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SUMMARY 
 
The gut microbiota of animals exert major effects on host biology [1]. Although 

horizontal transfer is generally considered the prevalent route for the 

acquisition of gut bacteria in mammals [2], some bacterial lineages have co-

speciated with their hosts on timescales of several million years [3]. Termites 

harbor a complex gut microbiota, and their advanced social behavior provides 

the potential for long-term vertical symbiont transmission, and co-evolution of 

gut symbionts and host [4-6]. Despite clear evolutionary patterns in the gut 

microbiota of termites [7], a consensus on how microbial communities were 

assembled during termite diversification has yet to be reached. Although 

some studies have concluded that vertical transmission has played a major 

role [8, 9], others indicate that diet and gut microenvironment have been the 

primary determinants shaping microbial communities in termite guts [7, 10]. 

To address this issue, we examined the gut microbiota of 94 termite species, 

through 16S rRNA metabarcoding. We analyzed the phylogeny of 211 

bacterial lineages obtained from termite guts, including their closest relatives 

from other environments, which were identified using BLAST. The results 

provided strong evidence for rampant horizontal transfer of gut bacteria 

between termite host lineages. While the majority of termite-derived 

phylotypes formed large monophyletic groups, indicating high levels of niche 

specialization, numerous other clades were interspersed with bacterial 

lineages from the guts of other animals. Our results indicate that ‘mixed-mode’ 

transmission, which combines colony-to-offspring vertical transmission with 

horizontal colony-to-colony transfer, has been the primary driving force 

shaping the gut microbiota of termites.  

 
 
 
 
 
 
 
 



RESULTS AND DISCUSSION 
 

The termite gut microbiome is among the most complex of any animal group. 

The hindguts of termites harbor upwards of 1000 species of bacteria and 

archaea, and, in all lower termites, a unique assemblage of flagellate protists 

[4, 5, 11]. This symbiosis has enabled termites to digest lignocellulose, to 

diversify their food source from the ancestral state of wood into leaf litter, 

grass, humus, and soil, and to achieve ecological dominance across tropical 

and subtropical regions of the globe [12]. The function of the termite gut 

microbiota, and how it was assembled over the ~150 million years of termite 

evolution [13], has interested biologists for over a century. Whether bacterial 

lineages present in termite guts have been acquired primarily through vertical 

inheritance (i.e. colony to offspring), or via horizontal acquisition from the 

environment, is considered to be a key unresolved question [14].  

Recent metabarcoding studies have relied primarily on comparisons of 

community profiles between termite species to investigate the evolution of the 

microbiota [10, 14-15]. These studies have made only limited use of direct 

phylogenetic comparisons of individual termite-derived bacterial lineages with 

each other, and with phylotypes from other (non-termite) environments. 

Moreover, taxon sampling used in these studies (<20 species in each case) 

was highly biased towards termite species from particular geographic regions 

and diet groups. Consequently, several major lineages of termites have not 

yet been examined. To address these issues, we undertook the most 

extensive metabarcoding study of termite gut microbes to date, obtaining 

bacterial profiles from 94 termite species collected across four continents, 

including 77 species from the ecologically dominant higher termites (family 

Termitidae). This represents an increase in taxon sampling of more than 4-

fold compared with previous studies, and provides unprecedented power to 

investigate the evolution of the termite microbiota. We used a novel approach 

involving phylogenetic comparison of each identified genus-level lineage with 

related environmental sequences derived from exhaustive BLAST searches.  

 We obtained an average of 11,509 high-quality sequences from the 

V3-V4 region of the bacterial 16S rRNA (~450 bp) for each of the 94 samples 

(Table S1). We independently clustered the sequences of each library into 



operational taxonomic units (OTUs) with a distance below 6%, from which we 

removed OTUs represented by less than five sequences (independent 

analyses using 3% OTUs did not significantly alter our results; data not 

shown). We then selected one reference sequence from each 6% OTU, and 

pooled them into a single dataset from which we produced groups of 12% 

sequence dissimilarity that we will refer to as genus-level bacterial lineages. 

We used 12% dissimilarity rather than the more commonly used 8% to avoid 

artificial splitting of large genus-level clusters that were abundantly 

represented in our dataset. For example, Treponema cluster I, 

Endomicrobium, and certain clades of Ruminococcaceae and 

Lachnospiraceae make up about 45% of the reads and have levels of 

dissimilarity that exceed 12%. From the 622 genus-level bacterial lineages, 

we selected 211 lineages that were represented by more than 10 OTUs 

(82.7% of the total reads) for downstream analyses (Table S2). For each 

group, we carried out BLAST analyses that specifically excluded matches with 

termite-derived sequences in order to target closely related environmental 

sequences in public databases. Phylogenetic comparisons of the termite-

derived phylotypes with their closest relatives from other environments were 

then performed for each of the 211 groups using minimum evolution criteria in 

FastTree [16] (Data S1).  

