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Abstract 

A multi-layer of stacked-graphene (8 layers of basal planes) grown by chemical vapour 
deposition (CVD) is introduced as an artificial solid electrolyte interphase (SEI) layer onto a 
transition metal oxide cathode for lithium-ion batteries. The basal planes are generally regarded 
as a strong physical barrier that prevents lithium-ion diffusion, although it is believed that a 
small number of lithium-ions can migrate through the defect sites of the stacked layers. 
Interestingly, the unique design of the stacked-graphene perpendicular to the basal planes not 
only effectively suppresses the formation of instable SEI layers, but also achieves a reasonable 
amount of battery charge capacities. To correctly understand the impact from the stacked design, 
we further studied the rate kinetics difference between slow cycles (0.125 C→0.250 C→0.400 
C→0.125 C) and rapid cycles (C→2 C→3 C→C). We propose that the clap-net like design of 
the stacked-graphene could enable the effective conducting pathway for electron transport, 
while protecting the active material inside. The magnetic measurements reveal the efficient Li+ 
(de)intercalation into graphene-layers. The artificial SEI also renders the electrode/electrolyte 
interface more stable against dynamic rate changes. The present approach provides a particular 
advantage in developing high stability battery that can be utilized at various charge rates. 
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1. Introduction

Li-ion batteries have been widely used as an energy storage system for powering portable 

devices such as mobile phones and laptop computers since the successful commercialization 

by Sony in 1991 [1,2]. Recent developments in the batteries have led to a continuous interest 

in developing high energy density battery for electric vehicles (EV)  and electrical grid 

applications owing to their high volumetric/gravimetric density, high energy density, flexible 

design, and environmentally benign property [1–6]. Certain advantages have allowed the 

expand of the energy storage system into more sophisticated applications that require a higher 

level of stability in service. One of the key components that determines the performance and 

stability of the battery is the type of intercalation compound [6,7]. The intercalation material, 

i.e., cathode can be categorized into three different types of composites based on the crystal

structure, namely, spinel (LiMn2O4), olivine (LiMPO4, where M=Fe, Mn, Co, Ni), and layered 

transition metal oxides (LiMO2, where M= Mn, Co, Ni, Al) with distinguishing ionic diffusion 

channel [8–11]. Among the cathode materials, the layered structure has attracted much 

attention due to its successful commercialization with high specific capacity (< 200 mAhg-1) 

[2,8,12]. Further research on the battery chemistry of the layered oxide material had led to the 

development of the mixed transition metals oxide composite, i.e. LiNixMnyCozO2 (NMC, 

where x+y+z = 1) with a α-NaFeO2-structure (R3#𝑚 space group). The NMC cathode has 

emerged as a promising electrode material as the mixed transition metals between Ni, Co, and 

Mn offer synergetic benefits over a single transition metal cathode [2,13–15]. A tailored NMC 

structure into a dual layer system, represented by the formula of 𝑥Li(MnO, ∙ (1 − 𝑥)LiMO( 

(M= Mn, Co, Ni), offers extra charge capacity. The electrode composite of the dual layer system 

is known as the Li-rich transition metal oxide cathode proposed by Thackeray et al [15]. The 

Li-rich battery benefits from its superior specific capacity (~250 mAhg-1) and high operating 

voltage (>4.6 V vs Li0) [15–17]. Since then, interest in the Li-rich battery has dramatically 

increased, giving rise to the development of its derivatives such as ‘layered-layered-spinel’ 

electrode, Sn-stabilized Li-rich cathode, Al substituted Li-rich material, and Fe substituted Li-

rich  composite [18–21]. Recently, there has been a growing trend towards the development 

of layered Ni-rich oxide cathode due to its high energy density and promising reversible 

capacity [22]. While there have been extensive developments of the high-energy density 

materials, the adaptation of the fundamental layered structure remains unchanged, and thus 

some intrinsic problems causing battery fading are still present. The degradation of the two-



dimensional layered structure attributed to the formation of the solid-electrolyte interphase 

(SEI) layer is one of the fading mechanisms that lead to the charge capacity decrease, voltage 

decay, and power fading of the lithium-ion battery [23]. Electrode exfoliation, SEI growth and 

stabilization, and the subsequent lithium plating are known to be the dominant processes 

involved for the fading mechanism during charge-discharge [23]. On the one side, the 

formation of SEI layer is a critical factor, which causes the degradation of the electrode material 

and thus capacity fading. On the other side, it is also the key factor that provides the kinetic 

stability by preventing the redox reaction stemming from the electron transfer from higher to 

lower Fermi energy between electrode and electrolyte. The SEI layer also plays an important 

role in preventing the dissolution of the transition metal into the electrolyte and the oxygen loss 

from the active material [6,7,23,24]. The chemical and physical properties of the SEI on the 

battery electrodes have been widely studied. Previous studies on the SEI composition identified 

the formation of Li2O, Li2CO3, and LiF (e.g LiPF6, LiBF4 electrolyte) near the lithium metal 

substrate, whereas the major products at the electrolyte side were reported as alkyl carbonates, 

i.e. dicarbonates ((ROCO2Li)2) and/or semicarbonates (ROCO2Li) [25–28]. Based on the 

chemical compositions, Peled et al. proposed the mosaic-type SEI model to describe the 

formation and growth of the SEI layer during charge-discharge [25]. The SEI layer is 

considered as a mosaic consisting of multiple inorganic and organic components, allowing 

lithium ions to move through the phase boundaries. The mosaic model has been widely 

accepted, yet the detailed mechanism of SEI formation remains unclear.  

Graphene has emerged as an attractive functional material for energy storage applications 

owing to its outstanding electrical conductivity (~2000 Scm-1), large active surface area (~1500 

m2g-1), high energy density and mechanical stability [29–34]. It has been also reported that the 

graphene can effectively inhibit the dissolution of the transition metals (e.g. Mn, Co, Ni) into 

the battery electrolyte [33,35,36]. Graphene not only hinders the side-reaction between the 

electrode and electrolyte, but also tends to increase the oxidation state of the transition metal, 

which in turn prevents the dissolution of the active material into the electrolyte during charge-

discharge [35]. Another interesting feature of graphene is the ability of producing stable SEI 

layer on the electrode [37]. This feature called our attention to the concept of artificial SEI 

layer, which prevents the access of the electrolyte to the electrode and renders the surface 

chemically stabilized while it allows the migration of the lithium ions into the battery electrode 

[38–40]. The migration mechanism of the lithium-ions into the artificial SEI layer has become 

a central issue for the battery performance and rate capability. Several studies have explored 



the lithium-ion intercalation into the graphite or stacked carbon nanostructures [29,41,42]. 

Recently, there has been a great interest in the stacked graphene system, which can be 

distinguished from the normal graphite, due to their unique electronic properties depending on 

the way of stacking and the number of graphene layers [43–47]. A particular interest is devoted 

to the lithium-ion diffusion through the basal plane [44,47]. Whereas the lithium-ion diffusion 

through the edge planes between graphene layers have been widely studied, the investigations 

of the lithium-ion diffusion trough the basal plane are scarce as the perpendicular layer is 

generally regarded as a strong physical barrier that prevents the lithium-ion migration. 

However, a previous study by Yao et al. suggests the possible diffusion of lithium ions through 

the defect sites, i.e. grain boundaries and vacancies [44]. In addition, according to the layer-

dependant capacities, it has been reported that higher than 6 graphene layers will reasonably 

increase the battery capacity by pure lithium ions intercalation [44]. Also, Persson et al. 

identified the grain boundary as a possible lithium-ion diffusion channel between stacked 

graphene layers [46].  

