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Abstract

Development of an SPH variant of implicit LES for studying wave energy
transport
The smoothed particle hydrodynamics (SPH) method is an efficient numerical technique for
simulating complex problems such as free flows. Since such flows are characterized by high
Reynolds number, turbulence modeling is a necessity. In the literature, some models from
Eulerian based numerical schemes have been adopted but comprehensive analyses of their
effectiveness have not been provided.

In this thesis, a version of SPH that implicitly models turbulence has been developed.
First, using a convolution filter, a filtering integral transform (FIT) is proposed and applied
to the underlying, disordered field {ρ, p, ρu} to construct a smooth field {〈ρh〉, 〈ph〉, 〈ρh〉ũh}.
Using the FIT, filtered equations consistent with explicit Large Eddy Simulation (LES) are
derived. Second, using a deconvolution filter, a de-filtering integral transform (DIT) is pro-
posed as an inverse transform to the FIT. By applying the DIT to the filtered equations a high
order version of SPH, to be called SPH-i is formulated. In SPH-i, unlike SPH, the disordered
field is evolved dynamically. Third, unlike standard SPH two inverse filters are required; a
convolution filter and a deconvolution filter. A rigorous method for constructing these filters
in 2D is presented. Fourth, to address the problem of numerical oscillations in the pressure
field, common in standard SPH, has been addressed by introducing a differential equation
for the pressure field that includes smoothing terms.

The proposed SPH-i model was applied to a number of free surface flow problems and
the results are promising.
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Abbreviations

ADM approximate deconvolution method
CFD computational fluid dynamics
CFL Cuorant-Friedrichs-Lewy condition

CNSE compressible Navier-Stokes equations
DIT de-filtering integral transform

DNS direct numerical simulation
FDE finite difference equation
GPU graphical processing unit
FIT filtering integral transform

INSE incompressible Navier-Stokes Equations
ISPH incompressible smoothed particle hydrodynamics

LANS−α Lagrangian averaged Navier-Stokes equations
LES large eddy simulation
MPS moving particle semi-implicit
PDE partial differential equation
PDF probability density function
PPE pressure Poisson equation
SGS sub-grid stress tensor
SPS sub-particle stress
SPH smoothed particle hydrodynamics
TDR turbulent dissipation rate
TKE turbulent kinetic energy

WCSPH weakly compressible smoothed particle hydrodynamics
WEC wave energy converter
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Glossary

FIT A set of filtering rules for regularizing the "disor-
dered" flow field by convolution to obtain a smooth
field.

DIT A set of de-filtering rules for de-regularizing the
smooth flow field by deconvolution to recover the
"disordered" field.

Turbulence dissipation rate is the rate at which turbulent kinetic energy is trans-
formed into thermal internal energy of a system.

Thermal diffusivity is a measure of the rate at which heat is transfered
from the hot to the cold side of an object.
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Nomenclature

General Rules
• Only the symbols frequently used in the thesis are listed

• The meaning of each symbol is given when introduced

• Sometimes the same symbol is used to mean different things. In such cases the physi-
cal meaning of the symbol is apparent.

• Vectors are represented using boldface

• Rank-2 tensors are represented by block letters with two lines below or above the
symbol

• Symbols between angle brackets (e.g. 〈ρh〉) indicate local approximation/average of
the field ρ by filtering with a convolution filter whose cut-off length is h

Symbols

c Speed of sound
g Acceleration due to gravity
k Thermal conductivity
α Thermal diffusivity
ν Kinematic viscosity
µ Dynamic viscosity

xiii



xiv Nomenclature

β Volumetric thermal expansivity
κs Adiabatic compressibility
KS Adiabatic incompressibility modulus
KT Isothermal incompressibility modulus
CV Isochoric heat capacity
CP Isobaric heat capacity
γ Adiabatic index
r Position vector
u Velocity field
U Internal energy
u Internal energy density
E Total energy of the system

p, P Thermodynamic pressure
T Absolute temperature
ρ Mass density or simply density
h Smoothing length

wh, w Convolution filter
ϕh, ϕ Deconvolution filter
N(i) Set of nearest neighbors to particle i

∆t Time step
∆r initial particle spacing
Re Reynolds number (= UL/ν)
Ma Mach number (U/c)
τ Stress tensor
σ Deviatoric or viscous tensor
Ω Rotation rate or vorticity tensor
S Strain rate tensor
P Thermo-mechanical power
ω Vorticity vector

〈f, g〉 Inner product
〈fh〉 Local average by convolution filter wh
|f〉 Ket (column) vector in Dirac notation
〈f | Bra (row) vector
dνr Lebesgue measure e.g in 2D, d2r = dxdy

ε̃h
D∼ m2s−3 locally averaged turbulent dissipation rate

k̃h
D∼ m2s−2 locally averaged turbulent kinetic energy
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Chapter 1

Introduction

Free-surface flows have industrial importance in hydraulic engineering. Some examples of
free-surface flows include wave breaking in shallow water, sloshing in tanks, dam-break
problems and wave impact on structures. These phenomena are highly complex such that
formulating analytical models is an enormous task. Nevertheless, in special cases where
there is no free-surface deformation explicit solutions do exist. The earliest such solution
was described by Franz Josef Gestner in 1802 [2]. The Airy or Stokes wave theory gives a
linearized description of the propagation of water waves [3]. Linear wave theory is, how-
ever, restricted to small amplitude waves with non breaking free-surfaces and can thus not
be used to analyze breaking waves. The nonlinear nature of breaking waves demands for
numerical solutions that may be obtained either through grid based methods or mesh-free
methods. The demand for the design of computer simulators (based on these methods) that
are capable of accurately capturing violent flows such as wave breaking is still very high
[4]. Lately this field of research has witnessed marked growth due to the introduction of
robust computational tools such as Graphical Processing Unit, GPU that significantly speed
up computational power. With these notable developments, coupled with the ever increasing
demand for realistic simulations of the evolution of ocean waves, turbulence, ocean currents,
tides, tsunamis etc., the fluid dynamics fraternity has been motivated to work on the design
of specialized techniques to simulate ocean wave dynamics for energy extraction purposes.
It is worth mentioning that although there has been a marked growth in Computational Fluid
Dynamics, CFD, simulation of free-surface flows with breaking surfaces remains a very chal-
lenging problem for fluid mechanics [5]. Therefore simulation of breaking waves will be one
of the core elements of my proposed thesis work.

In modeling free-surface flow problems with large deformation, SPH is a natural choice
because fluid particles can move freely ultimately overcoming the challenges encountered
when using a mesh. Free-surfaces and multi-phase can also be conveniently handled. To
model incompressible free-surface flows, a pseudo-incompressible constraint is imposed by
way of the Mach number such that a fluid is weakly compressible. This standard approach
is called weakly compressible SPH [6]. Compared to well established mesh based methods
including finite element method, finite volume method and finite difference method, SPH is a
relatively new CFD method. In particular a number of challenges still remain open. Some of
these difficulties include pressure oscillations, enforcing complex solid boundary conditions,
stability and accuracy.

The problem of pressure oscillations has been addressed in a number of ways including

1



2 Introduction

the use of well-tuned artificial viscosity [7]. Liu et.al. [8], [9] proposed a higher order
model called finite particle method that has been reported to give smooth pressure fields
due to the improved density estimate. Another approach involves the re-initialization of the
density field applied every 20-40 time steps. Since density and pressure are related through
an equation of state, minimizing the accumulation of errors in the density fields results in a
pressure field that is smooth. This approach uses either a Shepherd filter or more generally
the moving least square method [10],[11].

This thesis first aims at proposing a version of smoothed particle hydrodynamics (SPH)
that is consistent with explicit large eddy simulation (LES) to address the problem of tur-
bulence modeling. We further note that SPH is a zeroth order deconvolution method. A
new method to be called SPH-i as an nth order deconvolution method that is consistent with
implicit LES is proposed. The main attraction of SPH-i is that unlike SPH, no turbulence
modeling is required.

1.1 Background and Motivation

Sampling problem consider a discrete fluid shown in figure 1.1 as approximating a con-
tinuous fluid in the continuum limit. Assume that the density of all support particles • are
given as

support particle • {ρ(rj)| j = 1, 2, 3, ...., N.} (1.1)

Using this information, compute the density of the target particle • whose support is defined
as

target particle • Ωh(r) := {r, rj ∈ Rn| ||r− rj ≤ 2h||} ρ(r) = ? (1.2)

Since this is a very difficult problem, it will be split into three separate problems each with its
own chapter; chapters 3, 4 and 5 will address this problem in greater detail. The solution to
this problem forms the basis upon which a new version of smoothed particle hydrodynamics,
SPH will be formulated.
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x0

Ωh(r
′) ∩ Ω

Ω

Ωh(r
′)

Ωh(r)

Figure 1.1: Sampling problem: given the density ρ(r′) of all support particles •, find the
density of the target particle • whose density is unknown.

Pressure oscillations in SPH The second problem addressed in this work is the one at-
tributed to high frequency noise in the pressure field in SPH. A solution to this problem,
adopted from Riemann solvers, has been proposed as δ−SPH [7]. In this approach, "artifi-
cial" diffusion terms are added to the continuity equation to smooth out fluctuations in the
density field. Since standard SPH uses an equation of state p(ρ) = c2(ρ − ρ0), a smooth
density field implies a smooth pressure field. The introduction of diffusion terms in the
continuity equation, however, may introduce unphysical changes to the flow.

As an alternative, an equation for pressure, admissible for liquids and gases, is proposed
in this work. The advantage of this approach is that pressure smoothing terms of the form
∇2p,∇2ρ naturally appear in the equation for pressure as a consequence of mass and energy
conservation.

1.2 Thesis structure

The thesis is organized as follows. First, the problem of oscillations in the pressure field in
SPH is addressed. From thermodynamic principles, an equation for pressure that intrinsically
contains smoothing terms is derived. This equation will be used in preference to the simpler
equation of state for pressure that is commonly used in standard SPH.

In chapter 2 the second and central component of this work, the filtering and de-filtering
rules are introduced. A proper choice of the filtering and de-filtering rules is proposed. From
these rules, convolution and deconvolution operators are derived. Using these operators, a
compatible pair of convolution and deconvolution filters is constructed. By applying the
proposed filtering rules to the pressure equation, mass, and momentum conservation laws,
a version of SPH consistent with the filtered equations of large eddy simulation, LES is
derived in chapter 4. Application of the de-filtering rules to the filtered equation leads to a
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version of SPH to be called SPH-i (the i mean turbulent phenomena is implicitly captured,
no turbulence modeling is required) and is presented in chapter 5.

The third component of this thesis includes a discussion on a linear boundary force model
(chapter 6) and the thermo-mechanical power delivered to a fluid body (chapter 7). In chapter
8 the proposed SPH-imodel is applied to a number of benchmark free surface flow problems
for validation. These include; (i) hydrostatic equilibrium (ii) dam break (iii) dam break with
wet bed (iv) periodic waves on a plane slope

The main conclusions are drawn in the final chapter and propositions for future work are
made.



Chapter 2

Proposed Equation for Pressure

The first part of this research work is devoted to tackle the problem of spurious numerical
noise on the pressure field that drastically affects weakly compressible SPH (WCSPH) mod-
els. Several procedures for handling this problem have been proposed in the literature. In [7]
the authors suggested to re-initialize the density field every 20-40 time steps with a moving
least square (MLS) integral interpolation. While this procedure was reported to generally
give good results, long term stability of the pressure field is not guaranteed. The reason for
this is that the total volume of the fluid body is no longer conserved as the hydrostatic com-
ponent has been improperly filtered [12]. Since density and pressure are related through a
simple equation of state in WCSPH, density re-initialization ensures that the pressure field
remains relatively smooth. The third and particularly interesting approach is to introduce
artificial diffusion terms in the continuity equation as proposed in [13]. As this approach
introduces diffusion terms in an artificial way, another approach with physically sound basis
is proposed in this chapter.

2.1 Background

The main task in fluid dynamics is to find the velocity field describing the flow in a given
domain. To do this, one uses the fundamental equations of fluid flow, which include the
familiar laws of mechanics: mass conservation and momentum conservation. If the flow
leads to compression of the fluid, we must also consider thermodynamics by including en-
ergy conservation. This set of equations will be collectively referred to as the compressible
Navier-Stokes equations, CNSEs.

To derive the incompressible Navier-Stokes (INS) equations, we assume that fluid com-
pressibility is zero. In this case, pressure disturbances are transmitted instantaneously. The
thermodynamic state becomes fixed, thereby decoupling the mass and momentum equations
from the energy equation. While the INS represents a great simplification of the CNSE,
numerical solution of the INS still remains challenging. The instantaneous propagation of
pressure fluctuations results in an elliptic-type system that requires an implicit formulation
and nonlocal communication [14]. In INS the pressure is obtained by solving a system matrix
equation (describing the pressure Poisson equation, PPE) on an entire computational domain;
small perturbations in boundary or free surface areas can instantaneously propagate across
the entire domain and can lead to big oscillations and instabilities in the numerical solution.

5



6 Proposed Equation for Pressure

This means that the numerical solution of the INS is sensitive to numerical oscillations and
easier to induce numerical instabilities [6].

Since elliptic systems cannot be solved explicitly, the problem of solving the PPE can
be avoided by relaxing the incompressibility constraint. This is achieved by using empirical
evidence that fluids in general have low compressibility meaning that fluids are weakly com-
pressible. Weakly compressible smoothed particle hydrodynamics (WCSPH) accomplishes
this by introducing an equation of state for pressure based on a further assumption that the
flow is barotropic, i.e pressure is a function of density only [15, 16]. By supplying this equa-
tion of state for the CNSE, the mass and momentum equations are effectively decoupled
from the energy equation.

In the simulation of problems with highly irregular geometries and highly nonlinear
flows, SPH is slowly becoming a method of choice. However, the WCSPH has a num-
ber of reported drawbacks. In order to keep density fluctuations low, a large sound speed
has to be used leading to a strict constraint on the time step due to the Courant-Friedrichs-
Lewy (CFL) stability condition. Second, artificial compressibility can also cause problems
with sound wave reflection at domain boundaries. Owing to these problems Incompressible
smoothed particle hydrodynamics (ISPH) has been proposed [17]. Since ISPH employs a
zero compressibility constraint, the CFL condition depends on fluid speed rather than sound
speed. Furthermore, some authors claim that the pressure field in the ISPH has smaller oscil-
lations compared to WCSPH. However, these results remain inconclusive and controversial,
[18][Chapter 6].

The theory development in this section proceeds by first examining the continuous flow
assumption. Based on this assumption we then study the thermodynamics of fluid particles
on locally compact spaces. Thermodynamic principles are then used to derive an explicit
evolution equation for pressure to accommodate liquids and gases with very few assump-
tions.

2.2 Motivation

The method of smoothed particle hydrodynamics, SPH is well known to be affected by
high frequency numerical noise on the pressure field when applied to liquids. This may
be problematic in applications where smooth pressure fields are essential such as coupled
SPH/structural solvers. To mitigate this problem, Molten and Colagrossi [13] introduced a
version of SPH called δ−SPH. Their procedure is based on the introduction of a density
diffusion term δhc∇2ρ in the continuity equation; h is the filter width, c is the speed of
sound and the tunable parameter δ ∈ [0, 1]. This term must vanish in the continuum limit
where h → 0. Just like the artificial viscosity term used in standard SPH to smooth out
discontinuities, the diffusion term is a purely numerical effect and can thus be referred to as
"artificial diffusion ". It is, however, possible that the artificial diffusion term may introduce
unphysical changes of the flow [13], [12]. Recently Sun et.al. [19] have proposed further
improvements to enhance the δ−SPH model.

The goal of this section is to address the problem of high frequency noise in the pressure
field from an alternative but physical perspective.
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Figure 2.1: Continuum hypothesis

2.2.1 Continuum hypothesis

Figure 2.1 depicts the continuum hypothesis. By the postulates of the continuum hypothesis
fluids comprise of fluid particles. Each fluid particle consists of molecules which are in
thermal equilibrium. At any point in space and time, each fluid particle will consist of
different molecules but the total number of molecules remains constant at certain length
scales. If the volume of a fluid particle is δV , mass δm and density ρ, there exists a lower
limit on the volume of the particle such that

lim
δV→δV ∗

δm

δV
= ρ (2.1)

The acceptable lower limit for gases and liquids is δV ∗ = 1µm3. The volume of a fluid
particle has to meet this criteria. Below this value i.e the microscopic scale, due to molecular
fluctuations, fluid density and all other fluid variables are not smooth, they are violently non-
uniform. Here, hydrodynamic differential equations cannot be written down under the usual
rules of calculus. One essential mathematical ingredient is distribution theory which is useful
in the theoretical development of the conservations laws for molecular dynamics systems.
Note, however, that at the mesoscopic and macro scales, the fluid medium is accepted as a
continuum.

The continuum consists an infinite number of fluid particles. Lagrangian particle methods
approximate the continuum with a finite number of particles.

2.3 Lagrangian description of fluid flow

Our objective is to mathematically describe the motion of a fluid parcel during a given time
interval. This kind of description is essentially based on studying the trajectory of each parcel
in the fluid domain. This is called Lagrangian description of fluid flow. Fluid motion can
then be associated to the geometrical transformation from the configuration this fluid domain
presents at a reference time instant into the configuration it presents at a later time. This way
we can naturally obtain the time history of the evolution of each parcel in the fluid domain.
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2.3.1 Useful terms for flow description

Definition 2.3.1 (time duration of the computation). Let I be an open time duration over
which we would like to study the dynamics of the hydrodynamic system. Then the time
duration with N + 1 time steps is defined as the union

I =
N⋃
n=0

[tn, tn+1] (2.2)

where the step size is given as (∆t)n = tn+1 − tn.

Definition 2.3.2 (fluid particle). Let Ω ⊆ Rn be a fluid domain. We define a fluid parcel
W ⊂ Ω as the volume moving with the fluid within Ω.

Definition 2.3.3 (reference configuration & time instant). The reference configuration is a
fluid domain Ω0 fixed at the reference time t0 ∈ I ⊆ R+

Definition 2.3.4 (fluid motion & flow map). The fluid motion is the family {ϕt}t∈I of con-
tinuous maps ϕt : Ω0 → Rn i.e. r 7→ ϕ(r, t) whose map ϕt, for all t ∈ I, advances each
fluid particle from its position r0 ∈ Ω0 in the reference configuration to its position at time
t. The flow map can then be defined precisely as the function ϕ : Ω0 × I → Rn such that
ϕ(r0, t) = ϕt(r0). Notice that ϕ(r0, t0) = ϕt0(r0) ≡ r0. 1. If W is a fluid parcel in Ω, then
ϕt(W) = Wt is the volume W moving with the fluid, see figure (2.2)

Figure 2.2: Wt is the image of W as fluid particles in W flow for time t. As the sub-domain
W is carried by the fluid flow, it deforms to Wt at time t in the domain Ω.

After mathematically modeling the notion of " fluid motion" as a family of maps, we
need to study the properties these maps are supposed to possess (besides continuity).

a) Property one. The intuitive idea that two different bodies cannot simultaneously oc-
cupy the same portion of space can be expressed as a property for our definition of fluid
motion: " for each t ∈ I, ϕt|Ω0 is smooth and has a smooth inverse on Ωt := ϕt(Ω0)".

b) Property two. Another intuitive property guarantees the continuity of ϕ(r0, t) : I→
Rn, for each r0 ∈ Ω0. This means that "no particle can disappear and reappear at
another position" i.e. the trajectory of a particle is (at least) continuous.

1The subscript t should not be confused with a time derivative !
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This description of fluid motion using the flow map and the fluid particles’ trajectories
with respect to the reference configuration is the so called Lagrangian description and the
points in Ω0 are known as material coordinates.

Once we know the particle’s trajectories we would like to measure how fluid quantities
change along a particle’s trajectory i.e. we want to compute derivatives along particle trajec-
tories. Consider a smooth function f : Ω × I → R and the particle trajectory r : I → Rn.
The time derivative of f along the trajectory r(t) at time t is obtained via the chain rule

d

dt
f(r(t), t) =

∂

∂t
f(r(t), t) +

dr(t)

dt
· ∂
∂r
f(r(t), t)

d

dt
f(r(t), t) =

(
∂

∂t
+ u · ∇

)
f(r(t), t) (2.3)

Definition 2.3.5 (material or Lagrangian derivative). The material derivative operator is
defined as d

dt
:= ∂

∂t
+ u · ∇. Then the derivative of ρ along a particle’s trajectory r(t) is

given by d
dt
ρ(r(t))

2.3.2 Concept of continuous flow
For a fluid flow to be continuous, we require that the velocity u(r(t), t) ≡ u(r) be finite
and a continuous function of r(t) i.e. ∇ · u(r(t)) and ∂tu(r(t)) are finite but not necessarily
continuous.

Since∇·u(r(t)) and ∂tu(r(t)) are finite, there is no infinite acceleration, which is phys-
ically consistent.

2.3.3 Consequences of continuous flow
[1] A material volume remains material. No segment of fluid can be joined or broken

apart.

[2] Material surface remains material. The interface between two materials always exists.

[3] Material line remains material. The interface of two material surfaces always exists.

[4] Material neighbors remain neighbors. A mathematical proof of this is given below.
We must prove that given two particles, the distance between them at time t is small,
and the distance between them at time t+ δt is still small.

Proof. Consider two particles with initial position r(t) and r(t) + δr(t), initial time t
and the fluid velocity u(r(t)).

δr(t+ δt) = [r(t) + δr(t)] + u(r(t) + δr(t))δt− [r(t) + u(r(t)δt)]

= δr(t) + [u(r(t) + δr(t))− u(r(t)]δt

= δr(t) +∇u(r(t)) · δr(t)δt
=⇒ δr(t+ δt) =

[
1 +∇u(r(t))δt

]
· δr(t)

Therefore δr(t + δt) ∝ δr(t) as ∇u < ∞ due to the continuous flow assumption.
Thus, if δr(t) → 0 then δr(t + δt) → 0. This means that two particles can never
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u(r)δt

u(r + δr)δt

δr(t)
δr(t+ δt)

r(t) + δr(t)

r(t)

r(t) + u(r(t))δt

[r(t) + δr(t)] + u(r(t) + δr(t))δt

Figure 2.3: Material neighbors remain neighbors provided that the flow is continuous.

be an infinite distance apart . Thus the flow is continuous and two particles that are
neighbors will remain neighbors.

Definition 2.3.6 (fluid domain). Let Ω ⊆ Rn be an open set bounded by a smooth surface
∂Ω. If Ω is supposed to be "filled with a fluid" such that the mass-density

ρ(r) > 0, ∀r ∈ Ω (2.4)

then we call Ω a fluid domain.

Definition 2.3.7 (real-valued function). A scalar-valued function of multi-variables is de-
fined as f(r) : Ω ⊂ Rn → R. The domain of the scalar valued function f is Ω. The range
of f is contained in R, i.e. real space. Furthermore, as a set, the graph of the scalar valued
function is given as

graph f = {(r, f(r)) ∈ Rn+1|r ∈ Ω} (2.5)

Definition 2.3.8 (smoothness and compactness). A real-valued function is said to be smooth
if it is infinitely differentiable. Let w be a smooth and compact function over the test space.
We then write w ∈ C∞c (Ω(r)).

Definition 2.3.9 (Test or target particle). This is a material element whose physical attributes
are to be measured or probed.

Definition 2.3.10 (Test space). Let Ω ⊂ Rn be a given body. For a test element located at r,
we denote its test space as Ωh(r) bounded by a test surface ∂Ω(r). The test space is thus the
domain of influence of the test element.

Ωh(r) =
{
r, r′ ∈ Rn

∣∣ ||r− r′|| ≤ κh, wh(r− r′) ≥ 0, κ ∈ R+
}

(2.6)

2.4 Pressure Equation
The underlying principle is that incompressible flows can be simulated by using methods
that add a finite but small amount of compressibility. The motivation behind this is that any
fluid has a finite incompressibility/bulk modulus. Therefore, these methods are often called
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pseudo-incompressible or artificially compressible methods. With highly parallel computa-
tion, explicit algorithms can exploit these resources.

In this work a new form of pseudo-incompressibility is derived from thermodynamical
principles. Artificial compressibility, as noted by Chorin [15] rely on an artificial equation of
state. It can be shown that this artificial equation of state is equivalent to imposing an addi-
tional constraint to the original compressible Navier-Stokes, CNSE system. This additional
constraint is necessary to eliminate the energy equation from the CNSE reducing the number
of equations and unknowns [20].

To study the fluid dynamics we solve the Navier-Stokes equations

(1) mass conservation

dρ

dt
= −ρ∇ · u (2.7)

(2) momentum conservation

ρ
du

dt
= −∇p+∇ · σ + ρb = 0 (2.8)

(3) energy conservation

1

V

dU

dt
= −P∇ · u +∇ · (k∇T ) + Φ (2.9)

where u is the fluid velocity, ρ is fluid mass-density, V = m/ρ is the volume of a material
element, P is the pressure, σ is viscous stress tensor, Φ = σ : ∇u is the viscous dissipation,
k is the thermal conductivity and µ = νρ is the dynamic viscosity.

σ = µ
(
∇u +∇uT)− 2

3
µ(∇ · u)1 (2.10)

These PDEs are valid over a continuum where the fluid variables are assumed to be
smooth and continuous. The motion of a compressible fluid is directly affected by its ther-
modynamic state which is itself a consequence of the motion. Any change in the state of the
fluid is independent of the actual physical process by which the change is achieved. Consider
the motion of a fluid particle moving along its trajectory as shown in figure 2.4. We define a
state space

∑
as an open, simply connected subset

∑
⊂ (0,∞)× (0,∞). The elements of∑

are called states which are pressure P , internal energy U and volume V . We define a path
Γ for our model to be an oriented, continuous, piecewise C1 curve in the state space. This is
then parameterized by writing

Γ =

{(
T (r(t), t), V (r(t), t)

) ∣∣t ∈ I, r ∈ Ωh ⊂ Ω ⊂ Rn

}
(2.11)

The first law of thermodynamics for this fluid element is given by

δQ = dU + δW (2.12)
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α
β

T

V

(T (r(t), t), V (r(t), t))

Γ

(a) State space
∑

A B

x

y

(x(t), y(t), z(t)) = ~r(t)

(b) Test space Ωh(r).

Figure 2.4: Physical space and state space associated with a fluid particle evolving within
its test space. The start and end times of the fluid particle along its trajectory are t = a and
t = b respectively.

where δQ is the heating 1-form from which we obtain the net heat gained by the fluid element
along Γ as Q(Γ) =

∫
Γ
δQ. Similarly, for the working 1-form δW , the work done by the fluid

element along Γ is defined as W(Γ) =
∫

Γ
δW =

∫
V
PdV . The first law (2.12) is only

useful if we can determine a functional relationship between the fluid element’s internal
energy, volume and pressure P = P (U, V ). Assuming an equation of state or alternatively
an evolution equation for pressure can be found, the first law becomes

δQ = dU + P (U, V )dV (2.13)

According to Pfaff’s theorem (2.13) has an integrating factor 1/T (U, V ) (postulated in the
zeroth law of thermodynamics) that transforms it into an an exact differential form

δQ

T (U, V )
=

1

T (U, V )
dU +

P (U, V )

T (U, V )
dV = dS(U, V ) (2.14)

which implies existence of two new state functions which are the temperature T (U, V ) and
an associated integral called the entropy S(U, V ). The final result is Gibb’s equation

dU = TdS − PdV (2.15)

Since our idea is to decouple the energy equation (2.9) from the continuity (2.7) and momen-
tum (2.8) equations, we need to determine dP (U, V ). Starting with the differential form for
U

dU =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV (2.16)

From (2.15) and (2.16) we have

T =

(
∂U

∂S

)
V

, P = −
(
∂U

∂V

)
S

(2.17)
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However, dU is an exact differential and second derivatives of partials are the same no matter
the order of differentiation. We then obtain an important relation for the system parameters.(

∂T

∂V

)
S

= −
(
∂P

∂S

)
V

(2.18)

which is one of Maxwell’s relations. Since we have U = U(S, V ), we then infer that T =
(S, V ) and P = P (S, V ). Using these important relationships we proceed to compute the
differential forms for the pressure.

dP =

(
∂P

∂S

)
V

dS +

(
∂P

∂V

)
S

dV (2.19)

In order to obtain the material derivative of pressure, we first use Gibb’s equation (2.15) to
eliminate dS from (2.19). This direct substitution yields

dP =
1

T

(
∂P

∂S

)
V

dU +

{(
∂P

∂V

)
S

+
P

T

(
∂P

∂S

)
V

}
dV (2.20)

Here we now introduce thermodynamic capacities given by the following relations.

KS = −V
(
∂P

∂V

)
S

, KT = −V
(
∂P

∂V

)
T

, β =
1

V

(
∂V

∂T

)
P

(2.21)

whereKS is the adiabatic incompressibility modulus, KT is the isothermal incompressibility
modulus and β is the volumetric thermal expansivity. Since KS,T < 0 contradicts mechan-
ical stability, all materials have KS,T > 0. There is no general principle that could limit β.
However, fluids and most materials expand upon heating so that β > 0. To determine the
coefficient of dU in (2.20), we first determine the isochoric change in pressure with temper-
ature. Using the Jacobian transform

∂(S, T )

∂(P, T )
=
∂(S, T )

∂(V, T )
· ∂(V, T )

∂(P, T )

=⇒
(
∂S

∂P

)
T

=

(
∂S

∂V

)
T

(
∂V

∂P

)
T

=⇒
(
∂V

∂T

)
P

= −
(
∂P

∂T

)
V

(
∂V

∂P

)
T

∴

(
∂P

∂T

)
V

= βKT (2.22)

A similar application of the Jacobian yields

∂(P, V )

∂(S, V )
=
∂(P, V )

∂(T, V )
· ∂(T, V )

∂(S, V )

∴

(
∂P

∂S

)
V

=

(
∂P

∂T

)
V

/(
∂S

∂T

)
V

=
βTKT

CV
(2.23)
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whereCV is the heat capacity at constant volume. If we now use the results (2.22) and (2.23),
the pressure differential form (2.20) can then be simplified.

dP =
βKT

CV
dU +

(
βKT

CV
P − KS

V

)
dV (2.24)

Furthermore, using the continuity (2.7) and the energy (2.9) equations, this result be-
comes

dP

dt
= −KS∇ · u +

βKTV

CV
Φ +

βKTV

CV
∇ · (k∇T ) (2.25)

1

KS

dP

dt
= −∇ · u +

βV

CP
Φ +

βV

CP
∇ · (k∇T ) (2.26)

using the thermodynamic relation γ = CP/CV = KS/KT . The next step is to eliminate
the temperature in the above equation. To achieve this, we introduce pressure as a ther-
modynamic state function of temperature and volume of a fluid element. The associated
differential form becomes

dP =

(
∂P

∂T

)
V

dT +

(
∂P

∂V

)
T

dV

∴ dP = βKTdT −
KT

V
dV (2.27)

Now consider a test element located at r and has a domain of influence Ωh(r). Let there be a
support material element located at r′ ∈ Ωh(r). From the continuous flow assumption, these
two particles will remain neighbors throughout the evolution of the system. Therefore, we
can study the variation of the support element’s pressure P (r′, t) in the neighborhood of the
test element at a specified time t. Using Taylor series expansion the pressure of the support
fluid element can be expanded as

P (r′, t) = P (r, t) + (r′ − r) · ∂
∂r
P (r, t) + O(||r′ − r||2)

dP (r, t) = δr · ∇P (r, t) + O(||δr||2), ||δr|| < h (2.28)

where δr := r′ − r is the relative position and dP (r, t) := P (r′, t) − P (r, t) is the relative
pressure between the two neighboring fluid elements at time t. Similar expressions for the
temperature and volume of the test element can be obtained. Combining (2.27) and (2.28)
yields

δr(t) ·
(
−βKT∇T +

KT

V
∇V +∇P

)
= 0 (2.29)

Since no two fluid particles occupy the same position at any time t, we have that the element
δr(t) can never be zero at any specified time t. For (2.29) to vanish, we have that

∇T = − 1

βρ
∇ρ+

γ

βKS

∇P (2.30)

Physically, within the fluid bulk temperature gradients∇T and density gradients∇ρ are very
small for most fluid flows of interest under standard conditions of temperature and pressure.
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However, according to (2.30), pressure gradients are still large because the incompressibility
modulus KS is very large for most fluids and solids. Simplifying (2.26) and (2.30) gives

1

KS

dP

dt
= −∇ · u +

β

ρcp
∇ ·
(
γk

βKS

∇P
)
− β

ρcp
∇ ·
(
k

βρ
∇ρ
)

+
β

ρcp
Φ (2.31)

where the specific heat capacity is defined as the heat capacity per unit mass i.e. cp = CP/m
and the adiabatic index γ = CP/CV = KS/KT . Note that since γ > 1 for all substances,
KS > KT > 0 and CP > CV > 0 are valid for all materials.

Similar pressure equations for ideal gases, based on a different set of assumptions was
developed by Zang et.al. [21] and recently by Claussen [14]. A significant assumption in his
work is that density (volume) fluctuations are identically zero dV = 0. Such a constraint is
avoided in this formulation.

When combined with the continuity (2.7) and momentum (2.8) equations, (2.31) forms a
complete system for the solution of weakly compressible flows. With this approach, physi-
cally, the propagation of pressure waves within the fluid is damped via an entropy generating
mechanism.

2.4.1 Coefficients of Differential Susceptibility

Equation (2.31) is the general form of the proposed pressure equation. However, we can in-
troduce several simplifying assumptions on the experimentally measurable thermodynamic
variables β, γ, k, and cp to obtain a simplified version of (2.31). These quantities, in general,
are not constants but functions of the thermodynamic state. By nature, they are coefficients
of differential susceptibility: they tell us how, when we hold-all-variables-but-one fixed and
differentially "perturb the system," the solitary unconstrained variable responds. These co-
efficients all arise from perturbation processes that are by nature calorimetric. In this work,
however, the assumption is that they are temperature independent and thus taken to be con-
stant. Under this assumption, (2.31) results in a simplified version which is shown as

1

KS(P )

dP

dt
= −∇ · u + γα∇ ·

(
1

KS(P )
∇P

)
− α∇ ·

(
1

ρ
∇ρ
)

+
αβ

k
Φ (2.32)

assuming that the incompressibility modulus KS = KS(P ) varies with pressure. Here α =
k/(ρcp) is the thermal diffusivity.

2.4.2 Isentropic Flow

In this section we have derived an evolution equation for pressure for a generic fluid flow. But
there are idealized situations in which this equation can be further simplified. The condition
of zero viscosity or thermal diffusivity results in the conservation of entropy dS = 0 and
we say the flow is isentropic. This is an idealized thermodynamic process that is adiabatic
and in which work transfers are frictionless. The simplifying feature of isentropic flow is
that exchanges between the internal energy and other forms of energy are reversible, and
the internal energy and temperature play passive roles; merely changing in response to the
compression of a material element.
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The incompressibility modulus is, in general, dependent on both temperature and pres-
sure, i.e. KS = KS(P, T ), KT = KT (P, T ). In this work we assume that temperature
dependence is negligible, and that the incompressibility modulus varies linearly with pres-
sure.

KS = KS|p=0 +
dKS

dP

∣∣∣∣
P=0

· P = K0,S + γP (2.33)

where KS,0 is the adiabatic incompressibility modulus under standard conditions. The pa-
rameter γ must be determined empirically. For isentropic flows, since the thermal diffusivity
is zero, the last three terms of (2.32) vanish. In that case, the pressure equation reduces to a
simple differential form where pressure is barotropic

dP (ρ) = (KS,0 + γP )
dρ

ρ
, P |ρ=ρ0 = 0, KS,0 = ρ

∂P

∂ρ

∣∣∣∣
S,ρ=ρ0

(2.34)

which is an exact differential. A simple integration of the above gives the following equation
of state originally derived by Monaghan [16].

P (ρ) =
1

γ
KS,0

[(
ρ

ρ0

)γ
− 1

]
(2.35)

This has become the default equation of state in SPH and has been successfully applied to
many continuum fluid and solid mechanics problems the first of which were performed by
Monaghan [16, 22]. With a further observation that for weakly compressible flows, density
fluctuations are small (dictated by the Mach number). If we set the density to ρ := ρ0 +
δρ, using the Taylor series expansion of (2.35) yields another alternative equation of state
proposed by Muller et.al [23].

P (ρ) = KS,0

(
ρ

ρ0

− 1

)
(2.36)

The adiabatic incompressibility modulus is related to the adiabatic sound speed cs within the
fluid by KS,0 = ρ0c

2
s,0.

For the special case of ideal gas we have that the adiabatic incompressibility modulus is
KS = γP meaning that KS,0 ≡ 0. For this idealized case, by solving (2.34) one obtains the
famous equation of state P (ρ) = Aργ . Then the final system becomes

dρ

dt
= −ρ∇ · u (2.37)

ρ
du

dt
= −∇P +∇ · σ + ρb (2.38)

κs
dP

dt
= −∇ · u + γα∇ · (κs∇P )− α∇ · (v∇ρ) +

αβ

k
Φ (2.39)

where the compressibility is the inverse of the incompressibility modulus and is given by
κs := 1/KS = 1/(KS,0 + γP ) varying linearly with pressure. For an ideal gas KS,0 = 0
whereas for liquids it is defined through the standard adiabatic speed of sound KS,0 = ρ0c

2
s,0.

The sound speed in the pressure equation affects the time step due to the Courant-Friedrchs-
Lewy, CFL constraint. The speed of sound for most fluid flows of interest is generally very
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high. For instance, the speed of sound in water is 1500ms−1. This leads to a prohibitively
large incompressibility modulus KS,0 = ρ0c

2
s,0 = 2.25 × 109Pa requiring very small time

integration to resolve information transfer by acoustic waves. Instead, we enforce artificial
incompressibility[22][16] via the Mach number

Ma2 :=
ρU2

Ks

=
U2

c2
s

≈
∣∣∣∣δρρ
∣∣∣∣ (2.40)

Monaghan[16] proposes lowering the incompressibility modulus to enforce artificial incom-
pressibility. With a Mach Number of Ma = 0.1, density fluctuations are on the order of
1%. This means that the speed of is 10 times the maximum velocity of the problem under
investigation. For dam break problems we have cs = 10

√
2gh0 and for periodic waves on a

slope cs = 10
√
gh0 where h0 is the local depth. For all problems studied in this thesis, this

approach is adopted. In the discussion that follows the following integral transforms will be
used. Their detailed derivation will be dealt with in later sections.

〈Ph(r)〉 :=

∫
Ωh(r)

P (r′)wh(r− r′)dΩ(r′) (2.41)

Lh(κ
s, P ) := ∇ · (κs∇P )

=

∫
Ωh(r)

[
κs(r)

(
〈Ph(r)〉 − 〈Ph(r′)〉

)
+ 〈κsh(r′)〉

(
P (r)− P (r′)

)]
× (r− r′) · ∇ϕh

||r− r′||2
dΩ(r′) (2.42)

2.5 Causality
We next discuss the numerical implications of our explicit model. Numerical methods, in
general, have their own condition for causality called the CFL stability criterion. The propo-
sition is that numerical causality coincides with physical causality as the grid spacing ap-
proaches zero. We now discuss the implications of this proposition on the numerical analysis
of the pressure equation (2.32).

The stability criterion on the diffusion term in the pressure equation can be calculated
independently of the equations of motion since its stability is dependent on the thermal
timescale rather than the dynamic timescale. Thus, the pressure equation now reads

dP

dt
= γα∇2P (2.43)

for the simple case of constant adiabatic compressibility. For this analysis we have ignored
the thermal dissipation term and further assumed that density gradients are negligible.

We will now consider a numerical fluctuation around a homogeneous state corresponding
to the fluid equilibrium, i.e. ρ(r) = ρ̄, P (r) = P̄ . If the system is now perturbed from
equilibrium, we have

r = r̄ + δr

ρ(r) = ρ̄+ δρ(r)

P (r) = P̄ + δP (r) (2.44)
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Then the first order perturbation equation using (2.44) is

d

dt
δP (r) = 2γα

∫
Ωh(r)

(
δP (r)− δ〈Ph(r′)〉

)
(r− r′) · ∇ϕh
||r− r′||2

dΩ(r′) (2.45)

If we assume that the perturbation can be written in the form

δP = Q(t)eik·r (2.46)

then equation (2.45) takes the form

d

dt
Q(t) = 2γαI(h, k)Q(t) (2.47)

where we have used the definition I := I(h, k) which depends on the choice of convolu-
tion/deconvolution kernel used.

I(h, k) =

∫
Ωh(r)

(
1− e−ik·(r−r′)

)
(r− r′) · ∇ϕh
||r− r′||2

dΩ(r′) (2.48)

When the leapfrog method is applied to the absolute stability model (2.47) we have

Qn+1 = Qn−1 + 2∆tλQn , λ := 2γαI(h, k) > 0 (2.49)

The corresponding characteristic polynomial is given by Mw(r) = r2 − 2wr − 1 with w :=
λ∆t. Since w is real and positive, the leapfrog method has two distinct roots r± = w ±√

1 + w2. Using the binomial expansion we have r+ = 1+w+w2/2−w3/8+ · · · , |w| < 1;
i.e. for small |w|, one step of the mode r+ of the leapfrog method agrees with the terms
of order ≤ w2 in the exact solution and the remainder is bounded by a multiple of w3. We
formally have the time constraint as

∆t ≤ 1

2

1

γαI(h, k)
(2.50)

For a Gaussian filter we have I = 2/h2. And the stability condition becomes,

∆t ≤ 1

4

h2

γα
(2.51)

We then conjecture that for some parameter 0 < Cα ≤ 1, the generalized stability condition
is

∆t ≤ Cα
h2

γα
(2.52)

A numerical method is said to be stable if the errors in the method do not increase as
the solution advances in time. Furthermore, a numerical method is consistent if truncation
errors go to zero as h, ∆t → 0. Similarly, convergence is important and requires that the
solution of the finite difference equation (FDE) converges to the exact solution in the limit
h, ∆t → 0. According to the Lax equivalence theorem, if a finite difference method is
consistent (FDE approaches the underlying PDE as grid spacing shrinks to zero) and stable
(errors do not grow) then convergence is guaranteed. In short, consistence and stability imply
convergence.
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2.6 Conclusion
An alternative approach for enforcing pseudo-incompressibility that accommodates liquids
and gases in general has been proposed. A connection to standard equations of state com-
monly used in SPH has been made. The mathematical structure of the derived equation for
pressure reveals that there are diffusion terms that should consequently smooth out any spu-
rious numerical noise in the pressure field and should thus accomplish the same objective as
that of the δ−SPH concept. Whether the proposed model of the pressure equation preserves
the hydrostatic condition will be investigated in the later sections.

Furthermore, a causality analysis was carried out and the associated constraint on the
time step was derived.





Chapter 3

Elements of Filtering and De-filtering

The main goal of this chapter is define filtering and de-filtering rules for compressible flows.
With proper choice of these rules, convolution (filtering) and deconvolution (de-filtering)
operators on R2 are derived. Then the corresponding convolution and deconvolution filter
pairs are constructed.

3.1 Problem statement
Standard SPH as well as LES are based on the convolution integral. Field variables are
localized on compact spaces to construct macroscopic variables that are smooth over these
local continua. This procedure is called local averaging: a deterministic process since no
statical mechanics ideas are taken into account.

We start with continuum form of the CNSEs for a fluid.
d

dt
ρ = −ρ∇ · u (3.1)

κs(p)
d

dt
p = −∇ · u + γα∇ · (κs(p)∇p)− α∇ ·

(
ρ−1∇ρ

)
(3.2)

ρ
d

dt
u = −∇p+∇ · σ + ρb (3.3)

dr

dt
= u (3.4)

The convolution or filtering problem can be stated formally as: Given the continuum
field{ρ(r), p(r), u(r)} defined on a domain Ω, compute local approximations {〈ρh(r)〉,
〈ph(r)〉, ũh(r)} which faithfully represent the behavior of the continuum field on scales
above some, user defined, filter length (here denoted h) and which truncates scales smaller
than O(h).

Similarly, the deconvolution or de-filtering problem can be stated as: Given the local
approximations {〈ρh(r)〉, 〈ph(r)〉, ũh(r)} find an accurate reconstruction of the continuum
field {ρ(r), p(r), u(r)}. When the filter is smoothing,

l̃h : L2(Ωh)→ L2(Ωh) by ρ(r)→ 〈ρh(r)〉 (3.5)

l̃h is compact and the deconvolution is ill-posed. While stable exact deconvolution is not
possible, we shall instead utilize an approximate deconvolution approach.

21
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The main goal of this paper is to develop the filtering integral transform (FIT) and the
de-filtering integral transform (DIT) that form a transform pair with compatible operators
that perform filtering and de-filtering processes.

We further emphasize that SPH is a zeroth order approximate deconvolution model mean-
ing that fluctuations are negligibly small so that the following approximations are assumed
to hold; 〈ρh〉 ≈ ρ, 〈ph〉 ≈ p and uh ≈ ũh. The reason for this assumption is to achieve
closure. To this end, we propose an nth order approximate deconvolution model called de-
filtered SPH or SPH−i for short. Unlike SPH, SPH−i has no closure problem hence it is a
complete model.

The final task in this paper is to (i) apply the FIT to CNSEs (3.1), (3.2), and (3.3) to
derive continuous SPH that is an integral form of LES i.e. the filtered equations. (ii) apply
approximate deconvolution to the filtered equations to obtain a particle method SPH−i and
(iii) construct compatible convolution and deconvolution filters.

In the following sections, we first introduce the essential elements of vector spaces with
non-denumerable basis states using Dirac notation. Where necessary, rigorous mathematical
derivations are given.

3.2 Local Averaging (physical motivation)
In order to derive the filtered conservation laws for a discrete fluid, we need locally averaged
variables. Using ideas of distribution theory, physical attributes of fluid particles constitut-
ing the discrete fluid such as mass density, momentum density, and velocity are replaced
by local mean variables obtained by averaging the point variables over small local regions
(test spaces) containing many fluid particles but are still small compared with the scale of
macroscopic variation from point to point within the system, Jackson [24].

In science and engineering, in order to measure the amount of a physical quantity such
as temperature at a single point, one needs a probe which can extract data only from that
single point of interest in space. Since this is not possible practically, there is no way we can
correlate the experimental data with theoretical predictions. Therefore, a true macroscopic
quantity is by necessity an average over some spatial region surrounding the continuum point
where it is nominally defined, Admal et.al.[25].

Consider a function T (r) as representing a value of the physical variable at a particular
point r in space. Is this a realistic thing to do? What can we measure?

Suppose T (r) represents temperature at a point r in a room Ω. The temperature can be
measured with a thermometer by placing the bulb at the point r. Unlike the point, the bulb
has nonzero size, so what the thermometer actually measures is the mean temperature over
a small region of space Ωh(r) := {r, r′ ∈ Rn|wh(r− r′) ≥ 0, ||r− r′|| ≤ κh , κ ∈ R+}. So
really, the thermometer measures

〈Th(r)〉 =

∫
Ωh(r)

T (r′)wh(r− r′)dnr′ (3.6)

where wh := wh(r − r′) depends on the nature of the thermometer and where you place
it. wh will tend to be "concentrated" near the location of the thermometer bulb and nearly
zero once you are sufficiently far away from the bulb. To say this is an average requires that
∀r, r′ ∈ Ωh(r) ⊂ Rn;



3.3 Preliminaries 23

(1) semi-positive definiteness

wh ≥ 0 (3.7)

(2) normalization ∫
Ωh(r)

wh(r− r′)dnr′ = 1 (3.8)

So it would be more meaningful to discuss things like the local average 〈Th(r)〉 rather than
things like the value of T at a point, r 7→ T (r).

Remark 3.2.1 (key points). The key points thus far

• How do we understand T?
only by 〈Th〉 := 〈T,wh〉.

• If so, then what does the derivative∇T mean?
must understand 〈∇T,wh〉

3.3 Preliminaries
This section introduces essential elements of the Dirac notation that will be useful in devel-
oping the filtering and de-filtering transform pair.

3.3.1 Useful terms for flow description
Definition 3.3.1 (fluid parcel). Let Ω ⊆ Rn be a fluid domain. We define a fluid parcel
W ⊂ Ω as the volume moving with the fluid within Ω.

Definition 3.3.2 (material or Lagrangian derivative ). The material derivative operator is
defined as d

dt
:= ∂

∂t
+ u · ∇. Then the derivative of ρ along a particle’s trajectory r(t) is

given by d
dt
ρ(r(t))

Definition 3.3.3 (fluid domain). Let Ω ⊆ Rn be an open set bounded by a smooth surface
∂Ω. If Ω is supposed to be "filled with a fluid" such that the mass-density

ρ(r) > 0, ∀r ∈ Ω (3.9)

then we call Ω a fluid domain.

Definition 3.3.4 (Test Element). This is a material element whose physical attributes are to
be measured or probed.

Definition 3.3.5 (Test Space). Let Ω ⊂ Rn be a given body. For a test element located at r,
we denote its test space as Ωh(r) bounded by a test surface ∂Ω(r). The test space is thus the
domain of influence of the test element.

Ωh(r) ≡ Supp(wh) =
{
r, r′ ∈ Rn|wh(r− r′) ≥ 0, ||r− r′|| ≤ κh , κ ∈ R+

}
(3.10)
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3.3.2 Invertibility of operators
A linear operator Ĉh has a left inverse L̂h if L̂hĈh = 1̂ and a right inverse R̂h if ĈhR̂h = 1̂.
Furthermore, if both exist, we have that

L̂h = L̂h1̂ =
(
L̂hĈh

)
R̂h = 1̂R̂h = R̂h (3.11)

which is very useful for infinite dimensional vector spaces. Therefore, if an operator has
both a left and a right inverse, then the left inverse is the same as the right inverse and we say
that the operator is invertible.

A left inverse exists if the action of the operator on some input vector does not result in
irreparable damage so that whatever remains still contains enough information that some lin-
ear operator L̂h can restore our original input vector and give back the identity operator. This
condition of irreparable damage i.e. not losing information is asking whether the operator
Ĉh is injective. There exists a left inverse if and only if Ĉh is injective.

For the right inverse to exist, the situation is dual to that of the left inverse; a right inverse
exists if Ĉh is surjective.

In particular, if Ĉh is an operator in a finite dimensional space V i.e. dimV < ∞ then
the following is true.

Ĉhis injective⇐⇒ Ĉhis surjective⇐⇒ Ĉhis invertible (3.12)

Ĉh is surjective if and only if Ĉh is injective because failure to be injective and failure to be
surjective are both equivalent to loss of information. This can be seen from the dimension
formula for a finite vector space

dimV = dim
(

nullĈh
)

+ dim
(

rangeĈh
)

(3.13)

It is clear that if dim
(

nullĈh
)

= 0, then dim
(

rangeĈh
)

is the whole vector space. Fur-

thermore, if dim
(

nullĈh
)
6= 0, then dim

(
rangeĈh

)
is not the whole vector space.

The equivalence (3.13) breaks down if the vector space is infinite dimensional. For infi-
nite dimensional vector spaces injectivity and surjectivity are not equivalent since each can
fail independently.

Ĉhis invertible⇐⇒ Ĉhis injective and surjective (3.14)

In the discussions that follow, we are going to assume that the convolution operator Ĉh is
invertible and arbitrary.

3.3.3 Resolution of Identity
Position states for describing the continuum mechanics of material elements or fluid particles
moving in an n-dimensional space r, r′ ∈ Ωh(r) ⊂ Rn are defined as follows

position basis state : |r〉 ≡ |x, y, z〉, ∀x, y, z ∈ R (3.15)
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where the label r = r(t) in the ket is the position of a material element or its trajectory.
Since particle trajectories are continuous and we position states |r〉 for all r to form a basis,
we are dealing with a non-denumerable or infinite basis. Therefore the ket is a vector in
infinite dimensional vector space of states of the theory. The | 〉 enclosing the label of the
position eigenstates plays a crucial role: it helps us to see that that object lives in an infinite
dimensional vector space. Basis states with different values of r are different vectors in the
state space. The inner product must be defined, so we take

〈r|r′〉 = δ(r− r′) ≡ δ(x− x′)δ(y − y′)δ(z − z′), ∀x, y, z ∈ R (3.16)

It then follows that position states with different positions are orthogonal to each other. The
norm of position states is infinite: 〈r|r〉 = δ(0) = ∞, so these are not allowed states of
particles. This also implies that no two fluid particles can occupy the same position at the
same time.

We visualize the state |r〉 as the state of a fluid particle perfectly localized at position r,
but this is just an idealization.

Normalizable states can be easily constructed by using superposition of position states
using the completeness relation or resolution of identity∫

Ωh(r)

|r′〉〈r′|dΩ(r′) = 1̂ (3.17)

which is consistent with the inner product (3.16). At this point we introduce a new state
vector describing the mass density of a fluid particle

mass density state: |ρ〉, ρ > 0 on Ω = Rn (3.18)

To project operators into function space we simply take an overlap of the coordinate basis
state 〈r| with the state |ρ〉 yielding the value of the real-valued function ρ at position r;
namely

ρ(r) = 〈r|ρ〉 ∈ R (3.19)

3.4 Filtering and De-filtering Integral Transform Pair
In this section we present Filtering Integral Transform (FIT) and De-filtering Integral Trans-
form (DIT) that will later be used to filter and de-filter the CNSEs. We first introduce convo-
lution and deconvolution operators on infinite dimensional spaces as abstract operators. In
section 3.5 we will rigorously construct these operators.

3.4.1 Concept of density-weighted averaging
In the study of turbulence, stochastic methods are used in the description of fluctuations of
velocity and scalar fields in terms of their statistical distributions. While our formulations of
particle method models do not take into account any statical mechanical efforts and are hence
deterministic, this short section is used for the purpose of giving the physical foundations of
density-weighted averaging.
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Given the velocity field u = (u, v, w)T, the distribution functionFu(U) of the x-component
u is defined by the probability pr of finding a value u < U such that

Fu(U) := pr(u < U) (3.20)

where U is called the sample space variable associated with the random stochastic variable
u whose sample space consists of all possible realizations of u. The probability of finding a
value of u in the interval U− < u < U+ is defined as

pr(U− < u < U+) = Fu(U+)− Fu(U−) (3.21)

Then the probability density function (pdf) of u is now defined as

Pu(U) = P (U) =
d

dU
Fu(U) (3.22)

It thus follows that Pu(U)dU is the probability of finding u in the interval U < u < U + dU .
Summing up over the entire space leads to∫ ∞

−∞
Pu(U)dU = 1 (3.23)

meaning that the probability of finding u in the range −∞ < u < ∞ is certain. This also
serves as the normalization condition for the pdf. In general the pdf also depends on position
and time.

To introduce density-weighted averages (also called Favre averages), knowledge of the
correlation between density ρ and any other variable of interest is essential. Given the joint
pdf P (ρ, u), the Favre pdf of u can be derived as follows.

ρ̄P̃ (u) =

∫ ρmax

ρmin

ρP (ρ, u)dρ =

∫ ρmax

ρmin

ρP (ρ|u)P (u)dρ = 〈ρ, u〉P (u) (3.24)

If we now multiply both sides of (3.24) by u and integrating over the entire space yields

ρ̄

∫ ∞
−∞

uP̃ (u)du

∫ ∞
−∞

u〈ρ, u〉P (u)du (3.25)

which is equivalent to

ρ̄ũ = ρu (3.26)

3.4.2 Filtering Integral Transform (FIT)
The convolution or filtering problem can be stated formally as follows: Given the contin-
uum field{ρ(r), p(r), u(r)} defined on a domain Ω, compute local approximations {〈ρh(r)〉,
〈ph(r)〉, ũh(r)} which faithfully represent the behavior of the continuum field on scales
above some, user defined, filter length (here denoted h) and which truncates scales smaller
than O(h).
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Ĉh
|ρ〉 |ρ̄h〉

Figure 3.1: Convolution process. The output state |ρ̄h〉 acquires the smoothness property of
the convolution operator as well as scale-dependence.

Assuming that the convolution operator Ĉh : L2(Ωh) → L2(Ωh) is invertible. Then, in
operator form we have

|ρ̄h〉 = Ĉh|ρ〉 (3.27)

The above result can be pictured in function space by multiplying from the left by the bra
vector 〈r| and inserting the identity operator as follows

〈r|ρ̄h〉 = 〈r|Ĉh1̂|ρ〉

= 〈r|Ĉh
∫

Ωh(r)

|r′〉〈r′|dΩ(r′)|ρ〉

=

∫
Ωh(r)

〈r|Ĉh|r′〉〈r′|ρ〉dΩ(r′)

〈ρh(r)〉 =

∫
Ωh(r)

ρ(r′)wh(r− r′)dΩ(r′) (3.28)

where 〈r|ρ̄h〉 = 〈ρh(r)〉 is the smoothed or filtered mass density. The convolution filter is
defined as the "matrix element" of the convolution operator Ĉh, i.e. wh(r− r′) := 〈r|Ĉh|r′〉.

Similar results can be obtained for the momentum density and pressure. With brevity, we
present these in the following proposition.

Proposition 3.4.1 (FIT for fluids). Let Ωh(r) be a locally compact space within the fluid
domain Ω. Then the filtered mass density, momentum density and pressure are given by the
FIT; for each wh ∈ C∞c (Ωh)

〈ρh(r)〉 =

∫
Ωh(r)

ρ(r′)wh(r− r′)dΩ(r′) (3.29)

〈ρh(r)〉ũh(r) =

∫
Ωh(r)

ρ(r′)u(r′)wh(r− r′)dΩ(r′) (3.30)

〈ph(r)〉 =

∫
Ωh(r)

p(r′)wh(r− r′)dΩ(r′) (3.31)

The smoothed field {〈ρh(r)〉, 〈ph(r)〉, ũh(r)} represent the interaction of fluid particles
located at r, r′ ∈ Ωh(r).

The FIT is a locally weighted averaging process with the convolution filter wh weighting
some parts of the underlying disordered field {ρ, ρu, p} more than others. Since the FIT is a
type of averaging, it is a "smoothing" process.
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|ρ〉

|ρ̄h
〉 =

Ĉh
|ρ〉

U|ρ〉

|ρ⊥h 〉

Figure 3.2: The mass density state |ρ〉 and the subspace U|ρ〉 generated by it. The effect
of the convolution operator is to shift the mass density state |ρ〉 into a new vector subspace
spanned by the deformed state |ρ̄h〉. The norm of the orthogonal complement |ρ⊥〉 is the
error in resolving identity using a convolution operator.

3.4.3 Effect of the convolution operator: geometrical analysis
In the SPH method it is well known that the most important element of the method is the con-
volution kernel. Here, a criteria for measuring the effect of this convolution kernel through
a geometrical analysis is presented. Figure 3.2 demonstrates the effect of the convolution
operator. Consider the vector subspace U|ρ〉 generated or spanned by the state |ρ〉. When the
convolution operator Ĉh acts on the undeformed state |ρ〉 the output is a deformed state |ρ̄h〉
that is shifted in a different direction due to the fact that |ρ〉 is not an eigenstate of the con-
volution operator. If we define an orthogonal projector to the vector subspace U|ρ〉

P̂U|ρ〉 :=
|ρ〉〈ρ|
〈ρ|ρ〉

(3.32)

Then an orthogonal projection of the state |ρ̄h〉 onto U|ρ〉 yields

P̂U|ρ〉|ρ̄h〉 =
〈ρ|ρ̄h〉
〈ρ|ρ〉

|ρ〉 (3.33)

which is the component of the deformed state |ρ̄h〉 along the undeformed state |ρ〉. The
orthogonal complement state |ρ⊥h 〉 spans the subspace U⊥|ρ〉 and is given by

|ρ⊥h 〉 = |ρ̄h〉 −
〈ρ|ρ̄h〉
〈ρ|ρ〉

|ρ〉 (3.34)

We then claim that the error or uncertainty in approximating identity using the convolution
operator is given by the norm of the perpendicular state.

∆Ĉh(ρ)2 = 〈ρ⊥h |ρ⊥h 〉 = 〈ρ̄h|ρ̄h〉 −
|〈ρ|ρ̄h〉|2

〈ρ|ρ〉
(3.35)

Thus a good convolution operator (kernel) is one that minimizes the error ∆Ĉh(ρ). It is
important to also note that in the continuum limit this error is zero as the convolution operator
becomes identical to the identity operator. However, for any practical convolution operator
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D̂h

|ρ̄h〉 |ρ〉

Figure 3.3: Deconvolution process. The output state |ρ〉 is reconstructed to recover the high
frequency components lost during the filtering process.

(kernel) this error is non-zero. Therefore this gives us a measure of how well a convolution
operator approximates identity, or equivalently, how well a convolution kernel approximates
the Dirac-delta function.

In function space (3.35) is expressed as

∆Ĉh(ρ)2 =

∫
Ω

|〈ρh(r′)〉|2dΩ(r′)−
|
∫

Ω
ρ(r′)〈ρh(r′)〉dΩ(r′)|2∫

Ω
|ρ(r′)|2dΩ(r′)

(3.36)

For spherically symmetric convolution kernels, a Taylor expansion of ρ(r′) about r′ shows
that the error is of second order ∆Ĉh(ρ) ≡ O(h2). Clearly, minimizing this error is thus fun-
damental for better approximation of the resolution of identity using a convolution operator
(kernel).

3.4.4 De-Filtering Integral Transform (DIT)

The deconvolution or de-filtering problem can be formally stated as: Given the local approx-
imations {〈ρh(r)〉, 〈ph(r)〉, ũh(r)} find an accurate reconstruction of the continuum field
{ρ(r), p(r), u(r)}.

Assuming that the convolution operator Ĉh : L2(Ωh) → L2(Ωh) is invertible, then there
exists a deconvolution operator D̂h : L2(Ωh)→ L2(Ωh). Following the derivation above, we
start with operator space representation

|ρ〉 = D̂h|ρ̄h〉 (3.37)

By taking an overlap with the bra vector 〈r| and inserting a complete set of states as below,
we obtain the de-filtering integral transform in function space.

〈r|ρ〉 = 〈r|D̂h1̂|ρ̄h〉

= 〈r|D̂h

∫
Ωh(r)

|r′〉〈r′|dΩ(r′)|ρ̄h〉

=

∫
Ωh(r)

〈r|D̂h|r′〉〈r′|ρ̄h〉dΩ(r′)

ρ(r) =

∫
Ωh(r)

〈ρh(r′)〉ϕh(r− r′)dΩ(r′) (3.38)
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D̂hĈh
|ρ〉 |ρ〉

Figure 3.4: Mathematically accurate and consistent completeness property. We exploit the
existence of invertible operators to resolve identity.

where 〈r|ρ〉 := ρ(r) is the de-filtered particle mass density, assuming perfect reconstruc-
tion of the high frequency components. The deconvolution filter is defined as the "matrix
element" of the deconvolution operator D̂h, i.e. ϕh(r− r′) := 〈r|D̂h|r′〉.

Similar results can be obtained for the de-filtered momentum density and pressure. Ac-
cordingly, the DIT that forms an exact integral transform pair with the above FIT is given by
the following

Proposition 3.4.2 (DIT for fluids). Consider a fluid particle located at r and has a test
space Ωh(r) within the fluid domain Ω. Given the locally averaged mass density, momentum
density and pressure on Ωh(r), we can reconstruct the continuum field by de-filtering the
filtered mass density, momentum density and pressure in proposition 3.4.1. Mathematically,
for each wh ∈ C∞c (Ωh), there exists a ϕh ∈ C∞c (Ωh) such that

ρ(r) =

∫
Ωh(r)

〈ρh(r′)〉ϕh(r− r′)dΩ(r′) (3.39)

ρ(r)u(r) =

∫
Ωh(r)

〈ρh(r′)〉ũh(r′)ϕh(r− r′)dΩ(r′) (3.40)

p(r) =

∫
Ωh(r)

〈ph(r′)〉ϕh(r− r′)dΩ(r′) (3.41)

Next, we derive the statement of completeness for the de-filtered mass density to be a
true reconstruction of the continuum mass density.

3.4.5 Completeness of filtering and de-filtering processes: integral form

A deconvolution operator D̂h exists if the action of the convolution operator Ĉh on |ρ〉 i.e.
Ĉh|ρ〉 = |ρ̄h〉 does not result in irreparable damage so that |ρ̄h〉 still contains enough me-
chanical information that the linear operator D̂h can restore the original input vector |ρ〉 to
give back identity i.e. D̂h|ρ̄h〉 = |ρ〉. Figure 3.4 denotes completeness without any approxi-
mations. Expressed mathematically in operator space,

|ρ〉 = D̂hĈh|ρ〉 (3.42)

Furthermore, by taking an overlap with the bra vector 〈r| and inserting complete sets of states
we obtain a statement of completeness of filtering and de-filtering processes. Then for all
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Ĉh

convolution operator

D̂h

deconvolution operator

|ρ〉 |ρ̄h〉 |ρ〉

Figure 3.5: In this series representation perfect reconstruction is realized by filtering and
then de-filtering.

r, r′, r′′ ∈ Ωh(r) we have

〈r|ρ〉 = 〈r|D̂h1̂Ĉh1̂|ρ〉

= 〈r|D̂h

∫
Ωh(r)

|r′〉〈r′|dΩ(r′)Ĉh

∫
Ωh(r′)

|r′′〉〈r′′|dΩ(r′′)|ρ〉

=

∫
Ωh(r)

∫
Ωh(r′)

〈r|D̂h|r′〉〈r′|Ĉh|r′′〉〈r′′|ρ〉dΩ(r′)dΩ(r′′)

ρ(r) =

∫
Ωh(r)

ρ(r′′)

(∫
Ωh(r′)

ϕh(r− r′)wh(r
′′ − r′)dΩ(r′)

)
dΩ(r′′) (3.43)

For perfect reconstruction of the underlying continuum field by de-filtering the filtered field,
we have the following statement of completeness; for a given convolution filterwh ∈ C∞c (Ωh)
there exists a deconvolution filter ϕh ∈ C∞c (Ωh) such that∫

Ωh(r′)

ϕh(r− r′)wh(r
′′ − r′)dΩ(r′) = δ(r− r′′) (3.44)

Equation (3.44) represents a fundamental result of the theory which will be used in the con-
struction of explicit, compatible convolution-deconvolution filter pairs.

Furthermore, the block diagram 3.4 can be cascaded in order to determine the effect of
each operator on the input vector. This is depicted in figure 3.5.

Next, we prove that the above FIT and DIT indeed form an integral transform pair
through which (perfect) reconstruction of the continuum field is achievable.

Proof. Let Ωh(r) be a locally compact test space centered at the continuum point r. Consider
the continuum point r′ with a test space Ωh(r

′) for all r′ ∈ Ωh(r). We first compute the
filtered mass density about r′ using the FIT; for all wh ∈ C∞c (Ωh) we have

〈ρh(r′)〉 =

∫
Ωh(r′)

ρ(r′′)wh(r
′ − r′′)dΩ(r′′) (3.45)

Then multiplying (3.45) by the deconvolution filter and integrating over the test space Ωh(r)
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Figure 3.6: Discrete interpretation of Completeness. Left hand side: discrete FIT is a gath-
ering process. Right hand side: discrete DIT is a scattering process. Here • is the target
particle and has support particles {•, •, •, •}. All black particles • are outside the support of
the target particle. The respective domain of influence of each support particle is shown by
a circle of corresponding color to that particle.

yields ∫
Ωh(r)

〈ρh(r′)〉ϕh(r− r′)dΩ(r′)

=

∫
Ωh(r)

∫
Ωh(r′)

ρ(r′′)wh(r
′′ − r′)ϕh(r− r′)dΩ(r′′)dΩ(r′)

=

∫
Ωh(r)

ρ(r′′)

{∫
Ωh(r′)

wh(r
′′ − r′)ϕh(r− r′)dΩ(r′)

}
dΩ(r′′)

=

∫
Ωh(r)

ρ(r′′)δ(r− r′′)dΩ(r′′) by (3.44)

= ρ(r) (3.46)

hence confirming the claim that the FIT of proposition 3.4.1 forms an integral transform pair
with the DIT given by proposition 3.4.2..

We now consider the following sampling problem: Assuming that the density ρ(rj) := ρj
of each support particle is known, how do we use this information to determine the density
ρi of the ith target particle?

FIT is a "gather" process The left hand side of figure 3.6 shows the test or target particle
• with support particles {•, •, •, •}. By the proof above, we first determine the local density
approximation for each support particle 〈ρhj 〉 for all rk ∈ Ωh(rj) by the FIT;

〈ρh(rj)〉 =
∑
k∈N(j)

ρ(rk)wh(rj − rk)dΩ(rk) (3.47)
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The support particle j gathers contributions from all its nearest neighbors k ∈ N(j). This is
a gathering process carried out on all support particles within the domain of influence Ωh(rj)
of the j th support particle with rj ∈ Ωh(ri).

DIT is a "scatter" process Finally, to determine the actual density of the ith target particle
•, we use the DIT as shown on the right hand side of figure 3.6.

ρ(ri) =
∑
j∈N(i)

〈ρh(rj)〉ϕh(ri − rj)dΩ(rj) (3.48)

The target particle i collects contributions from all support particles j ∈ N(i) which the
space Ωh(rj) scatters onto Ωh(ri) 3 rj . Therefore, the DIT is a scattering process as shown
on the right hand side of figure 3.6.

Remark 3.4.1. The choice of volume element is worth investigating. While the approxima-
tion dΩ(ri) := mi/ρ(ri) has been adopted in this work, it makes the method more compli-
cated due to the implicit nature in which the de-filtered variables must be extracted from the
filtered variables. An intuitive way is to use the volume element

dΩ(ri) =
1√∑

j=1 ϕ
h(ri − rj)

∑
j=1 w

h(ri − rj)
(3.49)

3.5 Constructing Compatible Convolution and Deconvolu-
tion Filter on R2

Problem: Given a convolution filter wh ∈ C∞c (Ωh) that is used to compute local approxima-
tions {〈ρh(r)〉, 〈ph(r)〉, ũh(r)} from the continuum field, construct a compatible deconvolu-
tion filter ϕh ∈ C∞c (Ωh) that faithfully reconstructs the underlying continuum field {ρ, p,u}
from these local approximations.

The approach to this problem was mainly motivated by pioneering work of Germano
[26], Konstantopoulos et al. [27], Mary and Rice [28] and others on differential filters.

3.5.1 Translation Operator
To address the above problem, we extensively exploit the nice property of the translation (La-
grange shift) operator T̂ : L2(R) → L2(R) which is (i) well defined (ii) linear (iii) bounded
and (iv) unitary. In ν-dimensions we have;

ρ(r− hr∗) := T̂ (−hr∗)ρ(r) ≡ e−hr
∗·∇ρ(r) (3.50)

provided that the turbulent flow is smooth enough.

Proof. we temporarily regard ρ(r− hr∗) as a function of s. Let

Ψ(s)
def
= ρ(r− shr∗) ≡ ρ(v) v := r− shr∗

=
∞∑
n=0

sn

n!
Ψ(n)(0)



34 Elements of Filtering and De-filtering

We thus need Ψ(1) = ρ(r− hr∗). Now,

Ψ′(s) =
∂ρ(v)

∂vα
∂vα

∂s
α = 1, 2, 3. (sum over α)

= −∂ρ(v)

∂vα
hx∗α

Hence

Ψ(n)(s) = (−hr∗ · ∇v)ρ(v)n giving Ψ(n)(0) = (−hr∗ · ∇r)
nρ(r)

Then, for Ψ(1) we obtain

ρ(r− hr∗) =
∞∑
n=0

(−hr∗ · ∇r)
n

n!
ρ(r) = e−hr

∗·∇ρ(r)

Furthermore, the aforementioned properties of the translation operator can be proved as
follows;

1. T̂ (−hr∗) is linear.

Proof. for f, g ∈ L2(R) and α, β ∈ R

T̂ (−hr∗)[αf + βg](r) = [αf + βg](r− hr∗) = αf(r− hr∗) + βg(r− hr∗)
= αT̂ (−hr∗)f(r) + βT̂ (−hr∗)g(r)

so T̂ (−hr∗) is a linear operator.

2. T̂ (−hr∗) is well-defined.

Proof. for ρ ∈ L2(Rn)∫
Rn
hn|T̂ (−hr∗)ρ(r)|dn(r∗) =

∫
Rn
hn|ρ(r− hr∗)|2dn(r∗)

=

∫
Rn
|ρ(r′)|2dn(r′) <∞

therefore T̂ (−hr∗)ρ(r) ∈ L2(R), so T̂ (−hr∗) is well-defined.

3. T̂ (−hr∗) is bounded.

Proof. for ρ ∈ L2(Rn)

||T̂ (−hr∗)ρ(r)||2 =

∫
Rn
hn|T̂ (−hr∗)ρ(r)|2dn(r∗)

=

∫
Rn
|ρ(r′)|2dn(r′) by (2) above.

= ||ρ(r)||2

∴ ||T̂ (−hr∗)ρ(r)|| = ||ρ(r)||

meaning that T̂ (−hr∗) is bounded (an isometry).
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3.5.2 Convolution Operator
Consider the equation (3.29) in the FIT of proposition 3.4.1. For FIT with compactly sup-
ported filters defined on Ωh(r) := {r, r′ ∈ R3| ||r − r′|| ≤ h, wh ≥ 0}, centered around
r = (x, y, z)T. The following definition can be adopted for the 3-dimensional case

〈ρh(x, y, z)〉

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(x′, y′, z′)wh (|| (x− x′, y − y′, z − z′) ||) dx′dy′dz′

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(x′, y′, z′)h−3w

(∣∣∣∣∣∣∣∣ (x− x′h
,
y − y′

h
,
z − z′

h

) ∣∣∣∣∣∣∣∣) dx′dy′dz′
=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(x− hx∗, y − hy∗, z − z∗)w (|| (x∗, y∗, z∗) ||) dx∗dy∗dz∗ (3.51)

by invoking a change of variables hx∗ := x−x′, hy∗ := y−y′ and hz∗ := z−z′. In compact
form we then have

〈ρh(r)〉 =

∫
Rν
w (||r∗||) ρ(r− hr∗)dνr∗ (3.52)

showing that convolution is commutative. Finally, combining (3.50) and (3.52) the FIT now
transforms into differential form as

〈ρh(r)〉 =

(∫
Rν
w (||r∗||) T̂ (−hr∗)dνr∗

)
ρ(r) ≡ Cw(T̂ )ρ(r) (3.53)

where we identifyCw(T̂ ) as the convolution operator, which is continuous (and hence bounded)
and is compact.

Cw(T̂ )
def
=

∫
Rν
w (||r∗||) T̂ (−hr∗)dνr∗ (3.54)

We shall explicitly compute Cw(T̂ ) for compactly supported filters on Ωh(r) ∈ R2 as
commonly used in SPH. In particular, since the convolution filter is radially or circularly
symmetric, using polar coordinates r∗ := (||r∗|| cos θ, ||r∗|| sin θ)T with ||r∗|| ∈ [0, 2] and
θ ∈ [0, 2π] it is easy to show that the convolution operator becomes

Cw(T̂ ) = Θ0J0 + Θ1J1
h2

2!
∆ + Θ2J2

h4

4!
∆2 + Θ3J3

h6

6!
∆3 + ...

=
∞∑
k=0

ΘkJk
h2k

(2k)!
∇2k (3.55)

Where ∆ = ∇2 is the laplacian operator and the moments of the convolution filter Jk and
the angular part Θk are given by

Θk =
2πΓ(k + 1

2
)

Γ(k + 1)Γ(1
2
)
, Jk =

∫ 2

0

||r∗||2k+1w(||r∗||)d||r∗||, k = 0, 1, 2, 3, ... (3.56)

It is important to note that (3.53) is well posed if and only if ∀k, |Jk| <∞ meaning that the
convolution filter wh must be rapidly decaying in space.



36 Elements of Filtering and De-filtering

3.5.3 Deconvolution Operator
For the convolution operator given by (3.55), its associated deconvolution operator is deter-
mined from the completeness (3.44) by solving a set of inhomogeneous equations appropri-
ate to the algebra of power series. First, we present the following version of (3.44) suitable
for series algebra

Corollary 3.5.1 (Operator form of completeness statement). Let wh ∈ C∞c (Ωh) be a convo-
lution filter with associated convolution operator Cw(T̂ ). Similarly, let ϕh ∈ C∞c (Ωh) be the
deconvolution filter with associated deconvolution operator Dw(T̂ ). Then the completeness
statement (3.44) can be expressed in operator form as

Cw(T̂ )Dϕ(T̂ ) = 1⇐⇒ Dϕ(T̂ )Cw(T̂ ) = 1 (3.57)

Using the method of Cauchy products, for a 2D filter, it is easy to show that the decon-
volution filter is given by

Dϕ(T̂ ) := Inv{Cw(T̂ )} =
∞∑
k=0

Mk
h2k

(2k)!
∇2k (3.58)

where the coefficients {Mk| k = 0, 1, 2, 3, . . . } are given by the following infinite dimen-
sional determinant

Mk = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
...

...
...

...
...

...
. . . 66Θ1J1 1 0 0 0 0
. . . 990Θ2J2 45Θ1J1 1 0 0 0
. . . 616Θ3J3 210Θ2J2 28Θ1J1 1 0 0
. . . 990Θ4J4 210Θ3J3 70Θ2J2 15Θ1J1 1 0
. . . 66Θ5J5 45Θ4J4 28Θ3J3 15Θ2J2 6Θ1J1 1
. . . Θ6J6 Θ5J5 Θ4J4 Θ3J3 Θ2J2 Θ1J1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.59)

and the kth coefficient can be extracted from the above formula as minor determinants starting
from the bottom right element, for example

M1 = (−1)1
∣∣Θ1J1

∣∣ , M2 = (−1)2

∣∣∣∣6Θ1J1 1
Θ2J2 Θ1J1

∣∣∣∣ ,
M3 = (−1)3

∣∣∣∣∣∣
15Θ1J1 1 0
15Θ2J2 6Θ1J1 1
Θ3J3 Θ2J2 Θ1J1

∣∣∣∣∣∣ , . . . (3.60)

However, we can directly obtain the deconvolution operator from the DIT of proposition
3.4.2, Similar to the procedure used for constructing the convolution operator above. For
the DIT with compactly supported filters defined on Ωh(r) ∈ R3, a compact space centered
around r = (x, y, z)T. Then given the DIT

ρ(r) =

∫
Rν
〈ρh(r′)〉ϕh(r− r′)dνr′

=

(∫
Rν
ϕ(||r∗||)T̂ (−hr∗)dνr∗

)
〈ρh(r)〉, set hr∗ := r− r′

ρ(r) = Dϕ(T̂ )〈ρh(r)〉 (3.61)
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where the deconvolution operator Dϕ(T̂ ) is now given by the following series.

Dϕ(T̂ ) =
∞∑
k=0

ΘkLk
h2k

(2k)!
∇2k (3.62)

The deconvolution filter moments Lk and the angular part Θk are given by

Θk =
2πΓ(k + 1

2
)

Γ(k + 1)Γ(1
2
)
, Lk =

∫ 2

0

||r∗||2k+1ϕ(||r∗||)d||r∗||, k = 0, 1, 2, 3, ... (3.63)

Again, we note that (3.61) is well posed if and only if ∀k, |Lk| < ∞ meaning that the
deconvolution filter ϕh must also be rapidly decaying in space. Since the wh and ϕh are
inverse filters, it follows that (3.58) and(3.62) are equivalent, a fundamental result of this
discussion and presented in the following proposition.

Proposition 3.5.1. Let the moments of the convolution filter wh be Jk and the convolution
operator given as Cw(T̂ ). Then the moment Lk of the associated deconvolution filter ϕh can
be analytically determined without prior knowledge of ϕh. Mathematically,

Lk =
Mk

Θk

(3.64)

3.5.4 Convolution & deconvolution operators for the Gaussian filter

Consider a special case of the Gaussian filter given by

wh := αh−νe−||r−r
′||2/h2

(3.65)

The moments of this filter in 2D are; Jk := Γ(k + 1)/(2π), with the angular elements Θk

given by (3.56). Then the associated convolution and deconvolution operator coefficients are
given by

ΘkJk =
Γ(k + 1

2
)

Γ(1
2
)

, Mk = (−1)k
Γ(k + 1

2
)

Γ(1
2
)

(3.66)

Cw(T̂ ) =
∞∑
k=0

Γ(k + 1
2
)

Γ(1
2
)

h2k

(2k)!
∇2k =

∞∑
k=0

h2k

4kk!
∇2k = e

1
4
h2∇2

(3.67)

Dϕ(T̂ ) =
∞∑
k=0

(−1)k
Γ(k + 1

2
)

Γ(1
2
)

h2k

(2k)!
∇2k =

∞∑
k=0

(−1)k
h2k

4kk!
∇2k = e−

1
4
h2∇2

(3.68)

which are well known operators for the Gaussian filter. [27].
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3.5.5 matrix coefficients of convolution/deconvolution operators
We define the convolution filter wh as the "matrix element" of the convolution operator
Cw(T̂ ).

wh(r− r′) , 〈r′|Cw(T̂ )|r〉

= 〈r′|

(
1̂ +

∞∑
k=1

ΘkJk
h2k

(2k)!
∇2k

)
|r〉

= 〈r′|1̂|r〉+
∞∑
k=1

ΘkJk
h2k

(2k)!
〈r′∇2k|r〉

∴ wh(r− r′) = δ(r− r′) +
∞∑
k=1

ΘkJk
h2k

(2k)!
∇2kδ(r− r′) (3.69)

Similarly, the deconvolution filter is defined as the "matrix element" of the deconvolution
operator with respect to the continuous position basis. Following the same procedure above,
the deconvolution filter takes the form

ϕh(r− r′) , 〈r′|Dϕ(T̂ )|r〉

∴ ϕh(r− r′) = δ(r− r′) +
∞∑
k=1

ΘkLk
h2k

(2k)!
∇2kδ(r− r′) (3.70)

For both operators, in the continuum limit we have the flowing important property

lim
h→0

wh(r− r′) ≡ δ(r− r′), lim
h→0

ϕh(r− r′) ≡ δ(r− r′) (3.71)

3.5.6 Properties of convolution and deconvolution operators
We study the properties of convolution and deconvolution operators by investigating their
action on functionals or generalized functions.

[1] The action of convolution and deconvolution operators on Dirac’s delta function is to
produce the convolution and deconvolution filters respectively. Mathematically,

Cw(T̂ )δ(r− r′) = wh(r− r′), Dϕ(T̂ )δ(r− r′) = ϕh(r− r′) (3.72)

Proof.

wh(r− r′′) =

∫
Rν
wh(r− r′)δ(r′ − r′′)dνr′ completeness

=

∫
Rν
w(r∗)δ(r− hr∗ − r′′)dνr∗, change of variables

=

(∫
Rν
w(r∗)T̂ (−hr∗)dνr∗

)
δ(r− r′′)

∴ wh(r− r′′) = Cw(T̂ )δ(r− r′′)

A similar proof for the deconvolution operator follows, hence completing the proof.
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[2] The convolution filter is the Green’s function of the deconvolution operator, whereas
the deconvolution filter is the Green’s function of the convolution operator i.e.

Cw(T̂ )ϕh(r− r′′) = δ(r− r′′), Dϕ(T̂ )w(r− r′′) = δ(r− r′′) (3.73)

Either of these relations is equivalent to the completeness statement (3.44). A proof of
this can be directly obtained from (3.72) or directly from (3.44). Following the latter
approach

Proof.

δ(r− r′′) =

∫
Rν
ϕh(r− r′)wh(r

′ − r′′)dνr′ completeness

=

∫
Rν
ϕ(r∗)wh(r− hr∗ − r′′)d3r∗, change of variables

=

(∫
Rν
ϕ(r∗)T̂ (−hr∗)dνr∗

)
wh(r− r′′)

∴ δ(r− r′′) = Dϕ(T̂ )wh(r− r′′)

For a direct proof from (3.72); we multiply by Dϕ(T̂ ) to the first equation in (3.72)
to get Dϕ(T̂ )Cw(T̂ )δ(r − r′) = Dϕ(T̂ )wh(r − r′) yielding the required result since
Dϕ(T̂ )Cw(T̂ ) = 1.

A similar proof for the deconvolution operator follows, hence completing the proof.

[3] The completeness statement (3.44) can be expressed in operator form as

Cw(T̂ )Dϕ(T̂ ) = 1, Dϕ(T̂ )Cw(T̂ ) = 1 (3.74)

Proof.

Cw(T̂ )ϕh(r− r′′) = δ(r− r′′) by (3.73) above

Cw(T̂ )Dϕ(T̂ )δ(r− r′′) = δ(r− r′′) by (3.72) above

∴ Cw(T̂ )Dϕ(T̂ ) = 1

[4] The action of the square convolution operator on the deconvolution filter yields the
deconvolution filter. Similarly, the action of the square convolution operator on the
deconvolution filter yields the convolution filter.

Cw(T̂ )2ϕh(r− r′′) = wh(r− r′′), Dϕ(T̂ )2w(r− r′′) = ϕh(r− r′′) (3.75)

Proof.

Cw(T̂ )2ϕh(r− r′′) = Cw(T̂ )Cw(T̂ )ϕh(r− r′′)

= Cw(T̂ )δ(r− r′′) by (3.73)
= wh(r− r′′) by (3.72)

A similar proof can be done for the square deconvolution operator.
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3.5.7 Cauchy product of deconvolution operator with itself

The Cauchy product is the discrete convolution of two infinite series. Since the square decon-
volution operator (3.75) can be interpreted as the discrete convolution of the deconvolution
operator with itself, we have,

Dϕ(T̂ )2 = Dϕ(T̂ ) ·Dϕ(T̂ )

=

(
∞∑
l=0

Ml
h2l

(2l)!
∇2l

)
·

(
∞∑
m=0

Mm
h2m

(2m)!
∇2m

)

∴ Dϕ(T̂ )2 =
∞∑
k=0

M̃k
h2k

(2k)!
∇2k where M̃k =

k∑
j=0

(
2k

2j

)
MjMk−j (3.76)

Given a convolution filter wh, it then follows from (3.75) and (3.76) that the deconvolution
filter is given by the following formula.

ϕh(r− r′′) =
∞∑
k=0

M̃k
h2k

(2k)!
∇2kwh(r− r′′) (3.77)

which is an exact deconvolution filter uniquely defined for each specified convolution filter
with finite moments. Furthermore, the above series solution is truncated due to the funda-
mental limitation that computers can only handle finite collections of data. The approximate
deconvolution filter, ADF then becomes

ϕh,n(r− r′′) =
n∑
k=0

M̃k
h2k

(2k)!
∇2kwh(r− r′′) ≡

n∑
k=0

fk(h)ψh,2k(r− r′′) (3.78)

This series is convergent and the functions fk(h) satisfy

lim
h→0

fk+1(h)

fk(h)
= lim

h→0

M̃k+1

M̃k

h2(k+1)

h2k

(2k)!

(2k + 2)!
≡ 0 (3.79)

This means that each member of the set of filters approaches zero more rapidly than the
previous member as h→ 0. Therefore the set of basis functions {ψh,2k| k = 0, 1, 2, ...} forms
an asymptotic sequence in h. The difference between the true value ϕh and approximate
expression ϕh,n goes to zero (ϕh − ϕh,n)/hn → 0 as h→ 0.

It is important to investigate how well an order-n deconvolution filter ϕh,n approximates
the exact deconvolution filter ϕh by comparing the moments. The exact moments of Lk of ϕh
are readily computable without knowledge of the filter itself and are given by (3.64). Based
on the choice of n, the moments of the approximate deconvolution filter ϕh,n are given by

exact : Lk =
Mk

Θk

, approx : L
(n)
k =

∫
Vh

||r∗||2k+1ϕn(r∗)d||r∗|| (3.80)

Figure 3.7 indicates the moments of the deconvolution filter of the convolution filter given
by (3.82) with p = 5. As can be clearly seen, the kth moment Lk of an nth order approximate
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Moment Approximate deconvolution filter
Exact ϕhϕh,1 ϕh,2 ϕh,3 ϕh,4

L0 0.15915494 0.15915494 0.15915494 0.15915494 0.15915494
L1 -0.0347461 -0.0347461 -0.0347469 -0.0347455 -0.0347461
L2 -0.0457652∗ 0.015423 0.0154208 0.015424 0.0154226
L3 -0.0492201∗ 0.0578682∗ -0.0104030 -0.010395 -0.0103981
L4 -0.0580177∗ 0.440901∗ -0.13588∗ 0.00943111 0.00942152

Figure 3.7: The first five moments of the approximate deconvolution filter for the convolu-
tion filter given by equation (3.82) with p = 5. The (∗) indicates kernel inconsistency due to
truncation.

deconvolution filter ϕh,n is approximately equal to the exact moment for k = 0, 1, ..., n.
Therefore, ϕh,n approximates ϕh to degree of accuracy 2n. Formally,

L
(n)
k ' Lk

∀k = 0, 1, 2, . . . n (3.81)

Therefore, an nth order deconvolution filter cannot reproduce all moments since {L(n)
k 6=

Lk| k = n + 1, n + 2, n + 3, . . . } will be inconsistent with the exact moments. However,
as it will be shown below, exact deconvolution is unstable meaning that approximate filters
(finite n) are more practical.

3.6 Convolution filters
A natural choice for the convolution filter in SPH is the Gaussian filter [29]. In fact Mon-
aghan [16][30] suggests this as the first Golden Rule of SPH. All popular convolution filters
are piece-wise continuous polynomials including the B-spline functions [31][30] and Wend-
land functions [32][33]. These filters are constructed to be Gaussian-like but they have com-
pact support and give progressively better approximation to the Gaussian with higher filter
order.

For the purposes of the work in this thesis a new set of rational convolution filters are
introduced as they have better interpolatory properties than their polynomial counterparts.
They are smoother and less oscillatory than polynomial filters.

Gh,p =

{
αph

−ν
(

1− 1
4h2 ||r−r′||2

1+ 1
4h2 ||r−r′||2

)p
||r− r′|| ≤ 2h

0 otherwise
' αph

−ν exp

(
−π ν

√
α2
p

||r− r′||2

h2

)
(3.82)

The Weierstrass approximation theorem states that every continuous function defined on a
closed interval [α, β] can be uniformly approximated as closely as desired by a polynomial
function.

Theorem 3.6.1 (Weierstrass approximation theorem). Suppose Gh : Ωh(r)→ R is a contin-
uous real-valued function defined on the real, compact space Ωh(r). For all R 3 ε > 0 there
exists a polynomial wh : Ωh(r)→ R such that for all r, r′ ∈ Ωh(r),we have,

|Gh(r− r′)− wh(r− r′)| < ε or ||Gh(r− r′)− wh(r− r′)|| < ε (3.83)
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where q := ||r− r′||/h ∈ [−2, 2]
For the rational convolution filter (3.82) with p = 7, a possible approximating polynomial

is given by

w(q) =

(
1− q2

4

)8 (
2048− 3072q2 + 2816q4 − 1984q6 + 1184q8 − 628q10 + 305q12

)
(3.84)

The convolution filter (3.84) is structurally suitable for constructing ADMs specified by
(3.78).

−2 −1 0 1 2

0

5

10

15

q

wh,6
ϕh,6,2

Figure 3.8: A plot of the convolution filter wh,p for p=6 (red) and the corresponding decon-
volution filter ϕh,p,n (blue) obtained by truncating the infinite sum at n = 2. The filter cut-off
length h has been set to unity.

The smoothing length is set by applying the mass conservation law to the test space Ωh;
the total mass of fluid particles in Ωh must be constant. For the 2D work presented in this
thesis we then have that

M(Ωh) =

∫
Ωh(r)

ρ(r)dν(r) (3.85)

' ρ0π(2h)2 (3.86)

We can introduce a new parameter ξ for the support radius of Ωh in units of h and assuming
the mass of each particle is constant, we have

h := ξ∆r ∆r =
√

∆x2 + ∆y2 M(Ωh) = mNn (3.87)

with particle mass m, average number of particles in Ωh is Nn the dimensions of the fluid
particle are respectively ∆x and ∆y. Combining (3.86) and (3.87) we then have compact
support radius in units of h as

ξ =

√
Nn

4π
(3.88)

In this work, for each problem we fix Nn and then determine the corresponding value of ξ
and hence h.
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3.7 Spectral Analysis
There are two factors that determine the upper limit of n; numerical stability and numer-
ical instability due to filtering/de-filtering. Increasing n leads to improved accuracy and
hence reduced numerical dissipation. Consider the Navier-Stokes equations, assuming Kol-
mogorov’s -5/3 law, i.e. E(k) ∝ k−5/3, numerical dissipation can be approximated as a
normalized coefficient

cn,dissp =

∫
R2 ||k||2E(k)d2k−

∫
R2 ||k||2E(k)|ϕ̂n(kh)ŵ(kh)|2d2k∫

R2 ||k||2E(k)d2k

=

∫ kc
0
k2E(k)dk −

∫ kc
0
k2E(k)|ϕ̂n(kh)ŵ(kh)|2dk∫ kc

0
k2E(k)dk

(3.89)

where the dimensionless cut-off wavenumber k∗c := kch = π is the cut-off wave number;
the highest wavenumber that can be represented on a grid. The first term in the numerator is
the exact dissipation and the second term is the restored dissipation, and thus the difference
corresponds to numerical dissipation.

on the other hand, numerical instability is much more difficult to quantify. Assuming the
numerical error is due to spectral truncation, the energy error is on the order of Ee(k) ∝ k2

at high wavenumber. We can define a normalized numerical instability coefficient as

cn,instab =

∫
R2 ||k||2Ee(k)|ϕ̂n(kh)ŵ(kh)|2d2k∫

R2 ||k||2E(k)d2k

=

∫ kc
0
k2Ee(k)|ϕ̂n(kh)ŵ(kh)|2dk∫ kc

0
k2Ee(k)dk

(3.90)

Proposition 3.7.1. Exact deconvolution has zero numerical dissipation.

Proof. We first compute the Fourier transform of the completeness statement (3.44) to obtain

ϕ̂(k∗)ŵ(k∗) = 1 k∗ := kh (3.91)
∴ lim

n→∞
cn,dissp = 0 by 3.89 (3.92)

Proposition 3.7.2. Exact deconvolution is numerically unstable.

Proof. From 3.90 we have

lim
n→∞

cn,instab = 1 by 3.90 (3.93)

Using Wendland’s C6 filter as the convolution filter, by constructing its associated ap-
proximate deconvolution filter, the numerical dissipation and instability coefficients are plot-
ted in the Fourier space as shown in figure 3.9. It can be noted that as the order of the
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Figure 3.9: Coefficients cn,dissip and cn,instab for the deconvolution filter associated with
Wendland’s C5 filter. Here n correspond to the value at which the deconvolution filter ϕn is
truncated.

deconvolution filter increases, numerical dissipation decreases as expected. However, with
decreased numerical dissipation there is nothing to mitigate any associated numerical insta-
bilities hence the coefficient of numerical instability is large. The hypothesis used in [34]
that the energy error follows a square law i.e. E(k∗) ∝ ||k∗||2 is qualitative and not neces-
sarily accurate. There is further room for improvement in order to obtain a more accurate
estimation of numerical instability.

Figure 3.10 shows a plot of the Fourier transform of the nth order deconvolution up to
order 2n = 6. Note that at zeroth order, the deconvolution filter is identical to the convolution
filter i.e. wh ≡ ϕh0 and the Fourier transform is shown by the solid black curve in Figure 3.10.
The range of wavenumbers over which the deconvolution filter has values greater than 1
increases with filter order. The implication of this characteristic shape of the deconvolution
filter in Fourier space is twofold. First, the deconvolution filter is able to restore the low
frequency components, consistent with its mathematical property that it becomes a Dirac
delta function in the limit h → 0; see equation (3.71) for a proof of this. Second, the
deconvolution filter damping the high frequency components for stability reasons. It has
been shown that exact deconvolution is unstable, thus approximate deconvolution which
damps high frequency components is what is practically usable[34].

The next thing worth investigating is the resolution of identity given by equation (3.44).
In Fourier space, we have the spectrum ϕ̂(k∗)ŵ(k∗) = 1 for all normalized wavenumbers k∗.
For the ADM, the resolution of identity is expectedly not exact and has a spectrum given by
ϕ̂n(k∗)ŵ(k∗) whose plot in the Fourier space is shown in figure 3.11. It shows that the higher
the order of the deconvolution filter, the larger the bandwidth of wavenumbers restored. We
also see that in the limit n → ∞, we have ϕ̂n(k∗)ŵ(k∗) → 1 as expected from the theory
presented in this chapter.
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Figure 3.10: Fourier transform of the deconvolution filter {ϕ̂n(k∗)|n = 0, 1, 2, 3} associated
with Wendland C6 filter in physical space with k∗ = kh the non-dimensional wavenumber.
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ϕ̂3(k∗)ŵ(k∗)

Figure 3.11: Fourier transform of the deconvolution filter {ϕ̂n(k∗)ŵ(k∗)| n = 0, 1, 2, 3}
associated with Wendland C6 filter in physical space with k∗ = kh the non-dimensional
wavenumber.
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3.8 Conclusion
In order to improve the performance and mathematical consistency of SPH, a transform
pair called FIT and DIT has been proposed. A rigorous procedure for deriving convolution
and deconvolution operators from the transform pair has been given. Using these opera-
tors, a method for constructing an exact, compatible and unique deconvolution filter has
been proposed. Following the discussion that this exact deconvolution filter is unstable, an
approximate deconvolution filter has proposed; the ideas of ADM are studied in many ar-
eas of science such as LES and image processing [35][36][37][38][39] [40] [28] [41] and
convergence of ADMs [42].

Having developed a framework for constructing compatible convolution and deconvolu-
tion filters, the next two chapters deal with the application of the FIT and DIT to the CNSEs.



Chapter 4

SPH Consistent with explicit LES

Filtering problem: The goal of this chapter is to address the filtering problem: Given the
continuum or disordered field{ρ(r), p(r), u(r)} defined on a domain Ω, compute local av-
erage fields {〈ρh(r)〉, 〈ph(r)〉, ũh(r)} that faithfully represent the behavior of the disordered
field on scales above some, user defined, filter length (here denoted h) and which truncates
scales smaller than O(h).

Standard SPH is based upon the fundamental principle that any field Φ : Ωh(r) → R
can be expressed by an integral interpolant 〈Φh(r)〉 :=

∫
Ωh(r)

Φ(r′)wh(r− r′)dνr′. However,
following the discussion from the previous section, if the particles are uniformly distributed
locally and the kernel support does not intersect the domain boundaries, the local approx-
imation becomes 〈Φh(r)〉 = Φ(r) + O(h2) meaning SPH is second order accurate. The
integral interpolant then assumes the standard form and constitutes the most fundamental
principle as Φ(r) =

∫
Ωh(r)

Φ(r′)wh(r− r′)dνr′+O(h2). Formally, this is called zeroth order
deconvolution. Unfortunately, as the particle system evolves the local particle distribution
is no longer uniform, particles get disordered. Therefore, error estimation becomes a very
challenging task. To address this limitation on the order of accuracy, in chapter 3 the FIT and
DIT were introduced as a transform pair that will lead to the development of SPH algorithms
of arbitrary accuracy.

In the following sections, we demonstrate that application of the FIT to the CNSEs leads
to a version SPH that is consistent with explicit LES. The concept of local fluctuations and
the relation with local uniformity of particle distribution is discussed. The chapter concludes
by stressing the implications of the choice of velocity smoothing on the complexity of the
mathematical structure of the smoothed CNSEs.

4.1 Application of FIT
Our choice of the filtering procedure defined by proposition 3.4.1 is to derive a set of integro-
differential equations that are in principle "equivalent" to the filtered equations of explicit
LES. Therefore, well established techniques such as turbulence of sub-grid stress tensors in
the LES context can be applied to this version of SPH. We first prepare a useful theorem that
is extensively used in the this section.

Theorem 4.1.1 (Reynolds’ transport theorem). Let f:D̄×I→ R be a smooth and continuous
function and Ωt := ϕ(Ω0, t) ⊆ D, then for each t ∈ I and Ω0 ⊆ D as an arbitrary reference

47
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fluid domain. Then,

d

dt

∫
Ωt

f(r, t)dnr =

∫
Ωt

(
d

dt
f(r, t) + f(r, t)∇ · u(r, t)

)
dnr (4.1)

4.1.1 Filtered continuity equation
To obtain a consistent set of filtered CNSEs, we proceed as follows. Consider a test particle
located at position r with a test space (domain of influence) Ωh(r), a compact space. When
a measurement is performed over this test space to determine the test particle’s physical at-
tributes, the measurement outcomes are the local field approximations {〈ρh(r)〉, 〈ph(r)〉, ũh(r)}
defined by the FIT of proposition 3.4.1. These are the observables or macroscopic variables
that would faithfully represent the behavior of the underlying, disordered continuum fields
{ρ(r), p(r),u(r)} above the filter width h consequently truncating scales smaller than O(h).
Let the set {Pj| ||r − r′ < 2h||, j = 1, ..., Nn} represent all other material elements within
the test space. For this set of support material particles, the point-form of physical attributes
{ρ(rj), p(rj),u(rj)| j = 1, ..., Nn} ∈ L2(Ωh;Rn) are given. We then have after testing the
continuity equation

∫
Ωh(r)

(
dρ(rj)

dt
+ ρ(rj)∇j · u(rj)

)
wh(r− rj)dΩ(rj)

Nn↑∞−→
∫

Ωh(r)

(
dρ(r′)

dt
+ ρ(r′)∇′ · u(r′)

)
wh(r− r′)dΩ(r′) (4.2)

where now r′ ∈ Ω(r) is the position of a fluid particle in the test space. Here weak conver-
gence has been assumed, provided the test space is sufficiently populated uniformly by fluid
particles. Then the weak form of the continuity equation becomes∫

Ωh(r)

(
dρ(r′)

dt
+ ρ(r′)∇′ · u(r′)

)
wh(r− r′)dΩ(r′) = 0 ∀wh ∈ C∞0 (Ωh) (4.3)

which is further simplified to∫
Ωh(r)

{
d

dt

(
ρ(r′)wh

)
+

(
ρ(r′)wh

)
∇′ · u(r′)

}
dΩ(r′) =

∫
Ωh(r)

ρ(r′)
dwh
dt

dΩ(r′) (4.4)

Using the Reynolds transport theorem 4.1.1 it is possible to simplify (4.4) even further yield-
ing

d

dt

∫
Ωh(r)

ρ(r′)whdΩ(r′) =

∫
Ωh(r)

ρ(r′)
dwh
dt

dΩ(r′) (4.5)

Since the goal is to compute the local approximations for a target particle using the disor-
dered fields {ρ(r), p(r),u(r)}, we move the target particle with the local velocity. Accord-
ingly,

smoothed or target particle:
dr

dt
:= ũh(r) support particle:

dr′

dt
:= u(r′) (4.6)
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The right hand side of the above equation is finally simplified with the help of the chain rule
of calculus.

d

dt

∫
Ωh(r)

ρ(r′)whdΩ(r′) =

∫
Ωh(r)

ρ(r′)
dwh
dt

dΩ(r′)

d

dt

∫
Ω(r)

ρ(r′)whdΩ(r′) =

∫
Ω(r)

ρ(r′)

(
dr

dt
· ∂wh
∂r

+
dr′

dt
· ∂wh
∂r′

)
dΩ(r′)

∴
d

dt
〈ρh(r〉 =

∫
Ω(r)

ρ(r′)

(
ũh(r)− u(r′)

)
· ∇whdΩ(r′) (4.7)

Equation (4.7) is the filtered form of the continuity equation in integro-differential form.
Using the FIT, it is easy to prove that, when expressed in differential form, this equation
reduces to the canonical form of the continuity equation (3.1) but with the unfiltered variables
replaced by the filtered ones. To prove this, we unplug the space derivative∇ from under the
integral in (4.7) and using the FIT of proposition 3.4.1 as follows;

Proof. Unplugging the space derivatives from the integral in (4.7) we have,

d

dt
〈ρh(r)〉 = ũh(r) · ∇

∫
Ωh(r)

ρ(r′)wh(r− r′)dΩ(r′)

−∇ ·
∫

Ωh(r)

ρ(r′)u(r′)wh(r− r′)dΩ(r′)

= ũh(r) · ∇〈ρh(r)〉 − ∇ ·
(
〈ρh(r)〉ũh(r)

)
by the FIT

∴
d

dt
〈ρh(r)〉 = −〈ρh(r)〉∇ · ũh(r) (4.8)

and we arrive at the filtered form of the point form of the continuum continuity equation,
consistent with explicit LES. The "smoothed" material derivatives becomes

d

dt
=

∂

∂t
+ ũh ·∇ (4.9)

Corollary 4.1.1 (filtered velocity divergence). Due to the equivalence of (4.7) and (4.8), the
velocity divergence in a continuum can be calculated as an integral

−〈ρh(r)〉∇ · ũh(r) =

∫
Ω(r)

ρ(r′)

(
ũh(r)− u(r′)

)
· ∇whdΩ(r′) (4.10)

We emphasize that (4.10) is the most fundamental result of the filtering process. It will
be used to generate integral representations of the pressure gradient and divergence of the
stress tensor.

4.1.2 Filtered momentum equation
Similar to the continuity equation above, we start with the weak form∫

Ω(r)

(
ρ(r′)

du(r′)

dt
−∇′ · τ(r′)− ρ(r′)b(r′)

)
whdΩ(r′) = 0 ∀wh ∈ C∞c (Ωh) (4.11)
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which may be further re-arranged as follows∫
Ω(r)

ρ(r′)
d

dt

(
u(r′)wh

)
dΩ(r′) =

∫
Ω(r)

ρ(r′)u(r′)
dwh
dt

dΩ(r′) + 〈∇ · τ , wh〉+ 〈ρh(r)〉b̃h(r)

(4.12)

where the FIT 3.4.1 has directly been applied to the last term on the right hand side of (4.12).
Note the inner product notation for the stress term; this will be expanded shortly. The next
thing is to apply the Reynolds transport theorem 4.1.1 along with the FIT to the left hand
side yielding

d

dt

∫
Ω(r)

ρ(r′)u(r′)whdΩ(r′) =

∫
Ω(r)

ρ(r′)u(r′)
dwh
dt

dΩ(r′) + 〈∇ · τ , wh〉+ 〈ρh(r)〉b̃h(r)

d

dt

(
〈ρh(r)〉ũh(r)

)
=

∫
Ω(r)

ρ(r′)u(r′)
dwh
dt

dΩ(r′) + 〈∇ · τ , wh〉+ 〈ρh(r)〉b̃h(r)

〈ρh(r)〉
d

dt
ũh(r) + ũh(r)〉

d

dt
〈ρh(r)〉 =

∫
Ω(r)

ρ(r′)u(r′)
dwh
dt

dΩ(r′) + 〈∇ · τ , wh〉+ 〈ρh(r)〉b̃h(r)

(4.13)

By substituting (4.7) and applying the chain rule of calculus to the right hand side, we obtain
the general form of the filtered momentum equation.

〈ρh(r)〉
d

dt
ũh(r) = −

∫
Ω(r)

ρ(r′)

(
ũh(r)− u(r′)

)
⊗
(
ũh(r)− u(r′)

)
∇whdΩ(r′)

+ 〈∇ · τ , wh〉+ 〈ρh(r)〉b̃h(r) (4.14)

Definition 4.1.1 (sub-grid stress tensor,SGS). The filtered momentum equation (4.14) intro-
duces momentum transfer due to small scale motion. This is defined by the following

〈H
h
(r)〉 =

∫
Ω(r)

ρ(r′)(u(r′)− ũh(r))⊗ (u(r′)− ũh(r))whdΩ(r′)

= 〈ρh(r)〉
(

˜(u⊗ u)h(r)− ũh(r)⊗ ũh(r)
)

by the FIT (4.15)

which is a symmetric tensor, a property that is fundamental to the global conservation of
energy. We note that the presence of the thermo-kinetic stresses in the momentum equation
is purely due to the localization of the flow field by the filtering process. In Large Eddy
Simulation, LES it is also called the sub-grid stress (SGS) tensor and in the context of particle
methods it would be appropriately called sub-particle stress (SPS) tensor. Since the filtering
operation filters out high frequency components of the flow field {ρ, p,u}, the SGS tensors
captures the effect of small scale motion on the mean flow {〈ρh〉, 〈ph〉, ũh}.

As a consequence of the FIT, the SGS tensor (4.15) has the following interesting property
with respect to the action of the divergence operation on it;

∇ · 〈H
h
(r)〉 =

∫
Ω(r)

ρ(r′)(u(r′)− ũh(r))⊗ (u(r′)− ũh(r)) · ∇whdΩ(r′) by the FIT

(4.16)
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Proof.∫
Ω(r)

ρ(r′)(u(r′)− ũh(r))⊗ (u(r′)− ũh(r)) · ∇whdΩ(r′)

= ∇ ·
∫

Ω(r)

ρ(r′)u(r′)⊗ u(r′)whdΩ(r′)−
(
∇ ·
∫

Ω(r)

ρ(r′)u(r′)whdΩ(r′)

)
⊗ ũh(r)

− ũh(r)⊗∇ ·
∫

Ω(r)

ρ(r′)u(r′)whdΩ(r′) + ũh(r)⊗ ũh(r) · ∇
∫

Ω(r)

ρ(r′)whdΩ(r′)

= ∇ ·
(
〈ρh〉 ˜(u⊗ u)h

)
−
(
∇ · (〈ρh〉ũh)

)
⊗ ũh − ũh ⊗∇ ·

(
〈ρh〉ũh

)
+ ũh ⊗ ũh · ∇〈ρh〉

= ∇ ·
[
〈ρh〉

(
˜(u⊗ u)h − ũh ⊗ ũh

)]
= ∇ · 〈H

h
(r)〉 by (4.15) above

as claimed.

The SGS tensors are the components of a second order tensor, which is obviously sym-
metric. The diagonal components are normal stresses whereas the off-diagonal components
are shear stresses. The density weighted turbulent kinetic energy k̃h is defined to be half the
trace of the SGS tensor and is thus

〈ρh(r)〉k̃h(r) :=
1

2
tr

(
〈H

h
(r)〉

)
=

1

2

∫
Ω(r)

ρ(r′)||ũh(r)− u(r′)||2whdΩ(r′) (4.17)

It is the locally averaged kinetic energy per unit mass of the fluctuating velocity field.
By direct filtering of the energy conservation law (2.9), a sub-grid term called turbulent

dissipation rate appears in the filtered energy balance equation. It is the rate at which tur-
bulent kinetic energy is converted to thermal internal energy of the system. This is defined
as

〈ρh(r)〉ε̃h(r) =

∫
Ω(r)

ρ(r′)νσ̂
h
(r′) : ∇′ûh(r′)dΩ(r′) (4.18)

where νeff is the effective kinematic viscosity and the small-scale dissipation function is
given as

νσ̂
h
(r) : ∇ûh(r) = −

∫
Ω(r)

νeff
(
〈ρh(r′)〉
ρ(r)

+
〈ρh(r)〉
ρ(r′)

)
||ũh(r)− u(r′)||2 (r− r′) · ∇ϕh

||r− r′||2
dΩ(r′)

(4.19)

It is important to note that the turbulent dissipation function satisfies the physical require-
ment that it be negative definite i.e. ε̃h ≤ 0.
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The integro-differential forms for the pressure (3.2) can be derived in a similar way.
With brevity this derivation will be omitted. The complete filtered differential and integro-
differential forms of the CNSEs can now be expressed as

d

dt
〈ρh(r)〉 = −〈ρh(r)〉∇ · ũh(r) (4.20)

d

dt
〈ph(r)〉 = −〈KS∇ · u, wh〉+ γα〈KS∇ · (κs∇p), wh〉 (4.21)

〈ρh〉
d

dt
ũh = 〈∇ · τ , wh〉 − ∇ · 〈Hh

〉+ 〈ρh〉b̃h (4.22)

dr

dt
= ũh(r) (4.23)

The filtered equations (4.20), (4.21), (4.22), (4.23) are not closed because the SGS tensor
contains unfiltered velocities. To overcome this closure problem several models including
the eddy viscosity model, Smagorinsky model and Germano dynamic model are widely used
in LES.

By proper choice of the FIT, we obtain an SPH model consistent with explicit LES where
the smoothed differential operators in (4.20), (4.21), (4.22) can now be expressed in integral
form as;

〈ρh(r)〉∇ · ũh(r) = −
∫

Ω(r)

ρ(r′) (ũ(r)− u(r′)) · ∇whdΩ(r′) (4.24)

∇ · 〈H
h
(r)〉 =

∫
Ω(r)

ρ(r′)(u(r′)− ũh(r))⊗ (u(r′)− ũh(r)) · ∇whdΩ(r′) (4.25)

〈∇ · τ , wh〉 =

∫
Ω(r)

τ(r′) · ∇whdΩ(r′) + Surface terms or S.T. (4.26)

∇ · (κs∇〈ph〉) = −2

∫
Ω(r)

(κs(r) + κs(r
′))[〈ph(r)〉 − p(r′)]

(r− r′) · ∇wh
||r− r′||2

dΩ(r′)

+ S.T. (4.27)

Using these integral operators, one can then invoke particle discretization using the SPH
quadrature: integrals are replaced by summations. Unfortunately, applying the FIT to the
CNSEs introduces additional variables: the number of variables is now doubled and therefore
the system is no longer closed. The most natural approach for closure is via approximate
deconvolution methods (ADM) as discussed in chapter 2.

4.2 Concept of Fluctuations and Filtering Regularization

Consider the fluid domain Ω to be unbounded or that supp(wh) ∩ ∂Ω = ∅, then the FIT of
proposition 3.4.1 can be expressed as follows.

Proposition 4.2.1 (FIT on unbounded domains). Let Ωh(r) be a locally compact space
within the fluid domain Ω. Then the filtered mass density, momentum density and pressure
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are given by the FIT; for each wh ∈ C∞c (Ωh)

〈ρh(r)〉 = ρ(r)−
∫

Ωh(r)

(
ρ(r)− ρ(r′)

)
wh(r− r′)dΩ(r′) ≡ ρ(r)− ρ̂h(r) (4.28)

ũh(r) = u(r)− 1

〈ρh〉

∫
Ωh(r)

ρ(r′)

(
u(r)− u(r′)

)
wh(r− r′)dΩ(r′) ≡ u(r)− ûh(r)

(4.29)

〈ph(r)〉 = p(r)−
∫

Ωh(r)

(
p(r)− p(r′)

)
wh(r− r′)dΩ(r′) ≡ p(r)− p̂h(r) (4.30)

Therefore, the FIT is an integral transform that filters out the local fluctuation field
{ρ̂h, ûh, p̂h} from the underlying disordered field {ρ,u, p} to generate a smooth field {〈ρh〉, ũh, 〈ph〉}.
The smoothing process prevents the production of small scale flow structures due to the fluc-
tuations {ρ̂h, ûh, p̂h}. Under the assumptions that the fluid particles are uniformly distributed
locally, the fluctuations may be taken to be small. However, one has to be cautious as this is
a very crude approximation. This special case is called the SPH golden rule. To prove this
claim, we first prepare the following theorem.

Definition 4.2.1 (Cauchy-Schwartz inequality). Let u, v be vectors in a vector space Ω with
an inner product. The Cauchy-Schwartz inequality states that

|u · v|| ≤ ||u||||v|| (4.31)

Proof. Assuming that v 6= 0, let λ ∈ C be given by λ := u · v/||v||2, then

0 ≤ ||u + λv||2

= ||u||2 − λu · v − λ(u · v) + λλ||v||2

= ||u||2 − |u · v|
2

||v||2

Therefore, |u · v| ≤ ||u||||v||.

Definition 4.2.2 (Lipschitz continuity). Let Ω be the fluid domain and Ωh(r) = {r, r′ ∈
Rn
∣∣ wh(r−r′) ≥ 0, ||r−r′|| ≤ h} the test space centered about r. A mapping Ψ : Rd → Rn

is Lipschitz continuous of Ωh(r) if ∃M ≥ 0 such that ∀r, r′ ∈ Ωh(r) ⊂ Ω

|ρ(r)− ρ(r′)| ≤M ||r− r′|| (4.32)

Proof. Define ϕ(s) : [0, 1] 7→ Ωh(r) in the following way:

ϕ(s) := r′ + (r− r′)s

This function is differentiable on (0, 1) and continuous on [0, 1] and so is the composite
function ρ ◦ ϕ. According to the mean value theorem for a single variable function, there
exists a ξ ∈ [0, 1] such that

(ρ ◦ ϕ)′(ξ) = (ρ ◦ ϕ)(1)− (ρ ◦ ϕ)(0)
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By the chain rule of composite functions, then the following result is obtained

ρ(r)− ρ(r′) = ∇ρ(ϕ(s)) · (r− r′)

|ρ(r)− ρ(r′)| ≤ ||∇ρ(ϕ(s))||||r− r′||

Then ∀r, r′ ∈ Ωh(r) ⊂ Ω, since the gradient of the fluid density is bounded, it follows that
∃M ≥ 0 so that ||∇ρ(ϕ(s))|| ≤M . We say that ρ is Lipschitz continuous with

|ρ(r)− ρ(r′)| ≤ ||∇ρ(ϕ(s))||||r− r′|| ≤M ||r− r′||

Theorem 4.2.1 (uniform continuity). If the fluid density ρ : Ωh(r) ⊂ Ω → R satisfies the
Lipschitz inequality ∀r, r′ ∈ Ωh(r) ⊂ Ω, then ρ is uniformly continuous.

Proof. ∃ε > 0 so that for h = ε/M , then ∀r, r′ ∈ Ωh(r) ⊂ Ω, ||r− r′|| < h implies that

|ρ(r)− ρ(r′)| ≤M ||r− r′|| = Mh = ε

Theorem 4.2.2 (convolution regularization). The filtering of the fluid density ρ : Ωh(r) ⊂
Ω → R by the convolution filter wh ∈ C∞c (Ω) yields the local density approximation 〈ρh〉 :
Ωh(r) ⊂ Ω→ R as given by the FIT. Then for all r ∈ Ωh(r), in the continuum limit

lim
h→0
〈ρh(r)〉 = ρ(r)⇐⇒ lim

h→0
ρ̂h(r)〉 = 0 (4.33)

uniformly.

Proof. Take h so that Ωh(r):=supp(wh) = {r, r′ ∈ Rn : ||r− r′|| ≤ h, wh ≥ 0}. We have

ρ̂h(r)
def
=

∫
Ωh(r)

(
ρ(r)− ρ(r′)

)
wh(r− r′)dnr′

|ρ̂h(r)| =
∣∣∣∣ ∫

Ωh(r)

ρ(r)− ρ(r′)wh(r− r′)dnr′
∣∣∣∣

≤
∫

Ωh(r)

|ρ(r)− ρ(r′)|wh(r− r′)dnr′

≤ uniform continuity

≤ ε

∫
Ωh(r)

wh(r− r′)dnr′

∴ |ρ̂h(r)| ≤ ε

By the filtering regularization theorem 4.2.2 above, it follows that if the local distribution
of fluid particles is uniformly continuous then the local density fluctuations are arbitrarily
small (vanishing in the continuum limit). In the next section we discuss one application of
the filtering regularization theorem as an SPH approximation rule.
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4.3 SPH approximation rules
In formulating SPH, Monaghan [16] proposed a number of approximation rules which are
collectively called the Golden Rules of SPH. Using these rules and the SPH quadrature, the
continuous hydrodynamic conservation laws (4.20), (4.21), (4.22) and (4.23) can be col-
located into discrete form; this is called particle discretization. This process transforms a
continuous fluid into a discrete fluid where the fluid particles transport all the physical infor-
mation such as fluid density [43].

In particular smoothed particle hydrodynamics is an example of a zeroth oder approxi-
mate deconvolution model. The zeroth order ADM implies that local fluctuations are negli-
gibly small such that

(1) for a clearer and coherent physical interpretation, Monaghan recommends using the
Gaussian as the convolution filter. With a compact support Ωh(r):=supp(wh) ≈ {r, r′ ∈
Rn : ||r − r′|| ≤ 3h} the Gaussian filter decays rapidly and has been shown to be ac-
curate compared to other filters [29]. Although long range interactions must strictly be
taken into account with this filter, they are negligibly small [44].

(2) By the filtering regularization theorem 4.2.2 above, provided that h is small, the second
Golden Rule of SPH states that

〈ρh〉 ≈ ρ, 〈ph〉 ≈ p, ũh ≈ u (4.34)

with order of accuracy O(h2) (see chapter 2) with the underlying assumptions that
the particle distribution on Ωh(r):=supp(wh) is uniformly continuous and Ωh does
not intersect the domain boundaries. Consequently, after particle discretization, the
convergence obtained does not remain as favorable. These approximations are very
crude [25],[45]. Furthermore, this inaccuracy will lead to difficulties in enforcing
essential boundary conditions.

(3) The local average of a product of two functions can be approximated by a product of
the individual function averages. Mathematically,

〈fg〉h ≈ 〈fh〉〈gh〉 (4.35)

The immediate consequence of assumptions (4.34) and (4.35) should not be generally ac-
ceptable in multi-scale computations [43]. Under this set of assumptions, the sub-grid stress
tensor given by definition (4.1.1) and the field fluctuations vanish. However, these contain
mechanical information at sub-grid scale. Just like in the explicit LES approach, in this ver-
sion of SPH the sub-grid stress tensor captures the effect of unresolved scales on large scale
motion (mean flow). Therefore, with the above set of assumptions classical SPH would be
unsuitable for simulating turbulent flows.

4.4 Choice of velocity smoothing
In recent years, Monaghan [46], [47] has pioneered the development of a turbulent model for
smoothed particle hydrodynamics called SPH−ε. Similar to Monaghan’s model, Hu et.al.
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[48] have recently proposed a model called SPH−σ. Due to the adopted velocity smoothing
approach in both models, they are fundamentally similar to the Lagrangian Averaged Navier-
Stokes, LANS-α model.

The choice of velocity smoothing is very important especially in the study of turbulence
as it leads to varying mathematical structure of the filtered equations. Here a comparison
of the velocity smoothing of Monaghan’s SPH−ε with the FIT proposed in this thesis are
compared.

û(r) = u(r)− ε
∫ (

u(r)− u(r′)

)
wh(r− r′)dr′ (4.36)

The parameter ε is a constant 0 ≤ ε ≤ 1. It can be shown that this smoothing approach is
similar to the one we propose in this paper. Consider the FIT for unbounded domains 4.2.1,

ũh = u(r)− 1

〈ρh(r)〉

∫
ρ(r′)

(
u(r)− u(r′)

)
wh(r− r′)dr′ (4.37)

which leads to the explicit Large Eddy Simulation (LES) model for compressible flows.
As a consequence of the choice of velocity smoothing, we inspect Monaghan’s SPH-

ε model in which their choice of velocity smoothing (4.36) as well as derivation from a
Lagrangian leads to a scalar turbulence term in the momentum given as

ρ0
d

dt
u(r) = − ε

2

∫
ρ(r′)|u(r)− u(r′)|2∇whdr′ (4.38)

which is the acceleration due to turbulence. This term only modifies the pressure and does
not contribute to the shear viscosity. On the other hand the SPS tensor quantity in our model
is a tensorial quantity given by definition (4.1.1). In particular, the turbulence acceleration in
this case is

〈ρh(r)〉
d

dt
ũh(r)

= −
∫

Ωh(r)

ρ(r′)(u(r)− ũh(r
′))⊗ (u(r)− ũh(r

′)) · ∇ϕhdΩ(r′) (4.39)

Therefore the turbulence term in our model takes into account flow directionality as it is a
tensor. On the other hand, (4.38) is a scalar (possibly because it was derived from a La-
grangian) and thus cannot take flow directionality into account. Moreover, it only modifies
the pressure term in the momentum equation without any contribution to the shear viscosity
that is known to dominate the molecular viscosity at high Reynolds number. It can then be
argued that Monaghan’s model, in its present form, cannot fully account for turbulent phe-
nomena. It is, however, clear that if the off diagonal terms in (4.39) are zero, the kernel is
normalized as it should and the fluid is incompressible then the two models are again similar.

Other forms of velocity smoothing techniques are possible. Unlike the FIT procedure
which appears unambiguous, the velocity smoothing can be defined in multiple other ways.
It may seem more natural to define the local velocity in the same structural form as the local
density and pressure such that

〈uh(r)〉 =

∫
Ωh(r)

uh(r
′)wh(r− r′)dnr′ (4.40)
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or a re-normalized form

〈uh(r)〉 =

∫
Ωh(r)

uh(r
′)wh(r− r′)dnr′∫

Ωh(r)
wh(r− r′)dnr′

(4.41)

While both definitions (4.40) and (4.40) are mathematically valid, they lack physical foun-
dation in principle. Moreover, they both introduce mass transfer due turbulence in the conti-
nuity equation leading to a closure problem.

4.5 Conclusion
The FIT has been successfully applied to the CNSEs to derive a set of filtered equations that
are consistent with explicit LES. Most importantly, the origin of the SGS tensor has been
clearly demonstrated. With a consistent set of filtered equations, closure models used in
LES schemes can be adopted for this version of SPH. However, the ADM discussed in this
chapter 2 is a much more natural choice for closure.

The correct way of moving the target particle under the influence of support particles
has also been given. Furthermore, an exact integral formula for the turbulent kinetic energy
has been derived from the SGS tensor whereas the associated turbulence dissipation rate has
been proposed, based on intuition and deeper understanding of the SPH concepts, without
giving any rigorous treatment.

Finally, the concept of fluctuations has been introduced in this chapter. A general conclu-
sion is that if the smoothing length h is sufficiently small and that local particle distribution
remains uniform throughout the time evolution of the system, then the fluctuations are arbi-
trarily small and can thus be neglected. In this case the filtered field and the disordered field
are approximately the same, hence no closure problem regarding the SGS tensor and other
aspects of the proposed SPH model.





Chapter 5

SPH consistent with implicit LES

De-filtering problem: The problem to be addressed in the section can be formally posed
as follows; Given the filtered equations governing the evolution of the local approximations
{〈ρh〉, 〈ph〉, ũh}, de-filter these averaged equations to find the integro-differential equations
governing the evolution of the underlying disordered field {ρ, p,u}. The goal of this de-
filtering process is to recover or restore the mechanical information at small scale that is
lost during the filtering process. Consequently, any turbulent phenomena will be implicitly
modeled in this approach. Therefore, the method will be referred to as SPH-i, where the i
means implicit; it signifies the fact that this version of SPH is consistent with implicit LES.

5.1 De-filtering the filtered CNSE

The DIT of proposition 3.4.2 is now applied to the filtered equations to reconstruct the orig-
inal flow field provided that the local approximation {〈ρh〉, 〈ph〉, ũh} still contains enough
mechanical information that a de-convolution filter can recover the original underlying field
{ρ, p,u}.

In SPH, the target particle moves with the filtered or smoothed velocity. In the context
of the proposed SPH-i, the target particle moves with the de-filtered velocity. Consider a
test particle located at position r having a test space Ωh(r). Let there be a support material
particle located at r′ so that r′ ∈ Ωh(r). We define the velocities on this locally compact
space as

unsmoothed or target particle:
dr

dt
= u(r), support particle:

dr′

dt
= ũh(r

′) (5.1)

Consider the filtered continuity equation given by (4.20). To de-filter it, we first consider
the continuum point r′ with a test space Ωh(r

′) for all r′ ∈ Ωh(r). Using the locally averaged
variables on Ωh(r

′), the de-filtered continuity equation is then tested with the deconvolution
filter as given below.∫

Ωh(r)

{
d

dt
〈ρh(r′)〉+ 〈ρh(r′)〉∇′ · ũh(r′)

}
ϕh(r− r′)dΩ(r′) = 0,

∀wh ∈ C∞0 (Ωh),
∃ϕh ∈ C∞0 (Ωh) (5.2)

59
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This can be rearranged into suitable form yielding∫
Ωh(r)

{
d

dt

(
〈ρh(r′)〉ϕh

)
+

(
〈ρh(r′)〉ϕh

)
∇′ · ũh(r′)

}
dΩ(r′),

=

∫
Ωh(r)

〈ρh(r′)〉
d

dt
ϕh(r− r′)dΩ(r′) (5.3)

In this form, Reynold’s Transport Theorem 4.1.1 is applied to the left hand side and the chain
rule of differentiation to the right hand side. Accordingly,

d

dt

∫
Ωh(r)

〈ρh(r′)〉ϕh(r− r′)dΩ(r′)

=

∫
Ωh(r)

〈ρh(r′)〉
d

dt
ϕh(r− r′)dΩ(r′)

=

∫
Ωh(r)

〈ρh(r′)〉
{
dr

dt
· ∇ϕh +

dr′

dt
· ∇′ϕh

}
dΩ(r′)

=

∫
Ωh(r)

〈ρh(r′)〉 {u(r) · ∇ϕh + ũh(r
′) · ∇′ϕh} dΩ(r′)

=

∫
Ωh(r)

〈ρh(r′)〉
(
u(r)− ũh(r

′)

)
· ∇ϕhdΩ(r′)

d

dt
ρ(r) =

∫
Ωh(r)

〈ρh(r′)〉
(
u(r)− ũh(r

′)

)
· ∇ϕhdΩ(r′) (5.4)

where the anti-symmetry property of the deconvolution gradient∇′ϕ = −∇ϕ has been used
to simplify the above.

Further transformation of (5.4) into differential form leads to the canonical point form of
the continuum continuity equation.

Proof. We begin by unplugging the space derivatives from the integral in (5.4) and using the
DIT of proposition 3.4.2 to get

d

dt
ρ(r) = u(r) · ∇

∫
Ωh(r)

〈ρh(r′)〉ϕh(r− r′)dΩ(r′)

−∇ ·
∫

Ωh(r)

〈ρh(r′)〉ũh(r′)ϕh(r− r′)dΩ(r′)

= u(r) · ∇ρ(r)−∇ ·
(
ρ(r)u(r)

)
by the DIT

= −ρ(r)∇ · u(r) (5.5)

and we recover the point form of the continuum continuity equation. Furthermore, the de-
filtered material derivative becomes

d

dt
=

∂

∂t
+ u · ∇ (5.6)
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Note that (5.4) and (5.5) both represent the continuum form of the continuity equation.
This equivalence immediately leads to the following corollary.

Corollary 5.1.1 (de-filtered velocity divergence). Due to the equivalence of (5.4) and (5.5),
the velocity divergence in a continuum can be calculated as an integral

ρ(r)∇ · u(r) = −
∫

Ωh(r)

〈ρh(r′)〉
(
u(r)− ũh(r

′)

)
· ∇ϕhdΩ(r′) (5.7)

We emphasize that (5.7) is the most fundamental result of the de-filtering process. It will
be used to generate integral representations of the pressure gradient and divergence of the
stress tensor by the variational principle.

5.1.1 De-filtered momentum equation
De-filtering the smoothed momentum (4.22) is a bit more involving than that of the continu-
ity equation due to the presence of sub-grid stresses. It is prudent to clearly demonstrate how
the SGS tensor vanishes after the de-filtering process. Consequently, any sub-scale phenom-
ena will be implicitly modeled- a concept that underpins the development of implicit LES
models. With this understanding, the proposed SPH-i model does not require any turbulence
modeling (the i in SPH-i signifies that any turbulent phenomena is implicitly captured).

First consider a fluid particle at the continuum point r′ with a test space Ωh(r
′) for all

r′ ∈ Ωh(r). The filtered momentum equation is then tested with the deconvolution kernel∫
Ωh(r)

{
〈ρh(r′)〉

d

dt
ũh(r

′)− 〈∇′ · τ(r′), wh〉+∇′ · 〈H
h
(r′)〉+

〈ρh(r′)〉b̃h(r′)
}
ϕ(r− r′)dΩ(r′) = 0 ∀wh ∈ C∞c (Ωh),

∃ϕh ∈ C∞c (Ωh) (5.8)

which can be re-written as∫
Ωh(r)

〈ρh(r′)〉
d

dt

(
ũh(r

′)ϕh

)
dΩ(r′) =

∫
Ωh(r)

〈ρh(r′)〉ũh(r′)
dϕh
dt

dΩ(r′)

+

∫
Ωh(r)

∇′′ · τ(r′′)

(∫
Ωh(r′)

wh(r
′′ − r′)ϕ(r− r′)dΩ(r′)

)
dΩ(r′′)

−
∫

Ωh(r)

∇′ · 〈H
h
(r′)〉ϕ(r− r′)dΩ(r′)

+

∫
Ωh(r)

〈ρh(r′)〉b̃h(r′)ϕ(r− r′)dΩ(r′) (5.9)

note use of the completeness statement 3.44 to simplify the second on the right hand side.∫
Ωh(r)

〈ρh(r′)〉
d

dt
(ũh(r

′)ϕh) dΩ(r′) =

∫
Ωh(r)

〈ρh(r′)〉ũh(r′)
d

dt
ϕhdΩ(r′) + ρ(r)b(r)

+

∫
Ωh(r)

∇′′ · τ(r′′)δ(r− r′)dΩ(r′′)−
∫

Ωh(r)

∇′ · 〈H
h
(r′)〉ϕ(r− r′)dΩ(r′) (5.10)
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Once again by applying the Reynold’s transport theorem 4.1.1 we obtain

d

dt

∫
Ωh(r)

〈ρh(r′)〉ũh(r′)ϕhdΩ(r′) =

∫
Ωh(r)

〈ρh(r′)〉ũh(r′)
d

dt
ϕhdΩ(r′)

+∇ · τ(r)−
∫

Ωh(r)

∇′ · 〈H
h
(r′)〉ϕ(r− r′)dΩ(r′) + ρ(r)b(r) (5.11)

By further applying the DIT to the left hand side and the chain rule of differentiation to
the first term on the right hand side the following simplified integro-differential equation is
obtained.

ρ(r)
du(r)

dt
= −

∫
Ωh(r)

〈ρh(r′)〉(u(r)− ũh(r
′))⊗ (u(r)− ũh(r

′)) · ∇ϕhdΩ(r′)

−
∫

Ωh(r)

∇′ · 〈H
h
(r′)〉ϕ(r− r′)dΩ(r′) +∇ · τ(r) + ρ(r)b(r) (5.12)

The next step is to show that the first and second terms on the right hand side of (5.12)
add to zero by noting the following; By expanding the integrand in the first term and applying
the DIT yields∫

Ωh(r)

〈ρh(r′)〉(u(r)− ũh(r
′))⊗ (u(r)− ũh(r

′)) · ∇ϕhdΩ(r′)

= ∇ ·
(∫

Ωh(r)

〈ρh(r′)〉ũh(r′)⊗ ũh(r
′)ϕ(r− r′)dΩ(r′)− ρ(r)u(r)⊗ u(r)

)
(5.13)

Furthermore, using Gauss’ theorem it easy is to show that the second term transforms to∫
Ωh(r)

∇′ · 〈H
h
(r′)〉ϕ(r− r′)dΩ(r′)

= −∇ ·
(∫

Ωh(r)

〈ρh(r′)〉ũh(r′)⊗ ũh(r
′)ϕ(r− r′)dΩ(r′)− ρ(r)u(r)⊗ u(r)

)
+

∫
∂ΩΓ(r)

n̂(r′) · 〈H
h
(r′)〉ϕ(r− r′)dν−1Γ(r′) (5.14)

where ∂ΩΓ(r) is the surface that bounds the test space Ωh(r). Therefore, plugging (5.13)
and (5.14) into (5.12)

ρ(r)
du(r)

dt
= ∇ · τ(r) + ρ(r)b(r) +

∫
∂ΩΓ(r)

n̂(r′) · 〈H
h
(r′)〉ϕ(r− r′)dν−1Γ(r′) (5.15)

In particular if the fluid domain Ω is bounded by the surface ∂Ω, then provided that
∂ΩΓ(r)∩ ∂Ω = ∅, then the surface integral above is identically zero since ϕ = 0 on ∂ΩΓ(r)
by construct. Close to the boundary this assumption does not hold and the surface integral
must be taken into account.
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5.1.2 Momentum Conserving DIT for the Stress Tensor
Linear momentum conservation is fundamental to the long term stability of numerical algo-
rithms. The SPH-i model is non-conserving, but momentum conserving integral operators
can be constructed by sacrificing energy conservation. The energy will only be conserved
in an approximate sense. Here we construct momentum conserving integral operators for
the stress tensor. For a general and rigorous approach for dissipative systems, the reader is
referred to [49].

For a continuum of fluid contained within the domain Ω, we can define the total energy
of the hydrodynamic system as

E =

∫
Ω

(
1

2
||u||2 + u

)
ρdΩ (5.16)

where u is the specific internal energy of the system.
With the help of the Reynolds transport theorem, the rate of change of the total energy is

given as

d

dt
E =

∫
Ω

(
ρ
du

dt
· u + ρ

du

dt

)
dΩ

=

∫
Ω

(∇p · u− p∇ · u) dΩ (5.17)

If we now substitute for∇ · u from (5.7), and with further simplifications we obtain

d

dt
E =

∫
Ω

(
∇p · u− p

ρ

∫
Ωh(r)

〈ρh(r′)〉
(
u(r)− ũh(r

′)

)
· ∇ϕhdΩ(r′)

)
dΩ (5.18)

Using the FIT on unbounded domains of proposition 4.2.1, we can simplify (5.18) as

d

dt
E =

∫
Ω

(
∇p−

∫
Ωh(r)

(
p(r)

ρ(r)
〈ρh(r′)〉+

p(r′)

ρ(r′)
〈ρh(r)〉

)
∇ϕhdΩ(r′) · u(r)

)
dΩ

+

∫
Ω

p(r)

ρ(r)
∇ ·
∫

Ωh(r)

〈ρh(r′)〉ûh(r′)ϕhdΩ(r′)dΩ (5.19)

If we make an assumption that momentum transfer due to turbulent fluctuations is negligible,
then the second term in (5.19) can be neglected. Therefore, energy is conserved under such
conditions. Consequently, as the fluid domain Ω is arbitrary, we have

G(p|ϕ) = ∇p =

∫
Ωh(r)

(
p(r)

ρ(r)
〈ρh(r′)〉+

p(r′)

ρ(r′)
〈ρh(r)〉

)
∇ϕhdΩ(r′) (5.20)

The de-filtering integral transform for the pressure gradientG(p|ϕ) is clearly anti-symmetric,
thus momentum conserving, and is variationally consistent with the integral transform for the
velocity divergence D(u|ϕ) defined below.

D(u|ϕ) = ∇ · u(r) = − 1

ρ(r)

∫
Ωh(r)

〈ρh(r′)〉
(
u(r)− ũh(r

′)

)
· ∇ϕhdΩ(r′) (5.21)
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Similar momentum conserving de-filtering integral transforms for the divergence of the de-
viatoric stress tensor D(µ, σ|ϕ) and the Laplacian of the pressure L(κs, p|ϕ) can be con-
structed. With brevity this procedure is omitted but the result is given below.

D(µ, σ|ϕ) := ∇ · σ

=

∫
Ωh(r)

(
σ(r)

ρ(r)
〈ρh(r′)〉+

σ(r′)

ρ(r′)
〈ρh(r)〉

)
· ∇ϕhdΩ(r′) (5.22)

L(κs, p|ϕ) := ∇ · (κs∇p)

=
1

2

∫
Ωh(r)

[(
〈κsh(r) + 〈κsh(r′)

)(
p(r)− p(r′)

)
+

(
κs(r) + κs(r′)

)(
〈ph(r)〉 − 〈ph(r′)〉

)]
(r− r′) · ∇ϕh
||r− r′||2

dΩ(r′) (5.23)

5.2 De-filtered SPH Model
The de-filtered SPH, SPH-i, model is a complete model resulting from the application of
the DIT to the filtered CNSEs. Unlike the SPH which uses the zeroth order deconvolution
method, SPH-i is based on the general deconvolution method. The mathematical procedure
is shown below; steps [1]∼[3] is the convolution operation on the fields {ρ, p,u} to produce
local approximations {〈ρh〉, 〈ph〉, ũh}. For completeness, in steps [4]∼[6] a deconvolution
operation is dynamically performed on the local approximations to reconstruct the original
continuum field {ρ, p,u}. We also use the de-filtering integral operators (5.20), (5.21)and
(5.23)

[1] smoothed mass density

〈ρh(r)〉 =

∫
Ωh(r)

ρ(r′)wh(r− r′)dΩ(r′)

.
= ρ(r)−

∫
Ωh(r)

(
ρ(r)− ρ(r′)

)
wh(r− r′)dΩ(r′) (5.24)

[2] smoothed pressure

〈ph(r)〉 =

∫
Ωh(r)

p(r′)wh(r− r′)dΩ(r′) (5.25)

.
= p(r)−

∫
Ωh(r)

(
p(r)− p(r′)

)
wh(r− r′)dΩ(r′) (5.26)

[3] smoothed velocity

ũh(r) =
1

〈ρh(r)〉

∫
Ωh(r)

ρ(r′)u(r′)wh(r− r′)dΩ(r′) (5.27)

.
= u(r)− 1

〈ρh(r)〉

∫
Ωh(r)

ρ(r′)

(
u(r)− u(r′)

)
wh(r− r′)dΩ(r′) (5.28)
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[4] de-filtered continuity equation

dρ

dt
= −ρD(u|ϕ) (5.29)

[5] de-filtered pressure equation

κs(p)
dp

dt
= −D(u|ϕ)

+ γαL(κs(p), p|ϕ)− αL
(

1

ρ
, ρ|ϕ

)
(5.30)

[6] de-filtered momentum equation

ρ
du

dt
= −G(p|ϕ) +D(µ, σ|ϕ) +G

(
σ|ϕ
)

+ ρb (5.31)

[7] moving the particles

dr

dt
= u(r) (5.32)

To get the discrete forms we just replace integrals by summations. The reader must
also see that the differential forms of the above are the original compressible Navier-Stokes
equations.

The predictor-corrector integration proposed by Monaghan [50] is adopted. This scheme
is implemented as follows;

(1) prediction step

〈ρhi 〉n+1/2 = ρni −
∆t

2
ρniDi(u

n, ũnh, 〈ρh〉n, ρn|ϕn)− ρ̂i(ρn|wn)

〈phi 〉n+1/2 = pni +
∆t

2

(
−Ks

iDi(u
n, ũnh, 〈ρh〉n, ρn|ϕn)

+Ks
i γαLi(κ

n
s , 〈ph〉n, pn|ϕn)− αKs

iLi (〈ρn〉n, ρ|ϕn)

)
− p̂i(pn|wn)

ũ
h,n+1/2
i = uni +

∆t

2

(
− 1

ρn
Gi(p

n, 〈ρi〉n, ρn|ϕn) +
1

ρn
Di(σ

n, 〈ρh〉n, ρn|ϕn) + g

)
− ûi(u

n|wn)

ρ
n+1/2
i = ρni −

∆t

2
ρniDi(u

n, ũnh, 〈ρh〉n, ρn|ϕn)

p
n+1/2
i = pni +

∆t

2

(
−Ks

iDi(u
n, ũnh, 〈ρh〉n, ρn|ϕn)

+Ks
i γαLi(κ

n
s , 〈ph〉n, pn|ϕn)− αKs

iLi (〈ρn〉n, ρ|ϕn)

)
u
n+1/2
i = uni +

∆t

2

(
− 1

ρn
Gi(p

n, 〈ρi〉n, ρn|ϕn) +
1

ρn
Di(σ

n, 〈ρh〉n, ρn|ϕn) + g

)
(5.33)
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(2) correction step

〈ρhi 〉n+1/2 = ρni −
∆t

2
ρ
n+1/2
i Di(u

n+1/2, ũ
n+1/2
h , 〈ρh〉n+1/2, ρn+1/2|ϕn+1/2)

− ρ̂i(ρn+1/2|wn+1/2)

〈phi 〉n+1/2 = pni +
∆t

2

(
−Ks,n+1/2

i Di(u
n+1/2, ũ

n+1/2
h , 〈ρh〉n+1/2, ρn+1/2|ϕn+1/2)

+ γαK
s,n+1/2
i Li(κ

n+1/2
s , 〈ph〉n+1/2, pn+1/2|ϕn+1/2)

− αKs
iLi
(
〈ρn+1/2〉n+1/2, ρ|ϕn+1/2

))
− p̂i(ρn+1/2, pn+1/2|wn+1/2)

ũ
h,n+1/2
i = uni +

∆t

2

(
− 1

ρn+1/2
Gi(p

n+1/2, 〈ρi〉n+1/2, ρn+1/2|ϕn+1/2)

+
1

ρn+1/2
Di(σ

n+1/2, 〈ρh〉n+1/2, ρn+1/2|ϕn+1/2) + g

)
− ûi(u

n+1/2, 〈ρh〉n+1/2|wn+1/2)

ρ
n+1/2
i = ρni −

∆t

2
ρ
n+1/2
i Di(u

n, ũnh, 〈ρh〉n+1/2, ρn+1/2|ϕn+1/2)

p
n+1/2
i = pni +

∆t

2

(
−Ks,n+1/2

i Di(u
n+1/2, ũ

n+1/2
h , 〈ρh〉n+1/2, ρn+1/2|ϕn+1/2)

+ γαK
s,n+1/2
i Li(κ

n+1/2
s , 〈ph〉n+1/2, pn+1/2|ϕn+1/2)

− αKs,n+1/2
i Li

(
〈ρn+1/2〉n+1/2, ρ|ϕn+1/2

))
u
n+1/2
i = uni +

∆t

2

(
− 1

ρn+1/2
Gi(p

n+1/2, 〈ρ〉n+1/2, ρn+1/2|ϕn+1/2)

+
1

ρn+1/2
Di(σ

n+1/2, 〈ρh〉n+1/2, ρn+1/2|ϕn+1/2) + g

)
r
n+1/2
i = rni + ∆tun+1/2 (5.34)

(3) finally, the values are calculated at the end of the time step following:

〈ρh〉n+1
i = 2ρ

n+1/2
i − ρni − ρ̂n+1

i

〈ph〉n+1
i = 2p

n+1/2
i − pni − p̂n+1

i

ũn+1
i = 2u

n+1/2
i − uni − ûn+1

i

ρn+1
i = 2ρ

n+1/2
i − ρni

pn+1
i = 2p

n+1/2
i − pni

un+1
i = 2u

n+1/2
i − uni

rn+1
i = rni + ∆tun+1/2 (5.35)

Based on this scheme, an in-house 2D code was developed from the scratch initially in
Fortran and subsequently in the C environment. The code later partially parallelized using
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openMP multi-threading. An open source package called libnabo was used for neighbor
search. it is a fast K Nearest Neighbor (KNN) library based on kd-tree. However, as the
code is not fully parallel, a simulation time of 10s with say 45,000 particles would run for 21
hours on a 4 nodes of the HPC cluster in our university. Note also that compared to standard
SPH, the computational cost for our SPH-i algorithm is twice greater since processes are
involved; filtering and de-filtering.

5.3 Conclusion
In this paper a new method called de-filtered smoothed particle hydrodynamics SPH-i has
been proposed as a complete form of Smoothed Particle Hydrodynamics. Outlined below
are the fundamental differences between the two methods.

(1) Resolution of identity.
This is the main objective of both methods. It has been shown that SPH is incomplete
as it uses the convolution operator to approximate identity with equality only achieved
in the continuum limit; this is practically impossible. On the other hand, SPH-i uses
two commuting operators that are inverse operators to exactly resolve identity. In this
sense SPH-i is complete.

(2) Closure problem
When a proper smoothed velocity is chosen, SPH and LES solve the same governing
equations. Therefore, SPH has the same closure problem as LES in that we have more
variables than the number of equations. Closure models are needed to express the de-
filtered quantities in terms of the smoothed quantities. On the other hand, SPH-i is a
complete model with no closure problems.

(3) turbulent flows
Standard SPH follows the LES [51] or LANS-α[47][48] approach (depending on the
formulation) in simulating turbulence whereas SPH-i is fundamentally a DNS ap-
proach since no approximations beyond the Navier-Stokes equations are assumed. Us-
ing the proposed SPH-imodel, turbulent flows can be simulated without the additional
complication of turbulence modeling.

(4) Particle motion
In the SPH context, the smoothed SPH particle moves with averaged physical prop-
erties {〈ρh〉, 〈ph〉, ũh} and this particle is moved by dr/dt := ũh. On the other had,
the unsmoothed SPH-i particle moves with its individual disordered physical attributes
given by the continuum field {ρ, p〉,u} and this particle is moved by du/dt := u.

Furthermore, a general approach for constructing compatible convolution and deconvolution
filter pairs on R2 has been proposed. The same ideas can easily be adopted to construct filter
pairs on R3. We then conjecture that if spatial averages vary negligibly over a range of length
scales then the convolution-deconvolution operators may be used to construct convolution
and deconvolution filters. We have proposed a new class of compactly supported rational
convolution filters (approximate Gaussian filters) from which approximate deconvolution
filters were constructed by means of ADM.
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As an alternative to the widely popular choice of using an equation of state for pressure,
in this paper we propose a dynamic equation for updating the pressure; it admits both liquids
and gases. Under the assumptions of isentropic flow, however, it has been shown that this
equation reduces to an equation of state. From a purely computational perspective, by using
an equation for pressure, the pressure can be updated at the same time as the density and
velocity. Constructed as an alternative to the δ-SPH proposed in[7], it provides an implicit
mechanism for filtering high frequency pressure oscillations, a feature that is absent in the
widely used simple equation of state.



Chapter 6

Solid Boundary Treatment

Modeling solid boundary conditions remains an open problem in standard SPH. Unlike
mesh-based approaches, it is currently not possible to directly and rigorously implement
solid boundary conditions. Boundary conditions influence the accuracy of SPH, thus limit-
ing the application of SPH to engineering problems.

6.1 Arbitrary boundaries

There are two main approaches for enforcing solid boundary conditions; the dynamic bound-
ary condition and repulsive boundary condition. The dynamic boundary condition uses ghost
or mirror particles outside the computational domain to implement the no-penetration bound-
ary condition. However, this approach does not entirely prevent fluid particles escaping from
the domain through the solid boundary. While the repulsive boundary condition can ade-
quately prevent particle penetration, it causes truncation of the support domain of the fluid
particles leading to pressure oscillations. By coupling the dynamic boundary condition with
a repulsive force, Shao et.al [52] reported an improvement in the implementation of the solid
boundary.

When a fluid particle is in the vicinity of a solid boundary, its physical properties should
not change and it must not penetrate through; this is the no-penetration boundary condition.
A particle near the wall still has physical properties such as density. In the context of particle
methods, this is not particularly easy to implement.

6.2 Purely repulsive boundary force models

The solid boundary is modeled by a single layer of boundary particles with fixed mass, den-
sity and zero pressure. Their positions are fixed unless otherwise the solid boundary is mov-
ing. As a fluid particle approaches the solid boundary, the repulsive force becomes stronger
with decreasing distance from the boundary. The earliest such model was the Lennard-Jones
potential proposed by Monaghan [16] in his seminal work that he introduced SPH to free-
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surface flow modeling.

f(rij) =

 D

[(
r0
||rij ||

)12

−
(

r0
||rij ||

)4
]

rij
||rij || , ||rij|| ≤ r0

0 otherwise
(6.1)

where ||rij|| is the separation distance between fluid particle i and boundary particle j. The
boundary layer or cut off length r0 is generally chosen as the initial particle spacing. The
parameter D is problem dependent; for dam break problems, for instance, it is chosen to
be gd where d is the still water level. As can be seen from (6.1) the force acts along the
line of sight between the two interacting particles. When a fluid particle is so close to the
boundary particle, it feels a very large force which may disturb the flow. Further, to model
slip boundary conditions boundary particles must be taken into account when calculating
viscous forces. Due to the truncation of the support domain of fluid particles by the solid
boundary, the boundary disturbs the density and pressure of nearby particles. These distur-
bances may enhance, leading to instabilities which may affect the evolution of the system
in the long term. Another problem with this model is that the boundary force is radial; it is
not constant when a fluid particle is moving at fixed distance from the boundary. This has a
ripple effect on the fluid flow.

To address the drawbacks of the Lennard-Jones model, recently, Monaghan [53] has
proposed an alternative model in which the resultant force on a fluid particle due to the
boundary remains perpendicular to boundaries with negligible error. The force per unit mass
is given as

f(rij) =

{
K
β

rij
||rij ||2W

(
||rij ||
h

)
2mi

mi+mj
, ||rij|| ≤ r0

0 otherwise
(6.2)

Here, the parameter β ensures that when the spacing between boundary particles is changed
the resultant force on a fluid particle is invariant. If, for instance, the spacing is halved,
the number of boundary particles is doubled but this is then mitigated by β being twice as
great. Monaghan recommends that the spacing between boundary particles relative to fluid
particles should be β ∼ 3 to guarantee that (i) the tangential force relative to the normal
force and (ii) the relative variation in normal force for a fixed distance above the boundary
are both negligibly small (< 10−5). The other parameter K is set to the typical velocity
in the simulation; as such, it is problem dependent. The kernel Wij can be any smoothing
function. In [53] Monaghan uses the Wendland kernel.

Another recent radial boundary force model was proposed by Shao et.al [52].

fij := K

(
1− ||rij||

r0

)
f(η)

rij
||rij||2

, η =
rij

0.75||rij||2
, 0 < ||rij|| < r0 (6.3)

f(rij) =


2
3

, 0 < η ≤ 2
3

(2η − 1.5η2) , 2
3
< η ≤ 1

0.5(2− η)2 , 1 < η ≤ 2
0 otherwise

(6.4)

Unlike the Lennard-Jones molecular force, this improved soft repulsive force model can
prevent unphysical particle penetration without any observable pressure disturbances.
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The above forces are not truly physical as they are not related to the direction and magni-
tude of the velocity field although they can successfully prevent particle penetration through
the boundary.

6.3 Damped repulsive boundary force model
The radial boundary force models in the preceding section are all repulsive and nonlinear. It
is possible to introduce linear force models which may not disturb the flow significantly. As
fluid particles interact with solid boundaries, the interactions are not perfectly elastic. There-
fore, the solid boundary is not only repulsive, it should also slow down the approaching fluid
particles. The simplest way to take these two features of physical bodies into account is to
use viscoelastic springs that damp out relative motion between fluid and boundary particles.

The objective is then to study a constrained problem where we want to derive a damped
boundary force model such that a fluid particle i and a boundary particle j are at least a
distance r0 apart. For fluid particle i, we first determine the list of near neighbor boundary
particles j ∈ N(i). To solve this problem a potential V s is introduced as follows;

V s(||rij||) =

{ ∑
i=1

∑
j∈N(i)

1
2
ksij (||rij|| − r0)2 , ||rij|| < r0

0 , otherwise
(6.5)

where ksij are the stiffness coefficients for each interaction pair. Furthermore, for this elastic
system, the Lagrangian can easily be written down.

L =
∑
i=1

1

2
mi||ui||2 − V s(||rij||) (6.6)

for all ||rij|| ≤ r0.
As the boundary is dissipative, the Rayleigh dissipation function that depends on relative

position and velocity of the particles is introduced.

F d =
∑
i=1

∑
j∈N(i)

1

2
Kd

ij
(rij) : uij ⊗ uij (6.7)

which implicitly depends on the relative position rij := ri − rj with explicit dependence on
the relative velocity uij := ui − uj . The damping tensor Kd

ij
is assumed to be dependent

on the radial position for each interaction pair (i, j). From purely mechanical arguments no
conclusion can be drawn about the symmetries of Kd

ij
and ksij with respect to the particle

indexes i and j. Methods of statistical physics, however, make it possible to rigorously
demonstrate that in all physically possible scenarios [54]

Kd

ij
= Kd

ji
ksij = ksji (6.8)

There are many possible choices for the damping tensor, but for the purposes of this work
the following form is used.

Kd

ij
=

1

2
kdij

rij ⊗ rij
||rij||2

(6.9)



72 Solid Boundary Treatment

Therefore, the resultant force experienced by a fluid particle i due to the influence of a set
of near neighbor boundary particles N(i) can be determined by solving the Euler-Lagrange
equations of motion.

d

dt

(
∂L

∂ui

)
− ∂L

∂ri
= −∂F

d

∂ui
(6.10)

Then the force exerted on fluid particle i is given by

fi := mi
d

dt
ui = −

∑
j=N(i)

ksij (||rij|| − r0)
rij
||rij||

−
∑
j=N(i)

kdij
uij · rij
||rij||2

rij (6.11)

with the force vanishing for ||rij|| ≥ r0. Next, for fluid particles i = 1, 2, 3, ...,N the total
energy lost or gained from an applied force is defined through the line integral along each
particle’s trajectory C.

W =
∑
i=1

∫
Ci

fi · dri =
∑
i=1

∫ t

t0

fi · uidt (6.12)

Then the rate of work done induced by the boundary forces on the fluid can be computed
with the help of Euler’s theorem of homogeneous functions and the fundamental theorem of
calculus to give the following important result.

Ẇ =
d

dt

∑
i=1

∫ t

t0

fi · uidt

=
∑
i=1

fdi · ui

= −
∑
i=1

∂F d

∂ui
· ui

∴ Ẇ = −2F d ≤ 0 (6.13)

The minus sign is due to the force and velocity acting in opposite directions. Furthermore,
since the dissipation function is non-negative F d ≥ 0, the damped boundary forces will
slow down an approaching, accelerating fluid particle by damping out its energy. The second
important feature of the boundary force model (6.11) is to constrain the fluid particles to be at
least a distance r0 from the boundary by minimizing the behavior function Cij := ||rij||− r0

to zero. Thirdly, the dissipative component of the force projects the relative velocity onto the
relative position meaning that it does not damp rigid body rotations.

Determining the stiffness and damping coefficients for a complex system is a very chal-
lenging problem. Generally, these coefficients will be determined by trial and error. How-
ever, a seemingly good approximation for the damping coefficients that does not over dissi-
pate the mechanical energy of the fluid body can be found. In this work, assuming homo-
geneity, it is computed as

kdij ≡ kd
.

=
mBν

∆r2
B

(6.14)

where ν is the kinematic viscosity, mB is the mass of a boundary particle and ∆rB is interval
over which the boundary forces act i.e. boundary layer thickness.



Chapter 7

Power Balance

This chapter presents a study of the thermo-mechanical power delivered to a fluid body. A
decomposition of this input power is made to separate useful power and power loss compo-
nents. For wave energy harvesting purposes, it is this useful power that can be harnessed
into electrical energy. The respective power terms are then presented in terms of the SPH-i
model at both the continuum and discrete levels.

7.1 General
The first law of thermodynamics states that the rate of change of the total energy stored in
a system must balance the sum of the net mechanical power delivered or extracted from the
system by the environment and the rate at which any other energy enters the system. There
are many forms in which energy can be stored including; mechanical motion, elastic energy,
heat flux, electromagnetic currents etc. In this work only the interplay between mechanical
power, elastic energy and heat will be considered.

A fluid domain Ω bounded by a surface ∂Ω is considered as the fluid body. To study the
power delivered to this fluid body, we start with the CNSEs given by equations (2.7), (2.8)
and (2.9). If we multiply the momentum conservation law (2.8) by u and integrate over the
fluid domain Ω, we obtain∫

Ω

ρ
d

dt

(
1

2
||u||2

)
dΩ =

∫
Ω

ρb · udΩ +

∫
Ω

(
∇ · τ

)
· udΩ (7.1)

where b is the body force per unit mass. With further application of vector calculus, the
divergence theorem, Reynolds’ transport theorem and the energy conservation law (2.9) to
the second term in (7.1), we arrive at the balance

d

dt

∫
Ω

(
1

2
||u||2 + u

)
ρdΩ =

∫
Ω

ρb · udΩ +

∫
∂Ω

τ : u⊗ n̂dS −
∫
∂Ω

q · n̂dS (7.2)

The left hand side of the balance (7.2) is the rate of change of the total energy of the fluid
contained in the fluid body Ω. The internal energy U is expressed in terms of the internal
energy density u which includes both elastic energy and also heat. The exact form of the
elastic energy depends on the specific mechanical behavior of a material. The power balance
(7.2) shows that the rate at which work is done to the fluid body Ω includes the power
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delivered to it by body and surface forces, while the heat flux vector q estimates the amount
of heat flowing out of the system. Thus, the thermo-mechanical power input to the system is
given as

Pin =

∫
Ω

ρb · udΩ +

∫
∂Ω

τ : u⊗ n̂dS −
∫
∂Ω

q · n̂dS

=

∫
Ω

ρb · udΩ +

∫
Ω

∇ ·
(
τ · u

)
dΩ +

∫
Ω

∇ · (k∇T ) dΩ (7.3)

assuming Fourier’s heat conduction law q := −∇T holds.

7.2 Decomposition of the input power
The input power is decomposed into useful power and power loss terms due to viscosity and
heat outflow. The power terms are further represented at the continuum level using the SPH-i
model.

(1) Power delivered by body forces

Pbf
in =

∫
Ω

ρb · udΩ (7.4)

(2) Power delivered by normal stresses

Pnf
in = −

∫
Ω

∇ · (pu) dΩ

= −
∫

Ω

∫
Ω

(
p(r)u(r)

ρ(r)
〈ρh(r′)〉+

p(r′)u(r′)

ρ(r′)
〈ρh(r)〉

)
· ∇ϕhdΩ(r′)dΩ(r) (7.5)

(3) Power delivered by shear stresses

Pvf
in =

∫
Ω

∇ ·
(
σ · u

)
dΩ

=

∫
Ω

∫
Ω

(
σ(r) · u(r)

ρ(r)
〈ρh(r′)〉+

σ(r′) · u(r′)

ρ(r′)
〈ρh(r)〉

)
· ∇ϕhdΩ(r′)dΩ(r)

(7.6)

(4) Heat outflow through the control surface

Phf
in :=

∫
Ω

∇ ·
(
γk

β
κs∇p

)
dΩ

=

∫
Ω

∫
Ω

γk

β

(
κs(r) + 〈κsh(r′)

)(
p(r)− 〈ph(r′)〉

)
(r− r′) · ∇ϕh
||r− r′||2

dΩ(r′)dΩ(r)

(7.7)
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The power term Phf
in estimates the heat flowing out of the system and is thus not useful for

wave energy harvesting purposes. Similarly, the power term Pvf
in is a power dissipation term.

Therefore the useful power for wave energy harvesting purposes can be defined as

Pin = Pbf
in + Pnf

in + Pvf
in + Phf

in (7.8)

Puseful
in = Pbf

in + Pnf
in (7.9)

7.3 Decomposition of the viscous power delivered

The velocity gradient or deformation tensor is made up of two parts; symmetric and anti-
symmetric components.

∇u =
1

2

(
∇u +∇uT)+

1

2

(
∇u−∇uT)

= S + Ω (7.10)

where S is the strain rate tensor and Ω is the rotation rate or vorticity tensor. It can be shown
that the vorticity tensor is made up of the components of the vorticity vector ω such that

ωγ = εαβγΩαβ Ωαβ =
1

2
εαβγωγ ω = ∇× u (7.11)

where εαβγ is the Levi-Civita symbol. The vorticity tensor Ω may occur without change in
volume and without shear deformation. It gives the rotation rate of the center of mass of a
fluid particle.

For the discussion that follows, we prepare the following identities.

||ω||2 = ∇u : ∇u−∇u : ∇uT (7.12)

∇u : ∇u = ∇2

(
1

2
||u||2

)
−∇ · (∇u) · u (7.13)

∇u : ∇uT = ∇2

(
1

2
||u||2

)
−∇ · (∇u) · u− ||ω||2 (7.14)

Ω : ∇u =
1

2
||ω||2 (7.15)

These identities can be proved as follows;
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identities.

||ω||2 = εαβγ∂αu
βeγ · ενµλ∂νuµeλ

= εαβγενµγ∂αu
β∂νu

µ

=
(
δανδβµ − δαµδβν

)
∂αu

β∂νu
µ

= ∂αu
β∂αu

β − ∂αuβ∂βuα

= ∇u : ∇u−∇u : ∇uT

∇2

(
1

2
||u||2

)
= ∂α∂α

(
1

2
uβuβ

)
= ∂α

(
uβ∂αu

β
)

= ∂αu
β∂αu

β + ∂α
(
∂αu

β
)
uβ

= ∇u : ∇u +∇ · (∇u) · u

Ω : ∇u =

[
1

2

(
∇u−∇uT

)
: ∇u

]
=

1

2

(
∇u : ∇u−∇u : ∇uT

)
=

1

2
||ω||2

Using the definition of σ given by (2.10) and the above identities, the dissipation function
σ : ∇u can be expressed as

σ : ∇u = µ
(
∇u : ∇u +∇uT : ∇u

)
− 2

d
µ(∇ · u)1 : ∇u

= µ

[
2∇2

(
1

2
||u||2

)
− 2∇ · (∇u) · u− ||ω||2

]
− 2

d
µ(∇ · u)2 (7.16)

It then follows that the specific power ∇ ·
(
σ · u

)
delivered by viscous forces to the fluid

body becomes

∇ ·
(
σ · u

)
=
(
∇ · σ

)
· u + σ : ∇u

=
(
∇ · σ

)
· u− 2µ∇ · (∇u) · u + µ

[
2∇2

(
1

2
||u||2

)
− ||ω||2

]
− 2

d
µ(∇ · u)2

= ∇ ·
(
σ − 2µ∇u

)
· u + µ

[
2∇2

(
1

2
||u||2

)
− ||ω||2

]
− 2

d
µ(∇ · u)2

= −2µ
(
∇ · Ω

)
· u + 2µ∇2

(
1

2
||u||2

)
− µ||ω||2 − 2

d
µ∇ · (u∇ · u) (7.17)

Therefore, the power delivered to the fluid body by viscous forces, in decomposed form,
takes the following form;∫

Ω

∇ ·
(
σ · u

)
dV = −2µ

∫
Ω

(
∇ · Ω

)
· udV + 2µ

∫
Ω

∇2

(
1

2
||u||2

)
dV

− 2µ

∫
Ω

1

2
||ω||2dV − 2

d
µ

∫
Ω

∇ · (u∇ · u) dV (7.18)
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Next, equation (7.16) can be reshaped as;

Pvfin = PΩ
in + Pfsin + Pωin (7.19)

where the terms on the right-hand side are;

Pfsin = 2µ

∫
Ω

[
∇2

(
1

2
||u||2

)
− 1

d
∇ · (u∇ · u)

]
dV (7.20)

= 2µ

∫
∂Ω

n̂ ·
[
∇
(

1

2
||u||2

)
− u∇ · u

]
dS

PΩ
in = −2µ

∫
Ω

(
∇ · Ω

)
· udV (7.21)

= 2µ

∫
Ω

E : u⊗∇ωdV in 2D

Pωin = −2µ

∫
Ω

1

2
||ω||2dV (7.22)

where the tensor E, in the basis set {e1, e2, e3} and the 2D vorticity ω = ωe3 is define as

E :=
1

2

(
e1 ⊗ e2 − e2 ⊗ e1

)
(7.23)

The power terms Pfsin is linked to the motion of the domain boundaries ∂Ω = ∂ΩFS ∪
∂ΩSB; here ∂ΩFS is the free surface and ∂ΩSB is a moving solid boundary. The volume
integral Pωin is the power delivered to the fluid body due to enstrophy while PΩ

in is the power
linked to the local rotation of the fluid particles.

By invoking the SPH quadrature, the power components above can be represented at the
discrete level under the SPH-i approach. This procedure is called particle discretization.
Here i represents the target or test fluid particle whereas N(i) 3 j is the set of nearest
neighbor fluid particles to particle i. The mass element is defined as mi := ρidVi.

Pbf
in=̇

N∑
i=1

mig · ui (7.24)

Pnf
in=̇−

∑
i=1

∑
j=1

mimj

ρiρj

(
piui
ρi
〈ρhj 〉+

pjuj
ρj
〈ρhi 〉

)
· ∇iϕ

h
ij (7.25)

Pvf
in=̇

∑
i=1

∑
j=1

mimj

ρiρj

(
σ
i
· ui
ρi
〈ρhj 〉+

σ
j
· uj
ρj
〈ρhi 〉

)
· ∇iϕ

h
ij (7.26)

Phf
in=̇

∑
i=1

∑
j=1

mimj

ρiρj

γk

β

(
κsi + 〈κsj)

)(
pi − 〈phj 〉

)
rij · ∇iϕ

h
ij

||rij||2
(7.27)





Chapter 8

Free-Surface Flow validation Tests

8.1 Hydrostatic pressure in a water tank

The hydrostatic pressure problem is one of the fundamental benchmark test cases in SPH. For
many traditional SPH approaches it is a challenging problem to obtain a stable, regularized
pressure field [6][55]. The set for this numerical simulation is as shown in figure 8.1. The
numerical water tank has a square shape of side 1m. It is filled with fluid particles to a height
of h0 = 0.3m and a pressure probe point P is placed yp = 0.06m above the bottom. With
a zero reference pressure on the free surface, the hydrostatic pressure at the probe point P is
given by p = ρ0g(h0−yp) = 2354.4Pa. The initial particle spacing is set at dx = dy = 0.01m
so that the total number of fluid particles is N = 100 × 30 = 3000 while the average
number of nearest neighbor is fixed at Nn = 19. The density is initialized to the rest value
ρ0 = 1000Kgm−3 whereas the pressure and velocity are initially set to zero. As discussed
in section 3.7, the compact support radius in units of h is then ξ =

√
Nn/4π = 1.23. The

smoothing length is thus h = ξ∆x = 0.0123m.
The solid boundary treatment is enforced by the proposed damped boundary force model

with a damping coefficient of kd = 0.10606Nsm−1 and a stiffness coefficient of ks =
0.06065Nm−1 for each particle.

The thermal diffusivity and kinematic viscosity were respectively α = 0.015m2s−1 and
ν = 1.0× 10−6m2s−1. A suitable time step for the time integration was ∆t = 1.0× 10−5s

Figure 8.2 shows a snapshot of the pressure filed obtained by the SPH−i model at time

dx

L = 1m

H
=

0.
3m

Figure 8.1: numerical water tank setup.
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Figure 8.2: Snapshot of the pressure field at time t = 15s obtained by the SPH−i model.

(a) Pressure time history (b) Total kinetic energy

Figure 8.3: Time history of the pressure at the probe point P (y = 0.06m) obtained by the
SPH−i model in 8.3a. Here 8.3b is the total kinetic energy of the fluid.

t = 15s. In order to check the long term numerical stability, the simulation was allowed
to run for an extended time of t = 15s. It is observed that SPH−i model gives a smooth
pressure distribution.

A time history of the pressure at the probe point P is as shown in figure 8.3a and 8.4a.
Initially there is a time lag of about 0.5s during which time gravity squeezes the fluid down.
However, pressure gradients quickly build up, and together with boundary forces counter-
balances the gravitational push. Thus the fluid adjusts to a new equilibrium position through
an oscillation mode. The SPH−i models clearly preserves hydrostatic pressure equilibrium
for long-time simulations as can be seen in figure 8.4a. This also indicates that the diffusion
terms in the pressure equation can effectively smooth out numerical noise in the pressure
field. Furthermore, the kinetic energy asymptotically decays to zero as shown in figure 8.3b.
At finite times, however, the kinetic energy is small but non-zero. Therefore, the fluid parti-
cles will tend to oscillate about their mean positions; consistent with a physical system.
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(a) Pressure time history (b) Error

Figure 8.4: Time history of the pressure at the probe point P (y = 0.06m) obtained by the
SPH−i model in 8.4a. Here 8.4b is the residual between the numerical and exact solutions.

In some SPH models the hydrostatic pressure profile slowly diverges from the numerical
solution at long-time simulation [6]. This is attributed to numerical diffusion in those mod-
els. To ascertain the possibility of any instability build-up due to numerical diffusion, the
simulation was allowed to progress for a much long time as shown in figure 8.4.

8.2 Dam break on a dry bed

The second test case that was considered in this work is the violent shallow water breaking
wave process generated by a dam break in a finite domain. It is one of the fundamental
benchmark problems in the numerical study of free surface flows. The dam break flow is a
highly nonlinear, complex phenomena that is characterized by large free surface deformation,
splash up and multiple breaking events. Figure 8.5 shows a schematic diagram of the experi-
ment reported in [56] of which the experimental data was obtained from Chen et.al. [6]. This
experiment has been widely used in literature for numerical validations (refer to [6, 7, 57])
with comparisons made using various SPH models with varying degrees of accuracy. As
discussed in [57], the dam break problem has several characteristic features including (i) ir-
rotational fluid deformation (ii) water impact on vertical wall, (iii) backward plunging jet
formation, (iv) several splashing cycles, (v) final sloshing flow regime, and (vi) adjustment
to an hydrostatic equilibrium. The computational domain is of width W = 1.6m and the
water column is initially set at L ×W = 0.6m × 0.3m. The initial spacing between fluid
particles is dr = 0.002m and in total N = 45, 000 particles were used in the simulation. The
average number of near neighbors was fixed at 91; chosen so as to minimize numerical dissi-
pation attributable to filtering/de-filtering processes. Following the discussion in section 3.7,
the compact support radius in units of h is then ξ =

√
Nn/4π = 2.69. The smoothing length

is thus h = ξ∆x = 0.00538m. The sound speed was reduced to cs = 10
√

2gH , thermal
diffusivity α = 0.00015m2s−1 and kinematic viscosity ν = 1.0× 10−6m2s−1 were used. To
guarantee long term stability of the time integration a time step of ∆t = 1.0 × 10−5s was
chosen. In the experiment a circularly shaped pressure gauge of diameter 9cm(≈ 0.15H)
located on the vertical wall with center at 0.267H above the deck as shown in figure 8.5 was
used to record the pressure time history at the probe point P.

For this test case, the Reynolds number, Re = H
√
gH/ν, was 5.1 × 105 at a spatial
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W = 1.6m

L = 2H

H
=

0.
3m

P

Figure 8.5: Initial set up of the numerical dam break problem.

resolution H/dx = 150. For the initial conditions on the field values, the fluid density was
set to its rest value ρ0 = 1000Kgm−3 while the pressure and velocity were all initialized to
zero.

The time evolution of the dam break flow is depicted in figure 8.6 along with the asso-
ciated turbulent kinetic energy and turbulent dissipation rate. Initially the flow is practically
uniform so that any turbulent fluctuations are negligibly small as discussed in proposition
4.2.2. Therefore, up until t = 0.425s both turbulent kinetic energy and the associated turbu-
lence dissipation rate are negligibly small except near solid boundaries (see figure 8.6a and
8.6h). After the moving front hits and momentarily interacts with the right wall, turbulent
kinetic energy is gradually produced (see figure 8.6b) and is quickly dissipated (see figures
8.6i). After impact with the right wall, a backward plunging jet is formed. As the plung-
ing jet impinges on the free surface, at t = 1.100s, significant turbulent kinetic energy is
produced (see figure 8.6c) and is quickly dissipated (see figure 8.6j). At times t = 1.550s
and t = 1.625s, due to the collapse of entrapped cavities, more turbulent kinetic energy is
produced and quickly dissipated . For t > 1.625s small secondary splash-ups develop, and
finally flow enters a shallow water sloshing regime.

The plots in figure 8.7 show pressure plots obtained numerically by SPH−i compared
with experimental data [56]. As intuitively expected [7], when the moving front hits the
vertical wall on the right, an impulse in the pressure is recorded at non-dimensional time
t
√
g/H ' 2.4 and the numerical simulation by SPH−i recovers the measurements relatively

well.
All free -surface flow simulations with SPH−i were single phase with density ratio

ρY /ρX = 0. The entrapment of air in the developing cavity as the plunging jet impinges
on the interface introduces an air-pressure field that differs from the free-surface case. Co-
lagrossi and Landrini [7] performed numerical simulations with their free surface and two-
phase SPH models (see figure 8.8) and the free surface simulation by SPH−i is shown in
figure 8.7.

The backward plunging jet induces a second peak and in the experiment this occurs at
t
√
g/H ' 5.8. This phenomena corresponds to the formation of a closed cavity and is

here discussed by the pressure contours figure 8.8 for ρY /ρX = 0.001 and 0 (top-right and
bottom-left plots, respectively) and in the case of the proposed SPH−i in figure 8.7 (top-
right and bottom-left plots, respectively). In the free surface cases, the air-cushion effect
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(a) t = 0.425s

(b) t = 0.700s

(c) t = 1.100s

(d) t = 1.250s

(e) t = 1.550s

(f) t = 1.625s

(g) t = 2.275s

(h) t = 0.425s

(i) t = 0.700s

(j) t = 1.100s

(k) t = 1.250s

(l) t = 1.550s

(m) t = 1.625s

(n) t = 2.275s

Figure 8.6: Production and dissipation of turbulence in shallow water breaking waves, Re =
5.1× 105. Turbulent kinetic energy (left) and turbulent dissipation rate (right) at seven time
instants.
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Figure 8.7: Dam break flow and impact against a vertical wall.Top left: pressure evolution
on the wall; free-surface simulation by SPH−i and experimental data from [56]. Bottom:
free surface-flow configurations corresponding to peaks at t

√
g/H ' 6.4 and t

√
g/H ' 8.0

in the pressure evolution left and right respectively. Color: non-dimensional pressure field
P/ρgH at two time instants.

is not observed which may account for the delayed pressure rise in the free surface flow
cases since there is a fast circulatory flow around the entrapped cavity shown in the bottom-
right plots of figures 8.8 and 8.7. Figure 8.9a shows the wave front just before impact with
the vertical wall. The angle between the free surface and the bottom boundary is small
∼ 10◦. For such small angles, an asymptotic solution based on linear wave theory [44] can
be used for validation. The wave front moves with a velocity of about Umax = 1.95

√
gH ,

the maximum pressure peak predicted by this theory is Pmax = 0.7ρ0U
2
max = 2.67ρ0gH . To

compare this value with the SPH−i, a pressure probe P0 was placed at the bottom corner on
the right wall. Figure 8.9b shows the pressure time history obtained from the SPH−i model.
It is clear that the maximum pressure computed from the SPH−i model is very close to the
asymptotic solution.

8.3 Periodic wave breaking on a plane slope

Modeling of breaking waves is an important topic in coastal and marine engineering; under-
standing the energetics of breaking waves is fundamental to predicting the damage caused
by breaking waves, tsunamis etc.

The type of wave profile converter that is proposed in this project is a rotating propeller
that converts wave energy into rotational energy. A number of these rotating propellers are
placed in the surf zone, near the wave breaking point. The fast forward current flow around
the wave crest collides with wave energy converters (WECs), making the propellers to rotate
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Figure 8.8: Dam break flow and impact against a vertical wall.Top left: pressure evolu-
tion on the wall; solid line: two-phase simulation; dashed line: free-surface simulation from
[7];(•) experiments from [58]. Top right: air water-flow configuration, ρY /ρX = 0.001,
corresponding to the pressure peak A in the pressure evolution. Bottom: free surface-flow
configurations corresponding to peaks B and C in the pressure evolution left and right re-
spectively.

(a)

(b)

Figure 8.9: (8.9a):Fluid flow just before impact against the vertical wall. Particles are col-
ored using the magnitude of the velocity field. (8.9b):shows the time history of SPH−i
pressure signals evaluated at the probe point P0.



86 Free-Surface Flow validation Tests

Figure 8.10: Wave Power Plant. Credit to my supervisor prof.Shintake for the schematic.

for the duration of wave breaking. Once the wave crest has passed, the propellers stop
rotating until the next breaking wave arrives and so the generated electric power is pulsed.
Under the uniform flow assumption, the accessible power of water within the plunging jet
can be approximated by using the equation below.

P =
1

2
ρSū3 (8.1)

where ρ = 1000 Kgm−3 is water density, S is the surface area swept through by the propellers
and ū is the mean velocity of water. One characteristic feature of equation(8.1) is that wave
power is proportional to the cube of fluid velocity in a way similar to wind power. Since
water has a high density, high wave power can be extracted especially with the fast flow
around the crest.

The generated unregulated AC power is rectified into DC power which is then temporar-
ily stored in a super-capacitor bank. By further converting the DC power into AC power
using power inverters, the stabilized AC line power is fed into the power grid. The power in-
verters offer dynamic reactive power control that helps maintain the reliability and integrity
of the electric power grid. Regardless of whether there are ocean waves or not the power
inverters will provide reactive power continuously. Therefore, installing these inverters on
our small scale renewable energy storage system will improve voltage regulation.

Standard SPH is conceptually based on the same principle as explicit LES and therefore
turbulence modeling is required. Turbulence modeling is of particular concern in modeling
breaking wave phenomena. The first turbulence model for SPH was proposed by Gotoh [51].
Lo and Shao [59] first developed an ISPH-LES model while Dalrymple and Rogers[60][61]
further employed the SPH for breaking waves on a beach. A comprehensive review of the
various turbulent models developed for SPH was conducted by Issa and Violeau [62]. They
found the results to be generally satisfactory and that improvements are necessary by inves-
tigating the free-surface influence and wall conditions. Shao and Changming [63] devised a
2D SPH-LES model to investigate plunging waves. With their model they found the compu-
tations to be in good agreement with documented data. The computed turbulence quantities
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Figure 8.11: Schematic diagram of experimental set-up courtesy of Mahmoudi et.al [64]

Table 8.1: Wave breaker classification

Breaker type ξ0-Range ξb-Range

collapsing ξ0 > 3.3 ξb > 2.0
plunging 0.5 < ξ0 < 3.3 0.4 < ξb < 2.0
spilling ξ0 < 0.5 ξb < 0.4

under breaking waves agreed better with experiments when compared with k − ε models.
An important observation arising from their work is that both the turbulence model and the
spatial resolution play a fundamental role in the model predictions; with sub-particle effects
becoming less significant with particle refinement.

To study the wave breaking phenomena, the SPH-i model developed in this work will be
used. Comparisons with experimental data will be made.

When waves propagate in shallow water, they are influenced by shoaling effects due to
the increase in wave height as water depth decreases. To investigate the breaking process,
the experimental data from [64] will be used for benchmarking. In their experiment the wave
propagation breaking process was recorded using a high speed camera placed normal to the
glass walls of the wave flume. A schematic of the experiment set-up is shown figure 8.11.
where H0 is the wave height in deep water, Hb is the wave height at the break point i.e. edge
of the surf zone and (ξ0, ξb) is the iribarren number.

There are three types of breaking waves; spilling, plunging and surging. The iribarren
number, defined below, is used for classifying the breaking waves. These are summarized in
table 8.1. In this research plunging and spilling cases of periodic waves breaking on a plane
slope were simulated. The initial particle water depth h0 = 0.2m was used in all cases. The
initial particle spacing was dx = dy = 0.005m leading to a total number of fluid particles
N = 27, 160. The average number of near neighbors was fixed at 91; chosen so as to
minimize numerical dissipation attributable to filtering/de-filtering processes. Following the
discussion in section 3.7, the compact support radius in units of h is then ξ =

√
Nn/4π =

2.69. The smoothing length is thus h = ξ∆x = 0.00538m.The stiffness and damping
constants were fixed at ks = 0.00589Nm−1 and kd = 00002912Nsm−1.

Table 8.2: Parameter set-up for breaking wave test cases

Simulation case Wave height Wave period Stroke Average Power

case 1 0.0664 1.8 0.127 6.81
case 2 0.0758 2.7 0.224 9.52
case 3 0.07 1.14 0.08 6.25



88 Free-Surface Flow validation Tests

ξ0 =
tanα√
H0/L0

or ξb =
tanα√
Hb/L0

(8.2)

In SPH, there are two types of wavemakers are generally used; piston-type and flap-
type. The piston wavemaker is used in this thesis. It is represented by a vertical column of
boundary particle whose horizontal displacement, according to linear wave theory, is given
by

x(t) =
S

2
sin(ωt) (8.3)

where S is called the stroke i.e. the amplitude of the paddle oscillation. The oscillation
frequency of the piston should be identical to the frequency of the generated waves. This
type of wavemaker will generate a wave of height H provided that the stroke and wave
height satisfy the following relation

H

S
= 2

cosh(2kh0)− 1

sinh(2kh0) + 2kh0

(8.4)

which is the transfer function of the wave paddle. Here h0 is the local fluid depth at the
wavemaker or deep water depth. Fenton and McKee [65] derived an approximate equation
for computing the wavelength of the generated waves

L = L0

(
tanh

(
2πh0

L0

) 3
4
) 2

3

L0 =
gT 2

2π
(8.5)

in which L0 is the deep water wavelength and L is the shallow water wavelength. From
extended practical experience with this project, it was found that the paddle motion given by
(8.3) could not lead to very stable simulations results. Therefore, for all test cases presented
in this thesis the paddle motion was enforced according to the following

x(t) =
S

2

(
1− cos(ωt)

)
(8.6)

By prescribing {T, h0,H}, the wavemaker can be setup by solving equations (8.5), (8.4)
and (8.6). The speed of sound for determining the incompressibility modulus is obtained by
c0 = 10

√
gh0 and the kinematic viscosity is taken as ν = 1.0×10−6m2/s, thermal diffusivity

ν = 0.015m2/s and adiabatic index γ = 7.
Figures 8.12 and 8.12 illustrates the plunging and splash-up processes of a periodic

breaking wave whose physical parameters are respectively specified by case 1 and case 2
given in table 8.2. On the right-hand side are the snapshots taken using a high speed camera
during laboratory experiments conducted by Mahmoudi et. al [64] while the SPH-i results
are shown on the left hand side.

When waves propagate on a slope, wave shoaling occurs due to decreased water depth.
The wave front continuously steepens until breaking occurs. As the wave propagates with
phase velocity vp =

√
gH , until breaking when when the fluid velocity ||u|| exceeds the

phase velocity i.e. ||u|| ≥ vp.
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(a) (b) t = 12.28s

(c) (d) t = 12.44s

(e) (f) t = 12.48s

(g) (h) t = 12.56s

(i) (j) t = 12.68s

(k) (l) t = 12.80s

Figure 8.12: Dissipation for a shallow water breaking wave. Kinetic energy density at eight
time instants for case 1.
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(a) (b) t = 14.80s

(c) (d) t = 14.88s

(e) (f) t = 14.92s

(g) (h) t = 15.36s

Figure 8.13: Dissipation for a shallow water breaking wave. Kinetic energy density at four
time instants for case 2.
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The comparison between experimental and SPH-i results shows that the SPH-i model
was able to successfully simulate the plunging breaking wave. In the initial set up of the
breaker figures (8.12b),(8.12d) and (8.12f) is the on-set of turbulence. As the plunging jet
hits the water surface, a splash-up process is generated; this leads to the formation of a
turbulent bore that propagates towards the shore. This process is associated with high shear
stress generated around the point of impact hence high turbulent kinetic energy is generated.
Furthermore, as the wave undergoes breaking the kinetic energy of the fluid increases (see
figure 8.12). It is this increase in kinetic energy that can be used to harness energy from the
breaking wave.

The average power required to generate the waves for case 1, as shown in table 8.2
is 6.81W. Using equation (7.8), the instantaneous power delivered to the fluid body was
computed and is shown in figure 8.14.

Figure 8.14: Instantaneous power delivered to fluid body Ω

The instantaneous power is a sinusoidal signal with period of T = 1.8s and amplitude of
about Pm = 10W. Furthermore the average power over each half cycle can be computed as

P i =
2

T

∫ T
2

0

Pm sin

(
2π

T
t

)
dt (8.7)

≈ 6.37W

which compared well with the value given in table 8.2

8.3.1 Turbulent production and dissipation of breaking waves
During the wave breaking process, wave power is dissipated due to various mechanisms
including (i) turbulent dissipation (ii) viscous dissipation and (iii) boundary dissipation. Fig-
ure 8.15 depicts periodic waves undergoing the wave breaking process on a plane slope and
the associated specific kinetic energy 1

2
||ui||2 of each fluid particle at time t = 5.68s. As

the wave approaches the breaking point, fluid velocity ui approaches and exceeds the phase
velocity c =

√
gH . During this phase, the kinetic energy of the fluid increases, particu-

larly around plunging jet. During this energy transformation process, an increase in kinetic
energy is accompanied by an in increase in turbulent kinetic average k̃h given by equation
(4.17), as shown in figure 8.16. However, as soon as the turbulent kinetic energy is produced,
it is quickly dissipated. Figure (8.17) shows the turbulent dissipation rate, computed from
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Figure 8.15: Kinetic energy of breaking waves. Color: Specific kinetic energy of each
particle 1

2
||ui||2

D∼ m2s−2 at time t = 5.68s.

Figure 8.16: Turbulent kinetic energy production of breaking waves. Color: density
weighted turbulent kinetic energy k̃h

D∼ m2s−2 at time t = 5.68s.

equation (4.18). As the wave approaches the breaking point, some of the wave energy is
transformed into turbulent kinetic energy.

8.3.2 Viscous dissipation of breaking waves

Another important dissipation mechanism for a shallow water breaking wave is viscous dis-
sipation. Figure 8.18 shows the time history of the power due to enstrophy Pω and is asso-
ciated to the vorticity. Until time t = 2.8s, the power Pω is negligible. At the plunging jet
closure t = 5.8s, as the intensity of the vorticity field increases, the power term Pω is no
longer negligible. The power term Pω attains its maximum value at the instant the plunging

Figure 8.17: Turbulent dissipation dissipation of breaking waves. Color: density weighted
local turbulent dissipation rate average ε̃h

D∼ m2s−1 at time t = 5.68s.
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Figure 8.18: Viscous dissipation of shallow breaking waves. Time history of the power Pω.

impinges on the free surface, as the cavity collapses. The effect of air entrapment in these
cavities would have an effect on the intensity of the power dissipation and thus a two phase
model must be considered for higher fidelity of the numerical solution.

8.3.3 Mechanical power delivered to the surf zone
In order to develop suitable engineering device for harnessing energy from breaking waves,
it is important to study and quantify the amount of power available. For applications in
shallow water, wave energy can be extracted from breaking waves in the surf zone. Figure
8.19a shows a schematic diagram of the numerical wave flume for case 1. A much lower
resolution of dx = dy = 0.01m was used as the initial particle spacing of fluid particles on
a rectangular grid. In the figure, Ω is the fluid domain whereas Ωb is a control volume in the
surf zone. The goal is to compute the instantaneous power P(Ω) and P(Ωb) delivered to the
fluid body and the control volume, respectively. Figure 8.19b shows a snapshot of the wave
prior to breaking. To compute the power transfer to the control volume, a particle identifier
ψ was defined: if a fluid particles enters Ωb then it attains a marker value ψ = 1 otherwise it
will retain the initial value of ψ = 0. In figure 8.19b the fluid particles are colored using the
marker ψ.

Figure 8.20 shows a plot of the instantaneous power terms P(Ω) and P(Ωb) delivered to
the fluid body Ω and the control volume Ωb, respectively. Since the waves are generated at
a wave period of T = 1.8s, the power P(Ω) will be also be delivered to the fluid body Ω
at this same period. Furthermore, power pulses will be registered in the control volume Ωb

whenever a wave is incident on Ωb. Hence, the control volume power pulse P(Ωb) will also
have a period of T = 1.8s as can be seen in figure 8.20.

Prior to breaking, dissipative mechanisms do not significantly dissipate wave power.
However, during and after the breaking process much of the wave power will be dissipated
via several mechanisms. Similarly, the pulses of the mechanical energy are registered is the
control volume Ωb at the same period as the incoming waves T = 1.8s. As the waves ap-
proach the break point, kinetic energy increases and there is a fast forward current around
the plunging jet. Therefore, by placing a suitable wave energy converter (WEC) under a
breaking wave, the wave power P(Ωb) can be harnessed into electrical energy; directly in



94 Free-Surface Flow validation Tests

(a)

(b)

Figure 8.19: (8.19a):Numerical simulation set up for case 1 with fluid domain Ω and surf
zone control volume Ωb. (8.9b):shows the breaking wave at time t = 4.88s. Particles are
colored using a tag ψ = 1 if a fluid particle is in Ωb and a tag of ψ = 0 otherwise.

(a)

(b)

Figure 8.20: Instantaneous power for the breaking wave of case 1 at time t = 4.88s where
8.20a is SPH−i instantaneous power and 8.20b is the model fit using Matlab’s fitting tools.
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Figure 8.21: Time history of the total kinetic energy E(Ω) and the kinetic energy E(Ωb) of
waves in the control volume Ωb.

Figure 8.22: Simulation of case 1 with a smooth artificial breaker inserted in the topography.
Particle color based on particle type: 1 for fluid particle, 2 for fixed boundary particle, 3 for
moving boundary particle, 4 for ghost particle and 5 for solid particles.

the case a WEC based on high efficiency blade technology.

8.3.4 Effect of artificial wave breaker

Figure 8.22 shows the breaking wave test case 1 with a smooth breaker inserted in the to-
pography as shown. The effect of the breaker on the wave breaking process is depicted in
figure 8.23. Compared to the case with no breaker in the topography (see figures 8.16, 8.17
and 8.18) the waves feel the effect of the bottom topography at a much earlier time. Thus,
the breaker tends to shift the breaking point away from the shore, as would be expected. The
size of the breaker obviously matters.
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(a) t = 4.252 (b) t = 4.452

(c) t = 4.652 (d) t = 4.752

(e) t = 4.802 (f) t = 5.02

Figure 8.23: Effect of an artificial smooth breaker. Color: kinetic energy density at six time
instants for case 1.
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Figure 8.24: Schematic diagram of the experimental setup in [1]

8.4 Mixing process in near-field dam-break flows

The next validation test case to be considered is the dissipation for a shallow water breaking
wave due to a dam break process. This free surface flow problem is a standard benchmark
test for numerical methods in CFD. It has significant impact on ecosystems downstream and
may cause serious environmental damage due to the associated production of (energetic)
breaking waves and flooding [1]. The goal of this section is to study the mixing process
set up by the collapse of a dam onto a wet bed downstream. The proposed SPH−i model
is applied with special attention paid to the mixing process during the onset of a breaking
wave.

Janosi [1] et.al. (2004) conducted experiments to study the interaction between two fluid
bodies in a dam-break process. The experimental setup comprises a long wave flume with a
dam upstream and a wet bed downstream as shown in figure 8.24. They also demonstrated
that the flow is essentially two-dimensional and hence the effects of the side walls are negli-
gibly small.

To simulate this problem the above setup would be computationally expensive as the
number of fluid particles would be very large. As the maximum recorded time during the
actual experiment was 0.6s, it was suggested in [66] to use a shorter downstream channel of
2.5m and this would not have any adverse effects on the simulation results.

The SPH particles were placed on a rectangular grid with initial particle spacing ∆r =
0.002m and initial density ρ0 = 1000Kgm−3 so that the mass of each fluid particle wasm0 =
2Kgm−1. The average number of near neighbors was fixed at 91; chosen so as to minimize
numerical dissipation attributable to filtering/de-filtering processes. Following the discussion
in section 3.7, the compact support radius in units of h is then ξ =

√
Nn/4π = 2.69. The

smoothing length is thus h = ξ∆x = 0.00538m. The thermal time step dominated the choice
of time step and was set at ∆t = 2.0×10−6s to guarantee stability of the numerical solution.
The pressure and velocity were all initialized to zero at the start of the simulation.

The gate separating the two water bodies was modeled by a set of boundary particles
using the viscously damped boundary force model proposed in chapter 6. The stiffness and
damping coefficients were respectively set as ks = 0.000589Nm−1 and kd = 0.002Nsm−1

for each particle. The gate was moved at a constant speed to mimic the removal procedure
employed in the physical experiment. Furthermore, the fluid bodies were distinguished by a
assigning a flag of −1 to the downstream particles and +1 for the upstream particles. This
enables a clear detection of the mixing interface which manifests as the separation between
the flagged particles.

In the first experiment the wet bed height is set at d = 0.015m. Figure 8.25 shows that
the proposed SPH−i model is able to successfully reproduce the mixing patterns observed
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in the breaking wave propagation as the gate was gradually moved up. As the gate starts
to gradually move up, due to the higher hydrostatic pressure at the bottom, the upstream
fluid particles in the bottom are ejected towards the downstream. On the other hand the
downstream fluid is still at rest, hence blocking the approaching upstream fluid. Collision of
the moving front with the resting fluid in the ambient layer creates an upthrust in the form
of a breaking wave, with free surface breaking occurring in both the forward and reverse
directions. The formation and evolution of the plunging jet is captured with reasonable
accuracy when compared with snapshots from the experiment. At t = 0.1962s the mixing
interface is relatively vertical but it slowly tilts towards the downstream direction as the
breaking wave propagates downstream. The formation of the plunging jet was first reported
by Stansby et.al. [67].

effect of ambient layer: the presence of a shallow ambient layer of fluid in the downstream
channel has an important influence on the flow behavior, even for a very small ambient
depth d. The next experiment investigates the effect of the wet bed downstream on the flow
properties with five ambient depths of d = 0.005m, 0.015m, 0.058m and 0.070m. Figure
8.26 shows a qualitative comparison of the experimental and numerical predictions at time
t = 0.3s.

For very small ambient depths, the potential energy of the wet bed fluid is much less
than that of the fluid upstream. Therefore, as the moving front of the upstream fluid collides
with ambient fluid upon release of the gate, due to high kinetic energy, a strong upthrust
is recorded. This effect leads to the quick formation of a propagating bore for depths d =
0.005m, 0.015m. For these three depths, it can be further observed that the plunging wave
column consists mainly of the upstream fluid, with a comparatively smaller ambient fluid
layer. Furthermore, due to the energetic collision between the moving front and the stationary
ambient fluid, the mixing interface tilts towards the downstream direction. In contrast, for
larger ambient depths d = 0.058m and 0.070m, due to the small difference in potential
energy between the upstream and ambient fluid downstream, the moving front collides with
the ambient fluid with low kinetic energy. For this case, it takes longer for the waves to
fully develop and the free surface breaking phenomena may not occur. Due to the less
energetic collision, the mixing interface for larger depths largely remains vertical as the
waveform gains height. Clearly, the SPH−i model shows a satisfactory agreement with the
experimental results at time t = 0.3s.

As the generated turbulent bore propagates further downstream, breaking phenomena
occurs, depending on the wet bed depth. This phenomena is captured in figure 8.27 at t =
0.6s. Again, for low ambient depths d = 0.005m, 0.015m the mixing keeps tilting towards
the downstream direction whereas for the larger depths d = 0.058m and 0.070m the mixing
interface remains largely vertical as in the early mixing stages. It can also be observed that
the two fluid bodies are quite well mixed by the time.

Besides experimental studies by Janosi et.al. [1], the mixing process in dam break flows
with upstream and downstream fluid bodies has recently been studied using various corrected
versions of SPH and MPS models [68][66].
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Figure 8.25: Comparison of laboratory photographs(left, Janosi et.al. [1]) with sim-
ulated mixing patterns obtained using the proposed SPH−i model at times t =
0.1962s, 0.2616s, 0.3270s and 0.3920s.
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Figure 8.26: Mixing patterns generated by the release of a dam-break front into a wet bed
of increasing depth d (from top to bottom) 0.005m, 0.015m, 0.058m and 0.070m at time
t = 0.3s(left panel, Janosi et.al. [1]) with simulations performed using the proposed SPH−i
model (right panel).
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Figure 8.27: Mixing patterns generated by the release of a dam-break front into a wet bed
of increasing depth d (from top to bottom) 0.005m, 0.015m, 0.058m and 0.070m at time
t = 0.6s(left panel, Janosi et.al. [1]) with simulations performed using the proposed SPH−i
model (right panel).





Conclusion

A smoothed particle hydrodynamics SPH−i solver that implicitly models turbulence has
been developed. The major distinction between the proposed model and standard SPH mod-
els is that while standard SPH evolves the smoothed field {〈ρh〉, 〈ph〉, 〈ρh〉ũh} the SPH−i
model evolves the underlying disordered field {ρ, p, ρu}. It is due to this fundamental differ-
ence that standard SPH would require explicit turbulence modeling. Moreover, the SPH−i
is a high order model whereas standard SPH models can be formally defined as a zeroth
order deconvolution models. This model further introduces an equation for pressure that has
inherent smoothing terms that smooth out spurious numerical noise in the pressure field. Fur-
thermore, this way of computing the pressure guaranteed long term stability as is evidenced
by the stable solution obtained for the hydrostatic problem.

The proposed SPH−i uses two filters; a convolution filter and a deconvolution filter. A
rigorous procedure for constructing these filters in 2D has been presented and extension of
the approach to 3D is a trivial exercise. Using the filters introduces two competing effects;
numerical dissipation and numerical instability. If the order of the deconvolution filter is
increased, numerical dissipation decreases and thus higher accuracy is attained. On the other
hand with decreased numerical dissipation, numerical instability is enhanced. One can never
have both numerical stability and zero numerical dissipation; in particular, even though exact
deconvolution introduces zero numerical dissipation, it is numerically unstable. Therefore,
this demands a compromise such that some amount of numerical dissipation is allowed so as
to have low numerical instability. It is this numerical dissipation that smoothes out numerical
instabilities introduced by filtering and de-filtering processes. To ascertain the suitable range
of order of the deconvolution filter, quantifying both numerical dissipation and instability is
critical. While numerical dissipation can be estimated from Kolmogorov energy spectrum, it
is difficult to quantify numerical instability. However, a crude approximation is made under
the assumption that the numerical error is caused by spectral truncation. A much reliable
criteria for quantifying numerical instability must therefore be developed.

In this work a clear procedure for deriving the filtered equations consistent with explicit
LES has been presented. This was achieved by introducing an integral transform called
FIT and defining a proper rule for moving the fluid particles. An integral representation of
the SGS tensor is obtained and the ADM presented in this thesis can be further applied to
explicitly model turbulence. However, by de-filtering the filtered equations using the inverse
transform called DIT, the SGS tensor is de-filtered and thus resulting in a model in which
turbulence effects are implicitly captured.

While the SPH−imodel generated simulation results that are generally in agreement with
experimental data, the influence of air in free surface flows should be considered. In the case
of breaking waves, it possible that a significant portion of the wave energy is transfered to the
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air phase. If the energy transfered to the air is significant enough, energy harvesting devices
can be designed specifically for this purpose. Furthermore, a reliable way of quantifying
energy error due to numerical instability is crucial in estimating the optimal range of values
for the deconvolution filter since an exact deconvolution filter is practically useless.

To avoid numerical instabilities that may arise due to the use of nonlinear boundary force
models such as the Lennard-Jones potential, a linear model has been adopted in this thesis.
However, two coefficients; the stiffness and damping coefficients must be calibrated. Proper
choice of these coefficients was determined by trial and error by noting that the boundary
forces must not cause any significant damping of the system energy.

A discussion on the power delivered to a fluid body has been discussed. For flows with
large deformation of the free surface, dissipation of mechanical energy was observed. Some
of the loss mechanisms include turbulent dissipation and viscous dissipation. The viscous
power dissipation term Pω was found to be non-negligible during the wave breaking process.

The SPH−i model was applied to a number of free surface flow benchmark problems.
Long-time stable hydrostatic pressure profiles where obtained for the hydrostatic tank prob-
lem. Two types of dam-break problems were investigated; First, the dam break on a dry bed
problem agreed comparatively well with experimental data. Second, the dam break on a wet
bed was also investigated. The mixing process involved in both early and later stages showed
that the SPH−i model is capable of simulating mixing dynamics with satisfactory accuracy
for both shallow and deep wet beds.

For future work, the use of rational kernels must be investigated as they tend to be more
stable when used in the SPH−i model. Furthermore, a refined model for quantifying numer-
ical instability must be sought. As it is well known, a free surface model does not accurately
capture all the details associated with flows undergoing deformation and therefore, two phase
models must be developed. It is also worth investigating the effect of placing waveguides
onshore with respect to enhancement of the wave energy density. For stability reasons as-
sociated with two phase flows and the need to have a simpler SPH−i model, a different
definition a the volume element might be preferable compared to the one adopted in this the-
sis. Finally and most importantly, qualitative tests for turbulence and accuracy of the SPH-i
model compared with standard SPH must be carried. This would be very important in estab-
lishing SPH-i as a high order model that has the capability to simulate turbulent flows with
high fidelity.



Appendix A

Fourier transforms

A.1 Fourier Transform of radially symmetric function
The Fourier transform of the convolution and deconvolution filters forms part of the analysis
in this work. As these filters are radially symmetric, it is important to define the Fourier
transform in polar coordinates.∫

R2

e−2πiξ·rf(r)d2r =

∫ ∞
−∞

∫ ∞
−∞

e−i2π(ξ1x1+ξ2x2)f(x1, x2)dx1dx2 (A.1)

By identifying (x1, x2)→ (r, θ) to be varying in the plane (x1, x2)-plane and put (ξ1, ξ2)→
(ρ, φ) (fixed in the integral) then the Fourier transform becomes∫

R2

e−2πiξ·rf(r)d2r =

∫ ∞
0

∫ 2π

0

e−i2πrρ cos(θ−φ)f(r)rdrdθ (A.2)

Due to periodicity in θ, we have the following property∫ 2π

0

e−i2πrρ cos(θ−φ)dθ =

∫ 2π

0

e−i2πrρ cos θdθ (A.3)

As is always the case with problems involving circular symmetry, we introduce Bessel func-
tions

J0(2πrρ) =
1

2π

∫ 2π

0

e−i2πrρ cos θdθ (A.4)

where J0 is the zeroth order Bessel function. Therefore, the Fourier transform of f(r) is

F{f(r)} = 2π

∫ ∞
0

J0(2πrρ)f(r)rdr (A.5)

which turns out be radially symmetric as well and is sometimes called the Hankel transform
of f(r).
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Appendix B

Appendices and Supplementary Data

B.1 Convolution Operator for Approximate Gaussian Fil-
ter

In particle methods it is desirable that the convolution filter is compact for computational ef-
ficiency. It is due to this that the Gaussian filter, despite having high accuracy and stability, is
not practically used. To this end, we propose a class of filters that are approximate Gaussian
filters. With brevity, we present the result below.

Proposition B.1.1 (Approximate Gaussian Filter). Consider C∞c (Rn) (a space of compactly
supported continuous functions) dense in L2(Rn). For a two-parameter function Gh,p ∈
L2(Rn) and ε > 0, there is a two-parameter function wh,p ∈ C∞c (Rn) such that(∫ β

α

|Gh,p(r)− wh,p(r)|2dνr
) 1

2

≤ ε (B.1)

The compactly supported approximate Gaussian problem can be stated as: Given a
smooth and continuous function Gh,p ∈ L2(Rn),

Gh,p = αph
−ν exp

(
−π ν

√
α2
p

||r− r′||2

h2

)
(B.2)

how can we construct a function wh,p to be continuous and compactly supported such that it
is a good approximant of the Gaussian function Gh,p so that (B.1) is satisfied. To this end,
without delving into detailed derivations, we propose the following piecewise continuous
function

wh,p =

{
αph

−ν
(

1− 1
4h2 ||r−r′||2

1+ 1
4h2 ||r−r′||2

)p
||r− r′|| ≤ 2h

0 otherwise
(B.3)

where the compact space is Vh : [0, 2h] × [0, 2h] × [0, 2h]. Not all values of p ∈ N are
admissible. Indeed if we inspect the Fourier transform of wh,p for p = 2m ,m = 1, 2, 3, ... it
is indefinite i.e. we find that F{wh,p}(hk) > 0 for some wavenumbers k and F{wh,p(hk)} <
0 for some k. On the other hand for p = 2m+1 ,m = 1, 2, 3, ... the Fourier transform ofwh,p
is positive definite i.e. F{wh,p}(hk) > 0 for all wavenumbers k. Since wh,p is a Gaussian
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approximant and we know the Gaussian filter has a positive definite Fourier transform, we
conclude that the admissible class of Gaussian approximants are those with odd powers of p,
i.e. p = 2m+ 1 ,m = 1, 2, 3, ...; these are the stable and consistent Gaussian approximants,
a property that is fundamental to the stability of numerical simulations.

wh,2p+1 =

 α2p+1h
−ν
(

1− 1
4h2 ||r−r′||2

1+ 1
4h2 ||r−r′||2

)2p+1

||r− r′|| ≤ 2h

0 otherwise
(B.4)

It is easy to show that the following wh,p is a good Gaussian approximant such that

wh,p ' Gh,p,
1

2σ2
p

:= 4παp = p+ δp (B.5)

With this compactly supported approximate Gaussian filter, we then have the associated
convolution operator similar to (3.68) and is given by

〈wp −Gp, T̂ 〉 ' 0⇔ 〈wp, T̂ 〉 ' 〈Gp, T̂ 〉 = exp

(
1

4παp
h2∇2

)
(B.6)

In series form, approximate convolution and deconvolution operators

〈wp, T̂ 〉 ' e
+1̂ h2

4παp
∇2

= 1̂ +
∞∑
n=1

h2n1̂

(4παp)
n n!
∇2n (B.7)

Inv[〈wp, T̂ 〉] ' e
−1̂ h2

4παp
∇2

= 1̂ +
∞∑
n=1

(−1)n
h2n1̂

(4παp)
n n!
∇2n (B.8)

where 1̂ is the identity operator in infinite dimensional space. Both operators (B.7) and
(B.8) are inverse to each other and contain two adjustable parameters: h and p. These two
parameters can be exploited to accelerate convergence of the series.

The goal is to determine the deconvolution filter associated with the approximate Gaus-
sian filter.

ϕh,p(r
′′ − r) = l̃2d(r, h)wh,p(r

′′ − r)

=
∞∑
k=0

(−1)k
h2k

(2παp)
k k!
∇2kwh,p (B.9)

There is a fundamental limitation, however, that we/computers can only deal with finite
collection of numbers. In practice, the infinite sum in (B.9) is replaced by a finite sum. There-
fore the method is called Approximate Deconvolution Method (ADM). For a 2D problem,
we have

ϕh,p,n(r− r′) =
n∑
k=0

(−1)k
h2k

(2παp)
k k!
∇2kwh,p(r− r′) (B.10)

which forms a sequence in n containing two adjustable parameters h and p. Furthermore,
since π ν

√
α2
p := p+δp and the filter width is defined through 2σ2

p = 1/(p+δp), it means that
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if p → ∞ then αp → ∞ and σp → 0. In this case, both the convolution and deconvolution
filters approach Dirac’s delta function. Moreover, the filter cut-off length h < 1 as it is
chosen as the initial particle spacing (or equivalently mesh size). More specifically, since
h < 1 and αp > 1, as k → ∞, h2k → 0 and α−kp → 0 fast. Therefore the series (B.10)
is convergent and higher order terms can be neglected. Figure B.1 shows a plot of the two
filters for p = 6 and n = 2.

; ; ;

−2 −1 0 1 2

0

5

10

15

q

wh,6
ϕh,6,2

Figure B.1: A plot of the convolution filter wh,p for p=6 (red) and the corresponding decon-
volution filter ϕh,p,n (blue) obtained by truncating the infinite sum at n = 2. The filter cut-off
length h has been set to unity.
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