We classified the 211 trees generated in our analyses into three broad 

categories (see Figure S1). Category 1 represented trees in which ≥30% of 

termite-derived sequences formed a monophyletic group (Figures 1A-B; in 

some cases, multiple clades, each containing ≥30% of the termite derived 

sequences, were recovered within a single tree). Category 1 comprised 62% 

of all trees and made up 48.3% of the reads (Table S2). While several 

bacterial taxa of category 1 trees were encountered in all termites, others 

were restricted to particular host lineages (Table S2).  

In many cases, termite-specific clades within category 1 trees had a 

sister group relationship to clades containing bacterial sequences derived 

from vertebrate or invertebrate guts (e.g. trees 21, 23, 76; Data S1). In other 

cases, termite-specific clades were sister to bacterial taxa from a variety of 

environments (soil, agricultural or industrial processes, marine environments). 

A large number of taxa from category 1 trees represented bacterial families 



that are typically encountered in the intestinal tract of vertebrates as well as 

termite guts, indicating a general preference of these families for intestinal 

habitats (e.g. Lachnospiraceae, Ruminococcaceae, Porphyromonadaceae), 

or the termite-specific supercluster Treponema I (Spirochaetales), which 

comprises numerous genus-level lineages. For category 1 trees, we 

hypothesize that the last common ancestors of each termite-specific clade 

became specialized for termite gut environments, and eventually became 

widespread across a large number of termites through both colony-to-

offspring vertical transmission in combination with horizontal colony-to-colony 

transfer. This category is consistent with a ‘narrow’ mixed mode of 

transmission [17].  

 Category 2 was defined in a similar way to category 1, with the 

exception that termite specific clades contained up to 10% non-termite-

derived bacterial taxa nested within them. These clades contained primarily 

termite sequences, but were paraphyletic with respect to a small number of 

non-termite sequences (Figures 1C-D). This category comprised 10% of trees 

and 15.7% of the reads (Table S2). The nested taxa were, on many 

occasions, derived from the guts of other arthropods or animals, as 

exemplified by uncultured Lachnospiraceae (tree 87) and Ruminococceae 

(tree 116), which are common members of the mammalian gut microbiota. We 

hypothesise that taxa within clusters of termite-derived sequences are 

specialized for termite gut environments, with the exception of a relatively 

small proportion that have successfully colonised the guts of other organisms 

over evolutionary time. This category is consistent with a ‘broad’ mixed mode 

of transmission [17]. Here, we expect colony-to-offspring vertical transmission 

in combination with occasional horizontal transfers, not only between termites, 

but also between the guts of different animals, and potentially other 

environments. Although the topology of the trees suggest that category 2 taxa 

evolved within termites, and were subsequently transferred to other 

environments, it should be noted that bacteria derived from the guts of 

animals other than termites are likely to be underrepresented in our analyses. 

Further sampling of gut microbiomes, particularly those of other terrestrial 

arthropods, may reveal a higher level of horizontal transfer between different 

animal groups.  



The remaining trees were assigned to Category 3, which comprised 

28% of the trees and 18.7% of the reads in the dataset. Here, termite-derived 

sequences were interspersed with environmental sequences to a much 

greater degree than those in categories 1 and 2 (Figures 1E-F). The fact that 

many members of these groups are encountered in a variety of environments 

indicates that they are not transferred exclusively via a combination of vertical 

colony-to-offspring and colony-to-colony horizontal transmission. 

Nonetheless, several taxa in category 3 (as well as category 2) do belong to 

the core microbiota of termites, because they occur in high abundance in the 

majority of the termite lineages investigated (Table S2). For instance, 

uncultured members of Clostridiales (tree 138) or candidate division TM7 (tree 

49) appear to be generally adapted to intestinal environments and may be 

easily exchanged even among unrelated host species. 

We examined the level of congruence between host and bacterial 

relationships in category 1 and 2 trees. In no case did we find evidence for 

strict vertical inheritance of these lineages from colony to offspring. Instead, 

we found evidence for rampant horizontal transfer over evolutionary time 

between termite hosts for each of the bacterial lineages. This is manifested in 

the mixing of colours within each of the trees shown in Figure 1, where each 

subfamily of Termitidae (higher termites) is labeled with a different color, and 

all other families (lower termites) are labeled red. Nonetheless, we did identify 

a large number of cases in which host switching appears to be limited to taxa 

from one or more termite groups. In other words, some bacterial lineages 

appear to have become specialized for a particular termite subfamily, family, 

or multiple subfamilies or families, and have radiated significantly within this 

niche. For example, the Treponema tree (Figure 1B) shows a number of 

clades that are composed almost exclusively of phylotypes derived from either 

the subfamilies Apicotermitinae or Termitinae. The presence of family-specific 

clades within the termite-specific Treponema I supercluster is in agreement 

with a previous, comprehensive analysis of full-length 16S rRNA gene 

sequences obtained from the guts of 19 termite species [18].  

To evaluate the robustness of our results, we reanalysed a subset of 

the 211 genus-level trees obtained with the 450-bp fragments using only full-

length 16S rRNA sequences from termite guts and other environments 



obtained from GenBank (Data S1). Although the number of sequences 

available for such analyses is much smaller, the results were consistent with 

those based on the short reads. For example, the corresponding trees of 

Candidatus Armantifilum (Figure 1A and Figure 2A) and Endomicrobium 

(Figure 1D and Figure 2B) show similar patterns and evidence the frequent 

switching of symbionts between distantly related termite taxa (Figures 1G and 

2C show relationships among hosts).  

Horizontal transfer of bacteria among termite species could occur 

either via aggressive encounters, during which the weaker contender is often 

eaten [19-21], or indirectly through soil or feeding substrates (e.g. via uptake 

of heterospecific faecal matter). That 62% of trees (category 1) contained 

large clades of termite-derived bacteria suggests that these taxa are 

incompatible with other environments that have been surveyed to date. 

Category 2 and 3 taxa appear to have higher levels of compatibility with 

alternative environments, and in the case of other animal guts are likely to 

have been transferred through contact with soil, or through feeding.   

The gut microbiota of lower termites contains many bacterial lineages 

that are specifically associated with the surface, the cytoplasm, or the nucleus 

of their symbiotic flagellates (e.g., [22-24]). Phylogenetic analyses have 

documented co-speciation between flagellates and their bacterial symbionts 

and flagellates [8, 25, 26], but co-cladogenesis between bacterial symbionts 

and termites remains an exception [8] because of the occasional horizontal 

transfer of flagellates between termites of different families. This is illustrated 

by the case of Endomicrobium, which were acquired more than once from 

ancestral free-living lineages of gut bacteria [27], and whose flagellate hosts 

(together with their endosymbionts) have been transferred horizontally 

between lower termites of different families [28, 29].  

 Our results are in agreement with observations in numerous earlier, 

clone-library based studies of termite gut bacteria, which often showed 

clustering of termite-derived bacterial lineages from distantly related host taxa 

[4, 6]. Moreover, the relationship between termites and their gut bacteria is 

somewhat reminiscent of that between fungus-growing termites and the 

basidiomycete fungus cultivated in their fungal gardens. Symbiotic 

Termitomyces strains, which occur exclusively in symbiosis with termites of 



the family Macrotermitinae, are not specialized on a particular termite species, 

and most lineages have retained the capacity to switch among multiple hosts 

[30].  

 The majority of the bacterial lineages identified in this study are subject 

to ‘narrow’ mixed-mode transmission [17]. They show a strong host specificity 

for termites, but co-cladogenesis – if present at all – is likely limited to closely 

related host lineages (see Figure S1). Prominent examples are termite-

specific lineages in the Fibrobacteres and the candidate division TG3 (Trees 

40-41, 56-57), which have been implicated in fibre digestion in wood-feeding 

higher termites [14, 31, 32]. We also found a number of bacterial lineages that 

had a more general affinity for animal guts, such as members of the 

Clostridiales family Ruminococcaceae, which made up 16.5% of the reads we 

analysed and are considered to contribute to cellulose and hemicellulose 

digestion in their intestinal habitats [33, 34]. Our results provide support for 

the theory of ecological fitting [35], which posits that traits developed by a 

symbiont during its evolutionary history may be co-opted for a new purpose in 

a different host.  We predict that some groups of bacteria present in termites 

might be much more widespread among the guts of other organisms than 

currently appreciated. 
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Figure 1. Selected phylogenetic trees showing relationships between 
termite derived sequences and related environmental sequences 
recovered using BLAST, based on 450-bp of 16S rRNA. Trees were 
inferred using FastTree.  

(A, B) Category 1 trees of Candidatus Armantifilum (see Tree 17, Data S1 for 

additional detail) and Treponema I (see Tree 197 for additional detail) 

respectively.  

(C, D) Category 2 trees of one Ruminococcaceae clade (see Tree 116 for 

additional detail) and Endomicrobium (see Tree 55 for additional detail) 

respectively.  

(E, F) Category 3 trees of two Ruminococcaceae clades (See Tree 118 and 

Tree 138 respectively for additional detail).  

(G) Relationships among the host taxa examined in this study, based on full 

mitochondrial genomes [13, 36].  

Asterisks highlight environmental sequences nested within or among termite 

derived sequences in category 2 and 3 trees. Note that a uniform color of all 

branches within a clade does not indicate strictly vertical transfer of the 

respective taxa. Close inspection of host relationships revealed significant 
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amounts of transfer between hosts and a lack of co-cladogenesis (see Data 

S1). Taxon names and support values for each of these trees, as well as the 

other 205 trees generated in this study, are shown in Data S1.  

 

  



 
Figure 2. Phylogenetic relationships among termite-derived sequences 
and related environmental sequences, based on full-length 16S rRNA 
sequences and inferred using MrBayes. Percentage values show 
posterior probabilities. All sequences were obtained from GenBank.  
(A) Relationships between representatives of Candidatus Armantifilum and 

related sequences. The corresponding tree based on short reads is shown in 

Figure 1A.  

(B) Relationships between representatives of Endomicrobium and related 

sequences. The corresponding tree based on short reads is shown in Figure 

1D.  

(C) Relationships among the host taxa examined in these bacterial trees, 

based on full mitochondrial genomes [13, 36]. 

Taxa marked with light grey triangles are derived from other arthropods.  
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STAR METHODS 
CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests may be directed to and will be fulfilled by the 

Lead Contact, Nathan Lo (nathan.lo@sydney.edu.au). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

We studied the gut bacterial communities of 94 samples, each belonging to 

distinct species of termites, and representative of global termite diversity 

(Table S1). All samples were collected in the field, preserved in RNA-later® 

and stored at -80°C until DNA extraction.  

 

METHOD DETAILS 

Whole genomic DNA was extracted from dissected digestive tracts of five to 

ten workers using the NucleoSpin® Soil kit of Macherey-Nagel according to 

manufacturer protocol. We used the primers 343Fmod 

(TACGGGWGGCWGCA) and 784Rmod (GGGTMTCTAATCCBKTT) to PCR 

amplify a fragment of 16S rRNA gene [37]. We conducted PCR amplifications 

using GoTaq® with the same conditions described in [37], that is initial 

denaturation (3 min at 95°C), 26 cycles of amplification (20 s at 95°C, 20 s at 

48°C, and 30 s at 72°C), and a terminal extension (3 min at 72°C). 

Multiplexing and subsequent paired-end sequencing with Illumina MiSeq were 

carried out through a commercial service (BGI Tech. Solutions Co., China). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS  

Data filtering 

We selected combined reads longer than 350 base pairs and removed others 

from subsequent analyses. We identified chimeras using UCHIME [38], 

implemented in USEARCH v7.0 [39] against the DictDb bacterial reference 

database [18], using a score threshold of 0.5 and a minimum divergence of 

1.5. We independently sorted reads for each library into operational 

taxonomic units (OTUs) (6% sequence dissimilarity) using UPARSE [39], 

implemented in USEARCH v7.0 [39]. We excluded OTUs represented by less 

than five sequences from subsequent analyses. For each OTU, the most 

abundantly represented sequence was selected as reference. All OTU 



reference sequences were then clustered into genus-level bacteria lineages, 

defined as groups of 12% sequence dissimilarity. 12% dissimilarity is 

generally higher than the commonly accepted threshold for genera (8%) of 

bacteria, but it was still too low to group the most abundant termite gut 

microbes, such as Endomicrobium, Candidatus Arthromitus and the 

Treponema I supercluster, into single groups. Downstream analyses were 

performed on all genus-level bacterial lineages that comprised more than 10 

OTUs. 

 

Identification of genus-level bacterial lineages 

We identified the taxonomic affiliation of each genus-level bacterial lineage 

using the naïve Bayesian classifier from MOTHUR [46, 47] implemented in 

QIIME [40]. The DictDb database (version 3.0) was used as a reference for 

taxonomic assignment [18].In some cases, the classification was further 

refined using the current SILVA reference database (http: www.arb-silva.de).  

 

Related species searches through BLAST  

For each genus-level termite-derived bacterial lineage we searched for closely 

related, non-termite derived sequences available on GenBank. BLAST 

(blastn) searches were performed using each OTU from every genus-level 

bacterial lineage, with “Max target sequences” set on 10, and the option 

“Entrez Query” specifying “NOT termite”. BLAST-obtained sequences for each 

genus-level lineage were then clustered in groups of 6% dissimilarity, and the 

most abundantly represented sequence was selected as a reference for each 

group. This method of sequence selection was similar to that used for 

selecting termite-derived sequences for analysis. BLAST reference 

sequences were classified into seven categories based on the information 

provided on GenBank: agricultural, industrial, mammal gut and feces, marine 

and aquatic, terrestrial arthropod gut, other animal-derived sequences, and 

Unclassified. All BLAST-derived reference sequences were then subject to 

phylogenetic analysis together with the termite-borne sequences of each 

genus-level bacterial lineage. 

 

Phylogenetic analyses 



Sequences of all genus-level bacterial lineages (including those from BLAST 

analyses) were aligned independently with MAFFT v7.300b using the option 

“adjustdirectionaccurately”, and otherwise default settings [41, 42]. 

Phylogenetic trees were reconstructed with FastTree [16] implemented in 

QIIME under default settings [40]. All trees were visualized using FigTree 

v1.4.3 [45]. 

 

Categorization of phylogenetic trees 

We defined three categories and assigned each phylogenetic tree to one of 

these three categories. Category 1 comprised trees in which ≥30% of termite-

derived sequences formed a monophyletic group (in some cases, multiple 

clades, each containing ≥30% of the termite derived sequences, were 

recovered within a single tree). Category 2 was defined in a similar way to 

category 1, with the exception that termite specific clades contained up to 

10% non-termite derived bacterial taxa nested within them. Category 3 

contained all other trees. Typically, category 1 trees comprised termite-

specific bacterial clades, category 2 trees comprised bacterial clades with 

termite affinities, but with evidence for transfer of bacteria between termites 

and other environments, and category 3 trees comprised bacterial clades with 

broad affinities, including termites. 

 

Trees derived from full 16S rRNA sequences derived from GenBank  

The phylogenetic trees generated in this study were based on sequences of 

about 450 pairs of bases. To test whether our findings held with longer 

sequences, we carried out phylogenetic reconstructions based on the full 16S 

rRNA gene using GenBank-derived sequences. We selected ten bacterial 

lineages for which full-length 16S rRNA termite-derived sequences were 

generated in previous studies (Data S1). For each of these bacterial lineages, 

we randomly selected one sequence that we used for a BLAST search to 

recover other full length 16S rRNA sequences from termite gut bacteria and 

related environmental sequences. BLAST searches were carried out with the 

options “Max target sequences” set on 500 and otherwise default settings. All 

sequences obtained that way were clustered in groups of 6% similarities, from 

which reference sequences were selected for analyses, as described above. 



Phylogenetic analyses were performed in a Bayesian framework using 

MrBayes version 3.2.1 [43]. Posterior distributions were estimated using 

Markov chain Monte Carlo (MCMC) sampling with four chains (three hot and 

one cold). Samples were drawn every 1000 steps over a total of MCMC 2´106 

steps. Each analysis was repeated twice. The final tree was obtained using a 

combination of the two replicated analyses, and the first 5´105 steps were 

discarded, based on inspection of the trace files using Tracer v1.5 [44]. 

Example trees (Candidatus Armantifilum and Endomicrobium) for these 

analyses are shown in Figure 2.  

 

DATA AND SOFTWARE AVAILABILITY 

The accession numbers for the 16S rRNA amplicon libraries generated in this 

study are freely available in GenBank: PRJNA422502. 	

 
Data S1. Phylogenetic trees of the 211 genus-level bacterial lineages 
detected across 94 termite species and their closest relatives outside of 
termite guts. Related to Figures 1-2. 
List of bacterial lineages for which we analysed the full length 16S rRNA 

sequences retrieved from GenBank are indicated (phylogenetic analyses 

were carried out with MrBayes (see STAR methods).  

 
Table S1. List of termite species included in this study and sample-
associated information. Related to STAR Methods. 
 
Table S2. List of genus-level bacterial lineages detected in the 
respective termite species. Only lineages represented by more than 10 
OTUs were included. Related to Figure 1. 
 




