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Chiral force of guided light on an atom
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We calculate the force of a near-resonant guided light field of an ultrathin optical fiber on a two-level atom.

We show that, if the atomic dipole rotates in the meridional plane, the magnitude of the force of the guided light
depends on the field propagation direction. The chirality of the force arises as a consequence of the directional
dependencies of the Rabi frequency of the guided driving field and the rate of the spontaneous emission from the
atom. This provides a unique method for controlling atomic motion in the vicinity of an ultrathin fiber.
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I. INTRODUCTION

Applying controllable optical forces to atoms plays a central
role in many areas of physics, in particular in laser cooling
and trapping [1]. Various schemes for exerting optical forces
on atoms have been developed [1,2]. A common feature of
cooling and trapping schemes for atoms in free space is that,
since spontaneous emission is in a random direction and
symmetric with respect to two opposite propagation directions,
the average of the recoil over spontanecous emission events
gives a zero net effect on the atomic momentum.

However, it has been shown that, for atoms near a nanofiber
[3-7] or a flat surface [8], spontaneous emission may become
asymmetric with respect to opposite propagation directions.
Such directional spontaneous emission can modify the optical
forces on atoms. In particular, a resonant lateral Casimir-Polder
force may arise for an excited atom with a rotating dipole near a
nanofiber [9]. Such a force appears because, in the presence of a
nanofiber, the interaction between the field and the atom with a
rotating dipole is chiral [3—7]. Chiral optical forces have been
studied for chiral molecules and nanoparticles in free space
[10-13], in optical lattices [14], and near optical nanofibers
[15]. However, under normal conditions, an atom is essentially
achiral because it has the high degree of symmetry associated
with a sphere [16].

The possibility of creating chiral forces acting on atoms
holds significant potential in many areas of physics. It would
enable one, for example, to manipulate the transfer of photonic
superposition states to atomic center-of-mass superposition
states, opening the possibility of a new way of constructing
atomic interferometers. In such a transfer, the absorption of
a photon superposed in different directions would lead to an
atomic motion superposed in the same degree of freedom.
Furthermore, chiral forces could help with sorting atoms to
achieve optical lattices with unit filling factors [17,18], or lead
to new laser cooling schemes that can exceed the recoil limit.
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In this paper, we calculate the force of a near-resonant
guided light field of an ultrathin optical fiber on a two-
level atom. We show that the directional dependencies of the
Rabi frequency and the spontancous emission rate lead to a
significant chirality of the optical force.

The paper is organized as follows. In Sec. II we describe
the model Hamiltonian of the system. Section I1I is devoted to
the optical force. Our conclusions are given in Sec. IV.

II. MODEL HAMILTONIAN

We study a two-level atom driven by a near-resonant
classical field with optical frequency w; and envelope £ near
a vacuum-clad ultrathin optical fiber (see Fig. 1). The atom
has an upper energy level |e¢) and a lower energy level |g),
with energies fiw, and hiw,, respectively. The atomic transition
frequency is wy = w, — w,. The fiber is a dielectric cylinder of
radius a and refractive index n; > 1 and is surrounded by an
infinite background vacuum or air medium of refractive index
ny, wheren, = 1. We use Cartesian coordinates {x, y,z}, where
z is the coordinate along the fiber axis, and also cylindrical
coordinates {r,¢,z}, where r and ¢ are the polar coordinates in
the transverse plane xy.

The atom interacts with the classical driving field £ and
the quantum electromagnetic field. The quantum field can be
decomposed into the contributions from the guided modes
and the radiation modes. In view of the very low losses of
silica in the wavelength range of interest, we neglect material
absorption.

The Hamiltonian for the atom-field interaction in the dipole
approximation is given by

A o
Hipy = **QU@_Q&’ i(wy —wo)t ik anaegaag i(w—ap)t
2 o
—ih Z Gaa.eeaae_i(o’+(u(’)r + H.c., (1)
o

where o;; = |i)(j| withi,j = e,g are the atomic operators, a,
and a] are the photon operators, Q@ = d,, - £/f is the Rabi
frequency of the driving field, with d,, = (e|D|g) being the
matrix element of the atomic dipole operator D, and G, and
G, are the coupling coefficients for the interaction between the
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FIG. 1. Two-level atom with a dipole rotating in the meridional
plane zx outside an ultrathin optical fiber.