In this study, we present an unique artificial SEI layer with 8 layers of stacked-graphene 

grown by chemical vapour deposition (CVD) and transferred onto the layered 

Li(Ni1/3Mn1/3Co1/3)O2 cathode layer-by-layer. Kinetic investigations were conducted using 

different charge rate sets between slow cycles and rapid cycles of the lithium-ion cells to 

accurately evaluate the impact of the stacked graphene on the SEI formation and 

electrochemical properties. Lithium-ion diffusion through the defect sites of the stacked-

graphene is confirmed. Interestingly, the stacked design perpendicular to the 

Li(Ni1/3Mn1/3Co1/3)O2 electrode, not only effectively suppresses the formation of the SEI layer, 

but also provides a certain amount of charge capacity with improved rate capabilities. The clap-

net like design of the stacked-graphene enables the effective conducting pathway for electron 

transportation achieving reasonable battery performance. Furthermore, it maintains the initial 

local atomic environments of Mn-O, Co-O, and Ni-O, impeding carbonates by-products. It also 

renders the interface stability against dynamic rate changes. This study provides insights into 

the development of high-energy density electrodes with enhanced stability for the lithium-ion 

battery. 

 

 



 

2.   Experimental 

2.1. Graphene growth and transfer 

Graphene was prepared first by cleaning copper foil (25 mm copper foil, Alfa Aesar), with 

dilute nitric acid (5%), followed by acetic acid, and lastly isopropyl alcohol. The foil was then 

loaded into a quartz tube furnace and ramped up to 1070 ˚C in the presence of hydrogen gas, 

and annealed for 1 hour. This was followed by a 30 min growth with a gas flow of 20 sccm 

hydrogen, and 30 sccm methane, and a pressure of ~200 Pa. The foil was then rapidly cooled 

to room temperature by opening the lid of the CVD system in the presence of hydrogen gas. 

Graphene was transferred to Li(Ni1/3Mn1/3Co1/3)O2 electrode by a thermal release transfer 

process. Copper with graphene foil is covered with thermal release tape (Nitto, 90 ˚C release). 

The copper is etched away in solution of 20% ammonium persulphate, leaving 1 layer of 

graphene on the tape surface. Up to 8 layers were transferred sequentially (layer-by-layer) by 

first applying the tape with uniform pressure to battery substrates (denoted as GNP8L), 

followed by removal of the tape backing by heating the substrate to 100 ˚C. The synthesis 

process was performed inside a Class 1000 (ISO 6) clean room. 

2.2. Electrode material characterization 

The cycled coin cells were disassembled under argon atmosphere (Ar-glove box: H2O < 1 ppm 

and O2 < 1 ppm), and the cathodes cycled at different charge regimes were carefully taken and 

rinsed by DMC, followed by a drying process under vacuum, for the material characterizations. 

Magnetic measurements were conducted on the Li(Ni1/3Mn1/3Co1/3)O2 (NMC111) and the 

stacked-graphene (8-layers) coated Li(Ni1/3Mn1/3Co1/3)O2 cathodes (GNP8L) at different 

cycled states using a physical property measurement system (Quantum Design PPMS 

Dynacool). The magnetic susceptibility of the cathode composites was measured under the 

magnetic field of 30k Oe at 5 K. The molar magnetization property was also investigated by 

applying 1000 Oe magnetic field in the temperature range between 5 K and 300 K. SEM images 

of the cathodes (NMC111 and GNP8L) at reference state and cycled states were acquired by a 

scanning electron microscopy (SEM, FEI Quanta 250 FEG). The powder diffraction data of 

the cathodes with the different cycled conditions were collected using Bruker D8 X-ray 

diffractometer with the X-ray source of Cu Kα radiation. The XRD peaks were recorded by 

step scanning in the range of 2θ= 10-90° with the increment of 0.02°. Raman spectra were 



collected by a 3D laser Raman micro-spectrometer (Nanofinder 30, Tokyo Instruments). 

Raman investigation was conducted for 5 different points for each sample using a 532 nm 

excitation laser (green laser, spot size ~ 2 µm ) with 50x objective lens (Nikon), and 600 

grooves/mm grating. X-ray photoelectron spectroscopy (XPS, AXIS Ultra HSA KRATOS) was 

performed for the ex-situ study of the cathode materials at different rate regimes. Al Kα was 

used as the X-ray source, and it was operated at 10 kV and 160 W under ultra-high vacuum 

(10-9 torr). The background of the spectra was fitted using a Shirley-type function. The spectra 

profiles were defined by a Gaussian-Lorentzian function using CasaXPS application. 

2.3. Electrochemical characterization 

NMC111 electrodes were prepared by mixing the Li(Ni1/3Mn1/3Co1/3)O2 active material (MTI, 

Japan) with carbon black (Super C65) and polyvinylidene fluoride (PVDF) binder in a weight 

ratio of 80:10:10 (=NMC111:Carbon black:PVDF) in N-mehtyl-2-pyrrolidone (NMP, Sigma 

Aldrich) solution. GNP8L electrodes were produced by the thermal-realising taping method of 

graphene on the as-prepared NMC111 electrodes. The electrode slurries were coated on the 

aluminium current-collector using an electrode coater equipped with a doctor blade and a dryer 

(MTI, Japan), and the casted film was dried at 60 °C for overnight. The casted electrodes were 

taken into the vacuum oven and dried at 120 °C for another overnight. The casted electrodes 

were roll-pressed with 10 µm thickness after the vacuum drying, and transferred into an Ar-

glove box in order to assemble the electrode components into a CR2032 coin cell type. Prior 

to assembling, the electrodes were cut into a piece of discs to 16 mm in diameter. Li metal was 

used as the counter electrode (anode), and it was cut into the same diameter size as the cathode. 

The cathode and anode were physically separated by a membrane separator (CELGARD Inc.). 

1 M lithium hexafluorophosphate (LiPF6) in ethylcarbonate (EC), diethylcarbonate (DC), and 

dimethylcarbonate (DMC) (EC:DC:DMC = 1:1:1 in volume) was used as the electrolyte. A 

stainless steel spacer and a steel spring were put on top of the anode, and they were sealed by 

a hydraulic crimping machine (MTI, MSK-110). The assembled coin cells were charged and 

discharged with the current rate of 1 C, 2 C, 3 C, and back to 1 C (denoted as rapid charge 

regime), and the cells were charged and discharged with the current rate of 0.125 C, 0.250 C, 

0.400 C, and back to 0.125 C (denoted as slow charge regime) using an 8-channel battery 

analyser (MTI). The galvanostatic profile was obtained in the voltage range of 2.0 – 4.2 V at 

room temperature with 40 cycles for each cell. 



 

3.   Result and discussion 

Magnetism studies are particularly useful in understanding the local atomic environment of the 

Li(Ni1/3Mn1/3Co1/3)O2 cathode composite and providing insights into the graphene defects and 

charge rate kinetic of the stacked-graphene Li(Ni1/3Mn1/3Co1/3)O2 cathode (GNP8L). The 

Curie-Weiss temperature (θ), denoted as Weiss constant (Table. S1), from the magnetic 

susceptibility measurements can offer information on the type and strength of the magnetic 

exchanges. Especially, the identification of an antiferromagnetic exchange proves the presence 

of the 180° Ni-O-Ni interactions between the Li-layer and the transition metal layer in the 

electrode. In addition, the evaluation of the magnetic moment (µB) upon the number of 

graphene layers offers information about the occurrence of the graphene defects. Fig. 1a 

exhibits the schematics of the battery cathode coated by the stacked graphene with defect sites. 

The interactions appeared at the electrode interface on Li+ charge rate kinetics is also displayed. 

It has been demonstrated that the graphene grown by the CVD method can well maintain the 

initial electron spin state along with a wide range of the substrate [48]. This feature is illustrated 

as the electrons with identical spin states onto the graphene layer. The green circle represents 

the individual lithium-ion and the orange arrow indicates the migration pathway. The different 

migration speed of Li+ is likely to be attributed to the rate dependent intercalation mechanism 

[49]. Whereas the Li+ migrates through the defect sites instantly at a rapid charge rate, the Li+ 

possibly competes with other Li+ and/or Li+ based compounds (e.g. LiF, LiOH, and lithium 

carbonates) resulting from SEI dissolution into the electrolyte at a slow charge rate. The 

difference in the charge rate could determine the presence of the steric hindrance at the defect 

sites. Fig. 1b compares the performance of the electrochemical cells with the different number 

of graphene layers. GNP8L revealed the best charge capacity and rate capability except for the 

initial cycle. Further information on the electrochemical performance can be seen in Fig. S1 

and Fig. S2. The magnetization and reciprocal magnetic susceptibility are compared in Fig. 

1c–e. No saturation was found in the magnetization curve (Fig. 1e) for each sample, indicating 

antiferromagnetic interactions. As shown in Fig. 1c, the electrodes appear to be paramagnetic 

above 150 K, and thus the Curie-Weiss law of	  𝑋4 = C/(𝑇 − θ), where C is the Curie constant 

(C=N𝜇(/3𝑘< , N: Avogadro number, 𝜇: effective moment and kB: Boltzmann constant) and 

θ is the Weiss constant, can be applied with the linear fitting between 150 K and 300 K. The 

Curie-Weiss temperature for the NMC111-REF, GNP2L-REF, GNP8L-REF, GNP8L-Rapid, 



and GNP8L-Slow were evaluated to be –76.32 K, -79.98 K, -280.40 K, -44.18 K, and -62.74 

K, respectively (detailed information on magnetization is summarized in Table S1). The 

 

Fig. 1. (a) Schematics of stacked-graphene coating on the Li(Ni1/3Mn1/3Co1/3)O2 (NMC) cathode, and difference in the charge 
rate kinetic at graphene defect sites and the electrode interface. (b) Galvanostatic profile of 2-layers stacked graphene NMC 
(GNP2L), 4-layers stacked graphene NMC (GNP4L), and 8-layers stacked graphene (GNP-8L), and their (c) reciprocal 
magnetic susceptibility between 5 K and 300 K. The applied magnetic field is 1000 Oe. (d) The correlation of experimental 
magnetic moments and charge losses after cycling on the number of stacked-graphene layers. Green arrow indicates the 
magnetic moment changes after cycling (e) Hysteresis loop of magnetization at 5 K of Li(Ni1/3Mn1/3Co1/3)O2 (NMC) reference 
cathode, GNP2L at reference, GNP8L at reference, 8-layers stacked graphene NMC with rapid cycles (GNP8L Rapid) from 
C to 2 C to 3 C and back to C rate, and 8-layers stacked graphene NMC with slow cycles (GNP8L Slow) from  0.125 C to 
0.250 C to 0.400 C and back to 0.125 C.  



negative values of the Curie-Weiss temperatures further support the antiferromagnetic 

interactions. The origin of the antiferromagnetic interactions can be explained by the presence 

of Ni2+ in the lithium layer of the Li(Ni1/3Mn1/3Co1/3)O2 cathode as it induces a 180° 

antiferromagnetic interaction with the Ni2+ in the transition metal layer [50–52]. Slight 

hysteresis loops could be observed for each electrode as can be seen in Fig. 1b. The remnant 

magnetization of NMC111 (REF) was measured to be 3.08 emu×mol-1. The remnant 

magnetization was 4.16 emu×mol-1 for the GNP2L (REF) cathode and was 1.45 emu×mol-1 for 

the GNP8L (REF) cathode. After the electrochemical cycles, the remnant magnetizations 

increased from 1.45 emu×mol-1 to 3.64 emu×mol-1 and to 4.66 emu×mol-1 for the slowly cycled 

GNP8L and rapidly cycled GNP8L, respectively. The slight opening of the magnetization curve 

is associated with a 180° ferromagnetic interaction between the Ni2+ in the lithium layer and 

Mn4+ in the transition metal layer [51–53]. These results signify larger changes in the local 

atomic environment of the stacked-graphene cell at slow charge rates. Another significant 

finding that can be deduced from the magnetic measurement is the magnetic behaviour of the 

stacked graphene itself. Defect induced magnetization by graphene could be identified in Fig. 

1d, e. The magnetic behaviour in NMC111 electrode can be described by the transition-metal 

only (TM-only) magnetization since the cathode is mainly composed of Mn4+, low-spin Mn3+, 

Co3+, and Ni2+. The coating of 2-layers stacked graphene is likely to add some magnetic 

moments due to the defect induced magnetization by graphene. The experimental magnetic 

moment resulting from the defects tends to increase with the increment of the graphene layers 

(see Fig. 1d). However, the magnetization (emu/mol) declines when the number of graphene 

layers increases higher than 6-layers (see Fig. S3). These findings are in agreement with a 

number of previous studies, which have explored the defect induced magnetism in graphene 

[54–57].  It has been reported that defects such as adatoms and/or vacancies can be present in 

graphene [44,54,56]. A magnetism study of graphene by Nair et al. reported the relationship 

between the magnetic property and the defect concentration based on point defects [57]. The 

magnetic moment is likely to be high per unit defect at very low concentrations of point defects, 

whereas the magnetic moment dramatically decreases at a certain level of the defect 

concentration. It should be also noted that those defects allow the transportation of lithium ions 

into the electrode in spite of the high diffusion barrier from the stacked layers [35,44]. The 

(de)intercalation of lithium ions to the active material is believed to lead to higher graphene 

defects.[58] The increase of the magnetization (emu/mol) at both cycled cells (GNP8L(Slow) 

and GNP8L (Rapid)) indicates a rise in the number of the defects. The magnetic moment of the 



NMC111 electrode increased from 2.42 µB to 2.57 µB at the slow charge regime, while it 

declined to 2.31 µB at the rapid charge regime. On the other hand, the magnetic moment of 

GNP8L decreased from 2.90 µB to 2.42 µB and 2.23 µB for the slow charge regime and rapid 

charge regime, respectively. This discrepancy is attributed to the engineered electrode interface 

rendered by the stacked-graphene layers. The Li(Ni1/3Mn1/3Co1/3)O2 cathode without any 

surface treatment can be easily oxidized by the electrolyte (PF?@), leading to the oxidation 

changes in the transition metals. The HF compound stemming from the residual water is 

another critical factor that can dissolve the transition metals. These surface interactions lead to 

the local atomic phase changes in the transition metal elements, thereby forming low-spin 

transition metals. The decline of the magnetic moment of NMC111 electrode at the rapid charge 

regime can be explained by the occurrence of the low-spin transition metals. On the other side, 

lithium ion vacancies or oxygen vacancies can be formed through the transition metal migration 

and the loss of lithium ions during charge-discharge. The lower the charge rate is, the deeper 

the Li+ (de)intercalation is. It thus results in the formation of a larger number of vacancies that 

could invoke high-spin transition metals, leading to higher magnetic moments. By contrast, the 

drop in the magnetic moment of GNP8L at both charge regimes could be explained by the Li+ 

intercalation either into layers or on defect sites. The charge loss after electrochemical cycles 

is also correlated to the number of stacked-graphene layer and the magnetic moment of the 

electrode, as presented in Fig. 1d. The charge loss was minimum for the GNP8L cell on cycling. 

The electrode coated with 2-layers and 4-layers of graphene revealed higher charge capacity 

loss after cycling. This result supports the concept of the corrosion-SEI dominant regime, 

which is discerned in accordance with the number of graphene layers [44]. 

The rate kinetic study was conducted to gain insights into the electrochemical 

performance and stability of the cathode with the stacked-graphene system. Two 

distinguishable regimes of charge rates were applied in order to reproduce some harsh 

environments at the electrode/electrolyte interface stemming from the lithium-ion 

(de)intercalation. Fig. 2 presents the rate capability (Fig. 2a and b) and the galvanostatic profile 

of NMC111 and GNP8L (Graphene 8L) samples with the variations of charge rates between C, 

2C, and 3C at the rapid-charge regime and 0.125 C, 0.250C, and 0.4 C at the slow-charge 

regime. Whereas the change in the specific charge capacity was not significant at the slow-

charge regime, there was a notable difference at the rapid-charge regime. Interestingly, GNP8L 

(Graphene 8L) cell revealed better rate capability and capacity retention than those of NMC111 



cell at the rapid-charge regime. Stacked graphene perpendicular to the substrate, known as the 

basal plane, has been generally considered as a physical barrier that blocks diffusion of lithium 

ions into the electrode substrate by steric hindrances [44,46]. Although ionic diffusion is highly 

limited between the stacked layers of graphene , some defect sites such as divacancies, ordered 

defects, and grain boundaries are likely to allow lithium ions to diffuse through the basal plane 

[44,46]. Also, it should be noted that the galvanostatic profile of GNP8L (Graphene 8L) cell 

 

Fig. 2. Kinetics investigation of Li(Ni1/3Mn1/3Co1/3)O2 (NMC111) and graphene coated NMC111 with 8 layers of stacked-
graphene (Graphene 8L). Rate capability at (a) rapid charge regime (C, 2 C, 3C and C-rate) and (b) slow charge regime (0.125 
C, 0.250 C, 0.400, and 0.125 C-rate). Galvanostatic profile of (c) NMC111 and (d) Graphene 8L (GNP8L) at slow charge 
regime in the voltage window of 4.2-2.0 V. Galvanostatic profile of (e) NMC111 and (f) Graphene 8L (GNP8L) at rapid charge 
regime in the voltage window of 4.2-2.0 V. 



showed clearer separations in the rate regime compared to NMC111 cell at high charge rates 

(Fig. 2e and f), indicating better capacity retention and stability against dramatic changes in the 

ionic diffusion kinetic. 

Fig. 3 compares the differential capacity obtained from initial, 9th, 15th, 25th, and 38th 

cycles of NMC111 and Graphene-8L (GNP8L) cells at the rapid charge regime with C, 2 C, 3 

C, and C-rate applied and at the slow charge regime with 0.125 C, 0.250 C, 0.400 C, and 0.125 

C-rate applied in the voltage window of 2.0 – 4.2 V. The initial peak location of NMC111 cell 

at around 3.8 V ascribed to Ni2+/ Ni3+/Ni4+ oxidation shifted to 3.74 V during the 0.125 C-rate 

cycling at the slow charge regime (Fig. 3a). There has been also an irreversible decrease in the 

peak intensity after the initial charge of NMC111 cell, implying phase changes in the local 

atomic environment of the cathode or/and the formation of SEI layer. The initial redox reaction 

of Graphene-8L (GNP8L) cell was found at around 3.8 V at a rate of 0.125 C, which is almost 

the same as in that of the NMC111 cell. By contrast, the intensity of the initial dQ/dV peak of 

Graphene-8L (GNP8L) showed a similar level to that on further cycles (Fig. 3b). On the other 

hand, the trend of spectrum shift at the rapid charge regime was similar between NMC111 and 

Graphene-8L (GNP8L) cells as shown in Fig. 3c and d. While there has been a notable 

difference in the intensity of the initial discharge, the location of the chemical potential 

attributed to the Ni4+/ Ni3+/Ni2+ reduction was similar regardless of the charge rate regime. Peak 

broadening and intensity decrease upon higher charge rates could be identified on both samples, 

indicating a continuous capacity fading. However, Graphene-8L (GNP8L) appeared to be more 

durable against charge variations that could lead to the formation of unstable SEI layers. 

Particularly, at the rapid charge regime, Graphene-8L (GNP8L) not only exhibited a higher 

peak intensity, but also better stability showing less changes in the redox voltage levels. The 

voltage difference of the redox reaction between C and 3 C-rate was 0.06 V for NMC111 and 

0.01 V for Graphene-8L (GNP8L). The present observations on the electrochemical behaviour 

of the lithium ion cells are significant in two aspects. Firstly, it is surprising that the cells with 

stacked-graphene layers revealed better performance in the charge compensation process as 

compared to NMC111 cell. The fully covered electrode with 8 layers of graphene would be 

nonideal for lithium-ion diffusion, but they can still migrate through site defects. It has been 

also known that graphene synthesized on copper foil by chemical vapor deposition (CVD) 

introduces a homogeneous distribution of defects [59]. The key factor for delivering better 

charge capacity is possibly due to the functional design of the stacked layers, which mimics a 

pile of clap-net that is likely to be beneficial for collecting electrons from the intercalated 



lithium ions (Fig. 1a). Secondly, the observations further support the concept of the rate-

dependent intercalation pathway [49]. The discrepancy in the electrochemical behaviour upon 

different rate regimes can be explained by the inhomogeneous phase transformation that 

depends on the charge rates [49]. At a slow charge rate, the phase transformation of the active 

material particles tends to be homogenous, whereas the phase transformation at a rapid charge 

rate appears to be inhomogeneous as only particular particles are involved in the lithiation. 

Consequently, the lithium-ion at a higher charge rate is more likely than the lithium-ion at a 

lower charge rate to (de)intercalate in the cathode through the site defects or grain boundaries 

of the stacked graphene. This explains the relatively higher battery performance of Graphene-

8L (GNP8L) as compared with NMC111 at the rapid charge regime. 

 

Fig. 3. dQ/dV plot vs cell voltage profile between initial and 40th cycle: (a) NMC111 at slow charge regime, (b) Graphene-8L 
(GNP8L) at slow charge regime, (c) NMC111 at rapid charge regime, and (d) Graphene-8L (GNP8L) at rapid charge regime. 

 Fig. 4a and b shows the SEM images of NMC111 and GNP8L cathodes at the reference 

state where no current was applied, and the observations on cycled cathodes at rapid and slow 

charge regimes. It can be seen from the SEM images that NMC111 underwent disruptions of 

the conductive additives or binding material, and dissolution of the active material particles 

after charge-discharge. By contrast, the stacked-graphene coated samples (GNP8L) revealed a 

well-preserved coating condition. The X-ray diffraction patterns are compared in Fig. 5a. Both 

NMC111 and GNP8L could be indexed by the LiMO2 (trigonal, R3m) structure, where M = 

Mn, Ni, and Co. Each of two coin cells for the sample type and the corresponding states were 



prepared. NMC111 showed a notable change in the peak intensity at (003). While the peak 

increased after rapid cycles, the peak dramatically decreased after slow charge-discharge of 

NMC111 cells. There has been also a marked change in the peak intensity at (101), (104) and 

 

Fig. 4 SEM images of (a) NMC111 cathode at reference state (REF) where no current was applied, and at slow rate regime 
(NMC111(Slow)) and rapid rate regime (NMC111(Rapid)). SEM images of (b) GNP8L cathode at reference state (REF) 
where no current was applied, and at slow rate regime (GNP8L(Slow)) and rapid rate regime (GNP8L(Rapid)). (c) Comparison 
of powder diffraction patterns between NMC111 and GNP8L cathodes. The cells at the rapid charge regime were cycled at 
C, 2 C, 3C and C-rate, while the cells at the slow charge regime were cycled at 0.125 C, 0.250 C, 0.400, and 0.125 C-rate in 
the voltage window of 4.2 – 2.0 V. 



(108). Especially, after the slow cycles, the peak intensity of NMC111 at (101) declined 

substantially.  By contrast, the peak intensity of GNP8L at (003) was similar between rapid 

and slow cycles. Also, there have been little change in the peak intensity at (101) for GNP8L 

after the electrochemical cycles. The peaks at (101) and (104) are generally considered as an 

indication of the successful lithium-ion (de)intercalation [60]. The decrease in the intensity at 

those peaks represent the loss of lithium-ions of NMC111 cathode during charge-discharge, 

implying a phase transition in the crystallography structure. In addition, the variations in the 

peak intensity at (108) of NMC111 indicate the structural distortion in the layered structure of 

the trigonal phase (R3m) [61]. The coated cells with stacked-graphene (GNP8L) displayed 

significantly improved stability to the substrate structure on charge rate variations. To further 

understand the local atomic environment in the layered structure, the intensity ratio of 

diffraction peaks between (003) and (104) was evaluated as can be seen in Fig. 5c. The peak 

intensity of I003/I104 is known to be associated with the Ni2+ cation mixing at the lithium-layer 

site. The higher the value of I003/I104 is, the lower cation mixing between Ni2+ and Li+ at the 

lithium-layer is [62,63]. It can be seen from the trend of I003/I104 that the Ni2+ at the lithium-

 

Fig. 5 Comparison of powder diffraction patterns between (a) NMC111 and GNP8L cathodes. (b) Key Raman spectra (A1g, D-
band, and G-band) of NMC111 and GNP8L at reference state, slow charge regime, and rapid charge regime. (c) Comparison 
of the XRD intensity ratio changes of I(003)/I(004) between NMC111 and GNP8L. (d) The location change of Raman A1g 
mode on different charge rate regimes between NMC111 and GNP8L. The blue arrow represents the slow cycle regime, while 
the orange arrow indicates the rapid cycle regime.  Raman intensity change of D-band/G-band on different charge regimes. 
The cells at the rapid charge regime were cycled at C, 2 C, 3C and C-rate, while the cells at the slow charge regime were cycled 
at 0.125 C, 0.250 C, 0.400, and 0.125 C-rate in the voltage window of 4.2 – 2.0 V. 

 



layer is likely to be diminished during Li+ (de)intercalation at rapid charge rates on both 

NMC111 and GNP8L cells. However, the peak intensity of I003/I104 decreased in the slow charge 

regime of NMC111 cell, implying increment in the cationic disorder. Interestingly, the peak 

intensity of I003/I104 in the rapid charge regime of GNP8L cell was rather increased. This 

signifies a well-ordered layered structure in GNP8L cathode even after the severe 

electrochemical cycles. The results obtained from the Raman spectroscopy are compared in 

Fig. 5b. Raman spectroscopy provides key information about the local atomic structure of the 

MO6 octahedron (M=Transition metal). It also offers some insights into the carbon or graphitic 

system due to the high sensitivity of Raman scattering (D-band and G-band) to the distortion 

in the sp2 carbon atoms. The Raman mode of A1g is attributed to the M-O stretching, and it 

represents the order in the layered structure of hexagonal rock-salt system. The A1g mode was 

located at approximately 600 cm-1 for both NMC111 and GNP8L cathodes at the reference state 

(REF). After rapid cycles, the A1g of NMC111 shifted towards a higher frequency, but no 

significant change was observed in GNP8L (GNP8L Rapid), as exhibited in Fig. 5d. After slow 

cycles, the location of A1g shifted towards a higher frequency as 611 cm-1 for NMC111 and 604 

cm-1 for GNP8L. At both charge regimes, GNP8L revealed better stability, and these results are 

in good agreement with the powder diffraction measurements. It seems that those cells cycled 

at the slow charge regime could fully activate the redox reactions for the charge compensation 

mechanism, which in turn results in higher charge capacity as shown in Fig. 2. On the other 

hand, at the rapid charge regime, the obtained capacity was relatively lower than that of the 

slow charge regime, although it reached the target voltage quicker. At constant current cycles, 

the slow charge rate generally exerts higher impact on the underlying structure due to the fully 

activated/oxidized active materials, which leads to high battery capacity. The stacked-graphene 

coating on the Li(Ni1/3Mn1/3Co1/3)O2 cathode appears to be stable under the cycling condition, 

i.e., dynamic changes of charge-discharge rates. The tendency could be also found in the 

Raman D-band and G-band of the cathode materials. The ratio of Raman peak intensity ID/IG 

can be used as an indicator to evaluate the defects in the carbon and graphitic system. The 

appearance of the G-band can be attributed to the plane stretching motion between sp2 carbons, 

whereas the D-band is assigned to the structural defects (e.g. broken sp2) and/or edge effects 

of the graphitic system [64–66]. The higher the value of ID/IG is, the more defects and disorders 

in the structure are [64,65]. It is difficult to directly compare the ID/IG ratio between NMC111 

and GNP8L cathodes, due to the different origin of the carbonic system. However, there was 

an important difference in the value of ID/IG between the slow charge and rapid charge regime 



as presented in Fig. 5b and d. The change of ID/IG was not significant for NMC111, but there 

was a notable increase in the value of ID/IG for GNP8L. The increment of the ratio was 

relatively large at the slow charge regime, indicating a higher degree of defects and disorders 

of the sp2 carbon bonding. These results are consistent with the magnetic measurements on the 

defect-induced graphene upon different charge regimes (Fig. 1). Due to the steric hindrance, 

which is possibly originated from the rate-dependent (de)intercalation, the cathode cycled at 

slow charge rates may introduce relatively a larger number of defects on the stacked-graphene 

layers. The increase of disorders and defects (higher ID/IG) could diminish the electron 

conductivity, which in turn results in lower charge capacity [66,67]. This is in accord with the 

electrochemical measurements (Fig. 2). The formation of graphene layers identified by Raman 

2D-band can be seen in Fig. S4. 

The chemical property of the electrode materials was examined using XPS to evaluate 

the oxidation states of the transition metals, as well as to compare the SEI formation on the 

electrode upon different charge rates. Fig. 6 presents the XPS spectra of NMC111 and GNP8L 

at Mn 2p, Ni 2p, O 1s, C 1s, and F 1s between the slow and rapid charge regimes. The binding 

energy values of Mn (2p3/2) and Mn (2p1/2) were approximately 642.3 eV and 654.0 eV at the 

reference state (REF), respectively, indicating the presence of Mn4+ on both samples [68]. On 

the other side, the peaks at 641.7 eV and 653.3 eV imply the existence of some Mn3+ in the 

cathode at the reference state as can be seen in Fig. 6a and d [69]. It is likely that the Mn in the 

pristine material exists as a mixed oxidation state between Mn3+ and Mn4+. This can be 

explained by the presence of low-spin Mn3+ and/or the electron transfer between Mn4+ and Ni2+ 

[70–72]. The spectral shift on both cells towards higher oxidation state in Mn 2p was only 

marginal at the rapid charge regime. However, at the slow charge regime, the shift was dramatic 

in NMC111 cell as it shifted from 642.3 eV to 645.2 eV while the change remained insignificant 

in GNP8L cell. This observation indicates the irreversible loss of the Mn of which its oxidation 

state lies between Mn3+ and Mn4+ from NMC111 cathode in the slow charge regime. The Ni 

(2p3/2) and Ni (2p1/2) peaks were identified at 854.5 eV and 872.1 eV followed by shake-up 

peaks (satellites) at approximately 860.9 eV and 879.0 eV (Fig. 6b and e), respectively, 

suggesting the existence of Ni2+ in the pristine composite. There were also two minor peaks at 

approximately 855.9 eV and 874.0 eV attributed to the Ni3+. The occurrence of the minor peaks 

can be also caused by electron transfer between Mn4+ and Ni2+. The trend of the XPS spectral 

shift of Ni 2p is comparable to that of the Mn 2p on both GNP8L and NMC111 cathodes on 

charge-discharge. As to NMC111 cell, the oxidation state change of Ni 2p was prominent at 



slow charge rates, and this tendency was similar to that of Mn 2p. However, the spectral shift 

of Ni 2p was also notable at rapid charge rates as it shifted from 854.5 eV to 858.9 eV (Fig. 6b) 

 

Fig. 6 XPS spectra of NMC111 sample: (a) Mn 2p, (b) Ni 2p, and (c) O 1s at reference state (REF), slow charge regime from 
0.125 C to 0.250 C to 0.400 C (Slow) and back to 0.125 C, and rapid charge regime from C to 2 C to 3 C and back to C 
(Rapid).  XPS spectra of GNP8L sample: (d) Mn 2p, (e) Ni 2p, and (f) O 1s at reference state (REF), slow charge regime 
from 0.125 C to 0.250 C to 0.400 C (Slow) and back to 0.125 C, and rapid charge regime from C to 2 C to 3 C and back to C 
(Rapid).  XPS spectra of NMC111 sample: (g) F 1s and (h) C 1s at reference state (REF), slow charge regime from 0.125 C 
to 0.250 C to 0.400 C (Slow) and back to 0.125 C, and rapid charge regime from C to 2 C to 3 C and back to C (Rapid). XPS 
spectra of GNP8L sample: (j) F 1s and (i) C 1s at reference state (REF), slow charge regime from 0.125 C to 0.250 C to 0.400 
C (Slow) and back to 0.125 C, and rapid charge regime from C to 2 C to 3 C and back to C (Rapid). 

 



after 40 cycles. On the other hand, the spectral changes of Ni 2p were relatively small in GNP8L 

cell as shown in Fig. 6e. It is likely that the Ni in GNP8L cell underwent less phase transition 

and/or less dissolution into the electrolyte upon charge-discharge. Ni is generally known as the 

major contributor to the charge compensation mechanism due to its two-stage oxidation of 

Ni2+/Ni3+ and Ni3+/Ni4+ during charge-discharge. Moreover, Ni is also relevant to the cation 

exchange between Li and Ni at the layered structure, and thus affects the ionic diffusion rate. 

As a consequence, the complex manner of the Ni in the cathode composite gives dynamic 

spectral changes upon different cycling conditions. Similarly to Ni 2p, there was a major 

binding energy shift in Mn 2p at the slow charge regime of NMC111. This result could be 

attributed to the oxidation state change from mixed Mn3+/Mn4+ to Mn4+ which contributes to 

the charge compensation mechanism. However, it is difficult to explain the major changes 

towards higher binding energy only by considering the irreversible oxidation change of Mn, 

since the electrons transferred are not sufficient to cause such a large spectral shift. The major 

reason for the spectral change of the Mn 2p in NMC111 might be due to the Mn dissolution 

from the electrode surface into the electrolyte during electrochemical cycling. It is believed 

that the trace amount of Mn3+ in the cathode triggers the acidic corrosion reaction with the HF 

stemming from the decomposition of LiPF6 salt, as a consequence of residual water in the 

electrolyte [73,74]. Though the origin of the spectral shifts differs upon chemical species, it is 

the slow charge regime that reveals the higher binding energy shift after 40 cycles. There are 

two possible explanations for this result. As presented in the galvanostatic profile (Fig. 1a and 

b), the slow charge rates seem to fully activate the transport of electrons involved in the charge 

compensation mechanism, and thus results in higher charge capacity than the rapid charge rates. 

This in turn exerts a strong influence on the atomic phase transition of the transition metals. 

These findings are consistent with the results obtained from XRD and Raman spectroscopy. 

Another possible explanation is the rate-dependent phase transformation, as previously 

mentioned. At the rapid charge regime, either a fully intercalated or a fully deintercalated phase 

exists, whereas intermediate phases are likely to be present at the slow charge regime [49]. 

Hence, there will be larger spectral shifts at slow charge rates due to the coexistence between 

the fully oxidized transition metal and the larger amount of the intermediate phases. However, 

at both cases, GNP8L demonstrated its superior capability to protect the cathode material from 

its atomic phase transformation and dissolution into the electrolyte. The results obtained from 

the XPS analysis for O 1s are shown in Fig. 6c and f for NMC111 and GNP8L, respectively. 

The peak at approximately 529.3 eV is associated with the lattice oxygen (Mn-O, Co-O, and 



Ni-O) in the cathode composite at the reference state [75]. The intensity of this peak was 

relatively low in GNP8L as compared with that in NMC111. This observation could be 

attributed to the coating of the stacked graphene with 8-layers, which in turn hinders the XPS 

beam penetration. There was also a smaller peak at approximately 531.3 eV in NMC111 at the 

reference state. The peak corresponds to Li2CO3, which generally appears at the pristine state 

of the cathode material [75,76]. XPS O1s of GNP8L would be mainly described by another 

notable peak at approximately 532.2 eV (Fig. 6f), which can be assigned to the metallic 

carbonate (CO32-) and the oxygen bond to graphene [75–77]. The appearance of the peak at 

532.2 eV in GNP8L signifies a strong affinity between graphene and Li(Ni1/3Mn1/3Co1/3)O2 

composite [78]. There has been a notable change in the intensity and location of the O1s 

binding energy after the rapid cycles of NMC111 cells. The shifts towards a higher binding 

energy was dramatic at the rapid charge regime of NMC111 as can be seen in Fig. 6c. This 

observation accords with the XPS spectral shifts of the transition metals, and the charge kinetic 

appears to be more sensitive to the oxygen anions, which are believed to be evolved in the 

oxygen gas during charge-discharge [79,80]. By contrast, there has been little difference in the 

spectral shifts at O1s between the reference and cycled states of GNP8L cells, exhibiting 

considerable stability against oxygen loss, SEI formation from metal carbonates, and charge 

kinetics. Fig. 6g and i compare the XPS spectra obtained from the F 1s region on NMC111 and 

GNP8L cathodes. At the reference state (REF), where no current was applied, there was a peak 

at 687.7 eV that corresponds to the F from the PVDF binder and/or LixPOyFZ species on both 

cathodes [81,82]. After the rapid cycles, the F 1s of NMC111 contained a new peak close to 

685.3 eV. The new peak can be assigned to the F species in LiF, which is one of the key 

components of SEI layer [37,81,83]. At the slow charge regime, the LiF peak did not occur in 

the F 1s of NMC111 sample. In contrast, as to GNP8L, the LiF peak at F 1s was observed at 

the slow charge regime, whereas it was not clear at the rapid charge regime. These intriguing 

observations raise questions about the nature of charge-dependent (de)intercalation of the 

lithium-ions. Homogenous and steady (de)intercalation at the slow charge regime is likely to 

result in less LiF formation in the SEI layer. Inhomogeneous and active (de)intercalation at the 

rapid charge regime tends to produce a higher amount of LiF on the electrode surface as a part 

of SEI layer. This can be simply explained by the vigorous decomposition of the LiPF6 into 

LiF and LixPFy at higher C-rates, and thus a higher amount of LiF will be formed on the 

Li(Ni1/3Mn1/3Co1/3)O2 composite. However, a new surface environment originated from the 

stacking of 8 layers of graphene on the electrode possibly alters the way the LiF is formed 



depending on charge rates. Graphene itself is believed to be very effective in forming a 

stabilized and well-defined SEI layer [37,44]. In addition, the structure of stacked graphene 

layers, commonly termed as the basal plane, is generally known to form a thinner SEI layer as 

compared with the edge plane [84]. The appearance of the LiF peak in the region of F 1s at the 

slow charge regime of GNP8L (Fig. 6i) could be attributed to the steric hindrance from the 

aggregated lithium-ions [44]. At fast charge rates, the native Li+ will intercalate to the cathode 

composite rapidly passing through the defects and grain boundaries of the graphene layers. 

However, at slow charge rates, the native Li+ may compete with the LiF component in the 

electrolyte, which in turn leads to the steric hindrance at the defect sites (Fig. 1a). The C1s XPS 

spectra consists of 284.2 eV, 285.6 eV, and 290.6 eV are shown in Fig. 6j for NMC111 and 

GNP8L cathodes, respectively. The first peak at approximately 284.2 eV can be assigned to the 

conductive carbon [78,85]. The second peak at 285.6 eV and the third peak at 290 eV are 

attributed to the PVDF binder [73,86]. After the rapid cycling of NMC111 cell, the C-H peak 

slightly increased and shifted towards higher binding energy indicating some chemical 

modifications in the PVDF binder. This is in accord with the spectral change of the C-F peak, 

also suggesting chemical changes in the PVDF binder after the rapid cycles of NMC111 cell. 

At the slow charge regime of NMC111, the C-H and C-F peaks have disappeared as presented 

in Fig. 6h. Instead, a peak possibly related to carbonates derivative could be observed. There 

have been also some changes on the C 1s spectra of GNP8L as can be seen in Fig. 6j, but the 

shape of spectra between the reference state and the cycled states with different charge rates 

remained consistent. This finding suggests the enhanced chemical stability against the 

electrode dissolution into electrolyte during charge-discharge, by the stacked graphene. 

 

4.   Conclusion 

This study has demonstrated, for the first time, the intriguing capability of the stacked-graphene 

design (8 layers of graphene basal planes) as an artificial solid interphase layer (SEI) for 

lithium-ion batteries. Lithium-ion diffusion through the stacked-graphene layers (basal planes) 

is believed to be significantly suppressed by the physical barrier offered by the stacked-

graphene design. Surprisingly, the cell (GNP8L) with the multi layers of stacked-graphene 

grown by CVD method has displayed a similar level of the battery capacity as NMC111 at slow 

rate regime in spite of its high lithium-ion migration barrier. Moreover, GNP8L has revealed a 

better charge capacity and rate capability at rapid charge rates. The magnetic measurements 



prove the effective Li+ intercalation into the stacked layers. Therefore, we propose that the 

lithium-ions migrate through the defect sites and grain boundaries benefit from the clap-net 

design of the stacked-graphene enabling a unique structure for efficient electron transport, 

protecting the active material inside. In both cases, the stacked-graphene cells have presented 

stable SEI formation under different charge rates bias. It also effectively maintains the local 

atomic environments of the Mn-O, Co-O, and Ni-O during Li+ (de)intercalation. The rate 

kinetics investigation into the formation of SEI layers at the electrode/electrolyte interface not 

only proves the superior stability of the stacked-graphene system, but also confirms the rate-

dependent intercalation mechanism. Our findings shed light on developing electrode materials 

with enhanced stability, particularly devoted to fast charging applications.  

Acknowledgements 

This work was supported by funding from the Energy Materials and Surface Sciences Unit of 

the Okinawa Institute of Science and Technology Graduate University, the OIST R&D Cluster 

Research Program, and the OIST Proof of Concept (POC) Program. 

 

References 

[1] M. Armand, J.M. Tarascon, Building better batteries, Nature. 451 (2008) 652–657. 

[2] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature. 414 
(2001) 359–367. 

[3] R. Malik, F. Zhou, G. Ceder, Kinetics of non-equilibrium lithium incorporation in LiFePO4, Nat. Mater. 
10 (2011) 587–590. 

[4] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (x < 0 < 1): A new cathode material 
for batteries of high energy density, Mater. Res. Bull. 15 (1980) 783–789. 

[5] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science 
(80-. ). 334 (2011) 928–935. 

[6] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587–603. 

[7] E. Solid, S. Ionics, J. Goodenough, Design considerations, Solid State Ionics. 69 (1994) 184–198. 

[8] C.M. Julien, A. Mauger, K. Zaghib, H. Groult, E. Storage, Comparative Issues of Cathode Materials for 
Li-Ion Batteries, Inorganics. (2014) 132–154. 

[9] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater. Today. 18 (2014) 
252–264. 

[10] A. Kraytsberg, Y. Ein-Eli, A. Kraytsberg, Y. Ein-Eli, Higher, stronger, better ... A review of 5 volt cathode 
materials for advanced lithium-ion batteries, Adv. Energy Mater. 2 (2012) 922–939. 

[11] C.M. Julien, A. Mauger, Review of 5-V electrodes for Li-ion batteries: Status and trends, 2013. 

[12] P. He, H. Yu, D. Li, H. Zhou, Layered lithium transition metal oxide cathodes towards high energy lithium-
ion batteries, J. Mater. Chem. 22 (2012) 3680. 

[13] F. Weill, N. Tran, L. Croguennec, C. Delmas, Cation ordering in the layered 



Li1+x(Ni0.425Mn0.425Co0.15)1−xO2 materials (x=0 and 0.12), J. Power Sources. 172 (2007) 893–900. 

[14] A.N. Mansour, L. Croguennec, C. Delmas, A Unique Structure of Ni(III) in LiNi0.3Co 0.7O2 Without Jahn-
Teller Distortion, Electrochem. Solid-State Lett. 8 (2005) A544. 

[15] M.M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S. a. Hackney, Li2MnO3-stabilized 
LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries, J. Mater. Chem. 17 (2007) 3112. 

[16] C.S. Johnson, J.S. Kim, C. Lefief, N. Li, J.T. Vaughey, M.M. Thackeray, The significance of the 
Li2MnO3component in “composite” xLi2MnO3·(1 - x)LiMn0.5Ni0.5O2 electrodes, Electrochem. Commun. 
6 (2004) 1085–1091. 

[17] M.M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, S.A. Hackney, Comments on the structural 
complexity of lithium-rich Li1+xM1−xO2 electrodes (M=Mn, Ni, Co) for lithium batteries, Electrochem. 
Commun. 8 (2006) 1531–1538. 

[18] D. Kim, G. Sandi, J.R. Croy, K.G. Gallagher, S.-H. Kang, E. Lee, M.D. Slater, C.S. Johnson, M.M. 
Thackeray, Composite “Layered-Layered-Spinel” Cathode Structures for Lithium-Ion Batteries, J. 
Electrochem. Soc. 160 (2012) A31–A38. 

[19] Z. Li, N.A. Chernova, J. Feng, S. Upreti, F. Omenya, M.S. Whittingham, Stability and Rate Capability of 
Al Substituted Lithium-Rich High-Manganese Content Oxide Materials for Li-Ion Batteries, J. 
Electrochem. Soc. 159 (2012) A116. 

[20] Q.-Q. Qiao, L. Qin, G.-R. Li, Y.-L. Wang, X.-P. Gao, Sn-stabilized Li-rich layered 
Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries, J. Mater. Chem. A. 3 
(2015) 17627–17634. 

[21] T.R. Penki, D. Shanmughasundaram, B. Kishore, A. V. Jeyaseelan, A.K. Subramani, N. Munichandraiah, 
Composite of Li-Rich Mn, Ni and Fe Oxides as Positive Electrode Materials for Li-Ion Battery, J. 
Electrochem. Soc. 163 (2016) A1493–A1502. 

[22] M.S. Whittingham, Lithium batteries and cathode materials., Chem. Rev. 104 (2004) 4271–301. 

[23] J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.-C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-
Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium-ion batteries, J. Power Sources. 147 
(2005) 269–281. 

[24] M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang, D.P. Fenning, S.F. Lux, O. 
Paschos, C. Bauer, F. Maglia, S. Lupart, P. Lamp, Y. Shao-Horn, The Electrode-Electrolyte Interface in 
Li-ion Batteries: Current Understanding and New Insights, J. Phys. Chem. Lett. (2015) 
acs.jpclett.5b01727. 

[25] E. Peled, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, 
J. Electrochem. Soc. 144 (1997) L208. 

[26] K. Kanamura, H. Tamura, Z. Takehara, XPS analysis of a lithium surface immersed in propylene 
carbonate solution containing various salts, J. Electroanal. Chem. 333 (1992) 127–142. 

[27] D. Aurbach, Y. Gofer, M. Ben-Zion, P. Aped, The behaviour of lithium electrodes in propylene and 
ethylene carbonate: Te major factors that influence Li cycling efficiency, J. Electroanal. Chem. 339 (1992) 
451–471. 

[28] D. Aurbach, M.L. Daroux, P.W. Faguy, E. Yeager, Identification of Surface Films Formed on Lithium in 
Propylene Carbonate Solutions, J. Electrochem. Soc. 134 (1987) 1611. 

[29] N.A. Kaskhedikar, J. Maier, Lithium Storage in Carbon Nanostructures, Adv. Mater. 21 (2009) 2664–
2680. 

[30] F.-Y. Su, Y.-B. He, B. Li, X.-C. Chen, C.-H. You, W. Wei, W. Lv, Q.-H. Yang, F. Kang, Could graphene 
construct an effective conducting network in a high-power lithium ion battery?, Nano Energy. 1 (2012) 
429–439. 

[31] M. Liang, L. Zhi, Graphene-based electrode materials for rechargeable lithium batteries, J. Mater. Chem. 
19 (2009) 5871. 

[32] R. Mukherjee, A.V. Thomas, A. Krishnamurthy, N. Koratkar, Photothermally Reduced Graphene as High-
Power Anodes for Lithium-Ion Batteries, ACS Nano. 6 (2012) 7867–7878. 



[33] Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Graphene/metal oxide composite electrode 
materials for energy storage, Nano Energy. 1 (2012) 107–131. 

[34] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage., 
Nat. Mater. 14 (2015) 271–9. 

[35] L. Jaber-Ansari, K.P. Puntambekar, S. Kim, M. Aykol, L. Luo, J. Wu, B.D. Myers, H. Iddir, J.T. Russell, 
S.J. Saldaña, R. Kumar, M.M. Thackeray, L.A. Curtiss, V.P. Dravid, C. Wolverton, M.C. Hersam, 
Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer 
Graphene, Adv. Energy Mater. 5 (2015) 1500646. 

[36] J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Graphene and Graphene-Based Materials for Energy Storage 
Applications, Small. 10 (2014) 3480–3498. 

[37] S. Chattopadhyay, A.L. Lipson, H.J. Karmel, J.D. Emery, T.T. Fister, P.A. Fenter, M.C. Hersam, M.J. 
Bedzyk, In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model 
Li-ion Battery Anode, Chem. Mater. 24 (2012) 3038–3043. 

[38] N. Li, Y. Yin, C. Yang, Y. Guo, An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal 
Anodes, Adv. Mater. (2016) 1853–1858. 

[39] S. Menkin, D. Golodnitsky, E. Peled, Artificial solid-electrolyte interphase (SEI) for improved 
cycleability and safety of lithium-ion cells for EV applications, Electrochem. Commun. 11 (2009) 1789–
1791. 

[40] J. Zhao, Z. Lu, H. Wang, W. Liu, H.-W. Lee, K. Yan, D. Zhuo, D. Lin, N. Liu, Y. Cui, Artificial Solid 
Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for 
Lithium-Ion Batteries., J. Am. Chem. Soc. 137 (2015) 8372–5. 

[41] J.R. Dahn, Phase diagram of LixC6, Phys. Rev. B. 44 (1991) 9170–9177. 

[42] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion Electrode Materials for Rechargeable Lithium 
Batteries, Adv. Mater. 10 (1998) 725–763. 

[43] A.F. Morpurgo, Ten years of Nature Physics: The ABC of 2D materials, Nat. Phys. 11 (2015) 625–626. 

[44] F. Yao, Q. Ta, M. Lee, J. Chae, Y. Sheem, Diffusion Mechanism of Lithium Ion through Basal Plane of 
Layered Graphene, J. Am. Chem. Soc. 134 (2012). 

[45] J. Hui, M. Burgess, J. Zhang, J. Rodríguez-López, Layer Number Dependence of Li+ Intercalation on 
Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution, ACS 
Nano. 10 (2016) 4248–4257. 

[46] K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A. van der Ven, V. Srinivasan, R. 
Kostecki, G. Ceder, Lithium Diffusion in Graphitic Carbon, J. Phys. Chem. Lett. 1 (2010) 1176–1180. 

[47] Z. Jiang, B. Pei, A. Manthiram, Randomly stacked holey graphene anodes for lithium ion batteries with 
enhanced electrochemical performance, J. Mater. Chem. A. 1 (2013) 7775. 

[48] M.V. Kamalakar, C. Groenveld, A. Dankert, S.P. Dash, Long distance spin communication in chemical 
vapour deposited graphene, Nat. Commun. 6 (2015) 6766. 

[49] J. Wang, Y.K. Chen-Wiegart, J. Wang, In operando tracking phase transformation evolution of lithium 
iron phosphate with hard X-ray microscopy., Nat. Commun. 5 (2014) 4570. 

[50] G. Dutta, A. Manthiram, J.B. Goodenough, J.-C. Grenier, Chemical synthesis and properties of 
Li1−δ−xNi1+δO2 and Li[Ni2]O4, J. Solid State Chem. 96 (1992) 123–131. 

[51] D. Mohanty, A.S. Sefat, S. Kalnaus, J. Li, R. a. Meisner, E.A. Payzant, D.P. Abraham, D.L. Wood, C. 
Daniel, Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode 
during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies, J. Mater. 
Chem. A. 1 (2013) 6249. 

[52] K. Ben-Kamel, N. Amdouni, A. Mauger, C.M. Julien, Study of the local structure of 
LiNi0.33+δMn0.33+δCo0.33−2δO2  (0.025≤δ≤0.075) oxides, J. Alloys Compd. 528 (2012) 91–98. 

[53] N. Tran, L. Croguennec, M. Ménétrier, F. Weill, P. Biensan, C. Jordy, C. Delmas, Mechanisms associated 
with the “plateau” observed at high voltage for the overlithiated Li1.12(Ni0.425Mn 0.425Co0.15)0.88O2 system, 
Chem. Mater. 20 (2008) 4815–4825. 



[54] O. V. Yazyev, L. Helm, Defect-induced magnetism in graphene, Phys. Rev. B. 75 (2007) 1–5. 

[55] C.N.R. Rao, H.S.S.R. Matte, K.S. Subrahmanyam, U. Maitra, Unusual magnetic properties of graphene 
and related materials, Chem. Sci. 3 (2012) 45. 

[56] W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Graphene spintronics, Nat. Nanotechnol. 9 (2014) 794–
807. 

[57] R.R. Nair, M. Sepioni, I. Tsai, O. Lehtinen, J. Keinonen, A. V Krasheninnikov, T. Thomson, A.K. Geim, 
I. V Grigorieva, Spin-half paramagnetism in graphene induced by point defects, Nat. Phys. 8 (2012) 199–
202. 

[58] L. Jaber-Ansari, K.P. Puntambekar, H. Tavassol, H. Yildirim, A. Kinaci, R. Kumar, S.J. Saldaña, A.A. 
Gewirth, J.P. Greeley, M.K.Y. Chan, M.C. Hersam, Defect Evolution in Graphene upon Electrochemical 
Lithiation, ACS Appl. Mater. Interfaces. 6 (2014) 17626–17636. 

[59] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, 
L. Colombo, R.S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper 
Foils, Science (80-. ). 324 (2009). 

[60] D. Mohanty, S. Kalnaus, R. a. Meisner, K.J. Rhodes, J. Li, E.A. Payzant, D.L. Wood, C. Daniel, