is 152

always accompanied by frictional slips. In our simulations 153

we can measure the energy dissipated by friction slips, 154

denoted as ∆E
(f)
n in the nth hysteresis loop. To have a 155

non-dimensional measure we normalized this quantity by 156

∆E
(f)
1 , denoting the result as Sn. The dependence of this 157

normalized dissipated energy on n is presented in Fig. 6. 158

It is clear that the normalized dissipated energy due to 159

frictional slips reduces rapidly to a stable value; this is the 160

first term in Eq. (1). 161

Encouraged by this theory we returned to the exper- 162

imental data to measure both Xn and An. To obtain 163

the logarithmic n dependence of the area we needed to 164

know the value of A∞. A direct measurement of this area 165

is unfeasible. But one recognizes that the total dissipa- 166

tion under the asymptotic loop should be the same with 167

or without memory. Accordingly, we applied an acoustic 168

perturbation to the configuration after each quasi-static 169

step to destroy memory and training, and force the sys- 170

tem to go to asymptotic state. The result is shown in the 171

upper panel of Fig. 7, showing A∞ alone in blue squares. 172

Indeed A∞ is finite and flat as a function of n. Using 173

the measured value of A∞ we get the power law scaling 174

for An − A∞ as expected and as shown by the data with 175

black rhombi. To underline the fact that this scaling law is 176

governed by the memory during the training protocol we 177

demonstrate the change that is caused by destroying the 178
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Fig. 5: Log-log plot of Xn vs. n. The black dots are the data,
the blue line is the best fitting scaling law y = 0.02x−1.02. The
data corroborates Eq. (5).

memory midway through the cycles; this is a further vali-179

dation that the power law is indeed coming from training180

and memory formation. For the data shown in green tri-181

angles, there are no acoustic perturbations for n = 1 - 10;182

there we see the power-law behavior. From n = 11 - 50, we183

apply acoustic perturbations after each quasi-static step.184

The loop areas now fall drastically and become flat. Note185

that the magnitude is below A∞ since we are plotting the186

difference An −A∞.187

It should be commented that the simple scenario dis-188

cussed in the Letter requires a subtle change in the shape189

of the hysteresis loops. The low order loops are increasing190

the volume fraction, such that the compression leg starts191

with at a lower value of Φ than the end of the decompres-192

sion loop, see the upper panel in Fig. 8. This continues193

to be the case as long as the systems can be compactified194

further. The high order loops must begin and end at the195

same value of Φn, see the lower panel in Fig. 8. Thus196

for large value of n the hysteresis loops become repetitive,197

with an invariant trace in the P − Φ plane, even though198

they have frictional dissipation in the limit n→∞. This199

subtle change in the shape of the hysteresis loops allows200

the function g(x) to have the fixed point at x = 0 around201

which the analytic expansion dictates the universality of202

the power law.203

In conclusion, we presented and explained a universal204

scaling law in the context of the cyclic training of an amor-205

phous assembly of frictional disks. The protocol exhibits206

a reduction in the dissipation per loop until the system207

reaches an asymptotic configuration with maximal volume208

fraction (for the maximal pressure chosen in the cyclic pro-209

tocol). Once achieved, the system has a perfect memory210

of the stressed state even when it is completely decom-211

pressed to zero pressure. Interestingly enough, repeated212

compressions are not without dissipation, since shear al-213

ways induces frictional slips. But the beginning and final214

volume fractions become invariant and the system repeats215
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Fig. 6: The normalized frictional energy loss in each hysteresis
loop. This energy loss drops to a stable value that is responsible
for the asymptotic dissipation that is encoded by the area A∞
in Eq.(1).
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Fig. 7: Upper panel: The areas An−A∞ measured experimen-
tally as a function of n, agreeing to Eq. (1) with θ ≈ 0.97; black
rhombi. Blue squares: the estimate of A∞ obtained by forcing
the system to the asymptote by acoustic perturbations. Green
triangles: the areas resulting from the destruction of memory
after 10 regular loops. Lower panel: experimental results for
Xn shown in log-log plot vs. n; the slope is approximately 0.96.
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Fig. 8: Upper panel: examples of low order hysteresis loops
in the P − Φ plane. The compression legs are blue and the
decompression legs red. Lower panel: examples of higher order
hysteresis loops in the P − Φ plane with the same color con-
vention. The high order loops are no longer able to compactify
the system further, and the compression leg begins at the same
volume fraction where the decompression leg ends.

exactly the same hysteresis loop in the P − Φ space. The216

amount of dissipation in the cyclic loops is governed by217

the scaling law Eq. (1) which has a universal form with218

material dependent coefficients. The two terms in this219

equation were identified and related to the dissipation due220

to changes in the neighbor list and the frictional slips re-221

spectively.222
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