atom and the quantum field. The notations ¢ = p,vand ), =
>, 2, stand for the general mode index and the mode
summation. The index u = (wNfp) labels guided modes,
where @ is the mode frequency, N = HE,,,, EH;,,, TEq,,, or
TMy,, is the mode type, with [ =1,2,... and m = 1,2, ...
being the azimuthal and radial mode orders, respectively, f =
+1 denotes the forward or backward propagation direction
along the fiber axis z, and p = =£1 for HE and EH modes and
0 for TE and TM modes is the polarization index. The index
v = (wpIp) labels radiation modes, where § is the longitu-
dinal propagation constant, / =0, £ 1, =2, ... is the mode
order, and p = +,— is the mode polarization. The notations
Y=Y nplo doand ¥, =3, [ do f'(‘"’ dp are the
generalized summations over the guided and radiation modes.

The expressions for the coupling coefficients G,, and G,
with & = p,v are

wp’ .
G, = d.. - e e*(fﬂz+;1.’qa)!
2 dmegh (deg )
o v i(Bz
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where €' and e’ are the normalized mode functions given
in Refs. [7,19]. An important property of the mode functions
of hybrid HE and EH modes and TM modes is that the
longitudinal component e is nonvanishing and in quadrature
with the radial component e, We note that in deriving the

Hamiltonian (1) we have used the rotating-wave approximation
for the driving field €.

*

(lf))ef(ﬁ:+n"ﬁl 3)

III. OPTICAL FORCE

In a semiclassical treatment, the center-of-mass motion of
the atom is governed by the force F = —(V Hyy,) [1,2]. In the
framework of the Born-Markov approximation, we find

F = Fdr\ + Pee F@pon + pﬂeFde + pggFE:i)W* (4)

where
h *
Fay = 5(ngVS2 = pegVQ ),
Fopon = inh Y (G} VGay, — Ga,VGl), (5)

oy

g =hVP27|G°’|2 F&) _hV’Pz Gy
vdW . o —mg =W
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Here, Fy., is the force produced by the interaction between
the driving field and the atom (the recoil of absorption and
the shifts of the energy levels), Fypon is the force produced

by spontaneous emission from the excited state, and Fi‘;fw

and F'8) ww are the forces associated with the surface-induced
van der Waals potentials for the excited and ground states.
The notation p stands for the density operator of the internal
atomic state in the coordinate frame rotating with the frequency
wy,, the notation oy = peg,vp labels resonant guided modes
o = (woN fp)or resonant radiation modes vy = (wpBip), the
summation ) :S Yy = Dyt o With X = Do
and 3, =3, [T, dp, and the notation P stands for the

—kony
principal value of the integral over o.

The forces F), and F) e waw Tesult from the surface-
induced potentials U, = —AP Y, |Gol* /(@ — wy) — SE™
and U, = —hP Y, |Gol? /(@ + ap) — 5E§""‘°), where 5E£"“)
and SEJ‘;"‘C) are the shifts of the energy levels induced by the vac-
SE(vac} =58 (\dl)’
where de, ~ is the Lamb shift. The env1r0nment-mduced

shift of the atomic transition frequency is dwy = Sw(”‘“") +
(U, — Uy)/h. The shifted atomic transition frequency is wy =
wo + cﬁwo. When the atom is not too close to the fiber, we have
[deg| < @y, which leads to ws == wy. We formally incorporate
dwp INto wy.

Equation (4) is valid for an arbitrary driving field, which
includes the incident field and the scattered field. When the
atom is in free space, we have Fy, = F\, = F%, =0,
which leads to F = Fy,,, that is, the force on the atom 1s
just the conventional radiation force [1,2]. We note that dew

and Fp,, + dew are the total surface-induced forces for the
ground and excited states. These forces have previously been
calculated using the Green function approach [20]. When the
excitation of the atom is weak and the off-resonant parts of the
surface-induced potentials are negligible, our results reduce to
those of Ref. [21] for a point dipole near an interface.

We assume that the driving field is in a guided mode
propagating along the fiber axis z with the propagation constant
B in the f; direction, that is, & = Ey(r.@)e'/tPre. We are
interested in the axial component F. of the force. Due to the
symmetry of the system, the potentials U, and U, do not depend
on z. We find

uum field in free space. Note that § E{**) —
(vac)

ihifipr

Fz = T(Qp = /Oeg) peeﬁ ZJB(Nj f[J\rf:‘ = be )
kona
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where ﬁ{gN’ is the propagation constant of the guided modes
N at the frequency wy, y;‘,'\;) =2y, |Guynypl” is the rate
of spontaneous emission into the guided modes N with
the propagation direction f, and wh = 2m > |G wopip® is
the rate of spontancous emission into the radiation modes
with the axial wave-vector component 8 [7]. Note that the
first term in Eq. (6) is the recoil of the absorption, while the
second and third terms are the recoils of spontaneous emission
into guided and radiation modes.

To calculate the axial force F. in detail, we first assume that
the atom is at rest and in the steady state. We can then use the
steady-state solution for the internal state of the atom and find

kon»
Fy=hpeel fLBLT =) B3 (Von — Yen) —f ,sy:ﬁ’dﬁ},
N —kona

(7)

where
B |2I*/4
AT+ T2/441QJ2/2°

Here, A = w; — wy is the detuning of the driving field and
I’ = y, + ¥ isthe total rate of spontaneous emission with y, =

Yalvew +vayandye = 42 yPap (7).
For an atom with a circular dipole near a nanofiber, the
spontaneous emission rates yg%) and yr(ﬁ) can be asymmetric
with respect to the opposite axial propagation directions [3—
7,9]. These directional effects are the signatures of spin-orbit
coupling of light carrying transverse spin angular momentum
[6,22-27]. They are due to the existence of a nonzero longitu-
dinal component of the field in the presence of the nanofiber.
This component oscillates in phase quadrature with respect
to the radial transverse component and hence makes the field
chiral. The effect occurs when the atom has a dipole rotating in
the meridional plane, that is, when the atom is chiral and the el-
lipticity vector of the dipole overlaps with the ellipticity vector
of the field [3-9]. As a consequence, the absolute value of the
force F,, given by Eq. (7), can be asymmetric with respect to the
opposite propagation directions f; = = of the driving field.
In addition to the asymmetry of spontaneous emission,
the absolute value |€2| of the Rabi frequency and hence the
excited-state population p,. may, as shown later, depend on
the field propagation direction f;. The directional dependence
of p.. certainly contributes the directional dependence of
the optical force. The asymmetry of the axial force com-
ponent can be characterized by the parameter n = ( |F§+'| —
|[FD/(FSD| 4 |FS)). Here, F&) is the axial force in the
case where the driving field propagates in the direction *z.
We now perform numerical calculations. We assume that
the atom is positioned on the axis x and the dipole matrix
elementd,, is a complex vector in the meridional plane zx (see
Fig. 1). To be concrete, we take d,, = d(iX — i)/ﬁ, which
corresponds to the o T transition for the quantization axis y. The
results for the o~ transition can be obtained from the results
for the ¢ by replacing F* and F~) with —F~ and —F*),
respectively.
We assume that the driving field is prepared in a quasi-
linearly polarized hybrid HE or EH mode or a TM mode. In
the case of HE and EH modes, we choose the x polarization,

s (8)

which leads to a maximal longitudinal component of the field
at the position of the atom. We do not consider the case
of a TE mode because of the vanishing of the interaction
between such a mode and the chosen atomic dipole. For an
x-polarized hybrid HE or EH mode or a TM mode with the
propagation direction f7, the field amplitude at the position
of the atom is E(r,p = 0,z = 0) = A(e,X + fre.Z), where A
is determined by the power of the driving field [19,28]. The
corresponding Rabi frequency is Q = (d.A/hv/2)(ie, — fre.).
Since the relative phase between the complex functions e,
and ¢, 18 /2 [19,28], the absolute value || of the Rabi
frequency depends on the propagation direction f; . This leads
to a directional dependence of the excited-state population p,,
and hence contributes to the asymmetry of the axial force F,.
Thus both excitation and spontaneous emission can contribute
to the dependence of the force F, on the propagation direction
of the driving field. Note that the effects of excitation and
spontaneous emission on the asymmetry of the force F, may
enhance or partially compensate each other.

The radial dependencies of the absolute value |F.| of the
axial force component for the cases where the driving field is
in an x-polarized HE|; mode, a TMy; mode, or a x-polarized
HE»; mode with the propagation direction f; = =+ are shown
in Fig. 2. One can see that the absolute value | F.| of the axial
force has different magnitudes for different propagation direc-
tions f; of the driving field. This chiral effect occurs not only
for the fundamental mode HE | but also for higher-order hybrid
HE and EH modes and TM modes. Figure 2(a) shows that the
force of the HE || mode on the atom is almost fully chiral.

While the absolute value |F.| of the axial force compo-
nent reduces quickly with increasing radial distance r, the
asymmetry parameter 7 can be seen in Fig. 3 to vary slowly.
Moreover, in the limit of large distances, n approaches a

0.8+ HEI11

—Ji7H (a)

Force |F_| (zN)

Radial distance r/a

FIG. 2. Radial dependence of the absolute value |F. | of the axial
component of the force of the resonant guided light on a two-level
atom. The incident light field is in (a) an x-polarized HE; mode, (b)
a TMy; mode, or (c) an x-polarized HE»; mode and propagates in the
forward f; = + (solid red curves) or backward f; = — (dashed blue
curves) direction along the fiber axis z with the power P = 1 pW. The
dipole matrix element of the atom is d,, = d(iX — #)/+/2, the fiber
radius is @ = 350 nm, and the wavelength of the atomic transition
is Ao = 780 nm. The refractive indices of the fiber and the vacuum
cladding are n, = 1.4537 and n, = 1, respectively.
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FIG. 3. Radial dependence of the asymmetry parameter ) for the
axial forces F/%) for the opposite propagation directions f; = +.
The parameters used are the same as for Fig. 2. The inset shows the
parameter n in the limit of large distances r.

nonzero limiting value (see the inset of Fig. 3). This result
means that, despite the evanescent wave behavior of the
force, the asymmetry parameter n can be significant even
when the atom is far away from the fiber. The reason is
that 5 is determined by not the field amplitude but the ratio
between the axial and radial components of the guided field.
Indeed, in the limit of large r, we have |F.| & p.. o |Q[.
This leads to n >~ 2Im(.e',.ez;‘)/(le,J2 + le.|?) for do, xiX—12
and £ x e,X + fre.Z. We can show that e./e, — —iqrL/BL
for r — oo, where ¢; i1s the evanescent-wave penetration
parameter for the driving field [19,28]. Hence we find n —
Moo = 2B1qL/(Bi + g?) for r — oo. Thus the limiting value
of n is nonzero and is determined by the fiber mode parameters
Br. and q;. Since g, = VB —n3k; < Br < mk., we have
T & an/n% — n%/(Zn% — n%) < 1. It is clear that one can
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FIG. 4. Absolute value | F.| of the axial component of the force of
the resonant guided light on a two-level atom as a function of the fiber
radius a. The atom is positioned at the distance » — a = 20 nm from
the fiber surface. Other parameters are as for Fig. 2. The vertical dotted
lines indicate the positions of the cutoffs for higher-order modes.
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FIG. 5. Asymmetry parameter 5 for the axial forces F:‘f ©) for the
opposite propagation directions f), = == as a function of the fiber
radius a. The parameters used are the same as for Fig. 4. The vertical
dotted lines indicate the positions of the cutoffs for higher-order
modes.

enhance the limiting value n. by increasing the refractive
index n, of the fiber.

Note that the asymptotic value n =~ 21m(e,.ez‘)/(|e'r|2 +
le.|?) for large r is proportional to the electric transverse
spin density o\ 7" = (€o/4w)Im[E* x E]-§ o frIm(e,el)
of the driving field [28]. For the dipole rotation in the merid-
ional plane zx, the axis y is the quantization axis and hence the
selection rule corresponds to the transverse angular momentum
conservation. The spin-orbit coupling of light leads to the
asymmeltry of the excitations and hence to the asymmetry of
the forces.

The dependencies of the absolute value | F.| and the direc-
tional asymmetry parameter 7 of the axial force on the fiber
radius a are shown in Figs. 4 and 5. While for the modes
HE,; and HE,; one always finds |FP| = |F7)|, the modes
TMy, and EH;; allow for both possibilities | F| < |F{~| and
|F9)| = |F!7)], depending on a.

IV. SUMMARY

In summary, we have calculated the force of the guided
light field of an ultrathin optical fiber on a two-level atom.
We have shown that the magnitude of the force of guided
light on an atom with a dipole rotating in the meridional plane
depends on the field propagation direction. This chiral effect
arises as a consequence of the directional dependencies of the
Rabi frequency of the guided driving field and the rate of the
spontaneous emission from the atom. Our results could be used
to control and manipulate the direction of motion of atoms in
a cold gas or an optical lattice near the surface of an ultrathin
fiber by simply varying the field propagation direction. This
could enable studies of optical binding effects on atoms under
chiral forces and lead to new laser cooling schemes and novel
designs for atom interferometers.
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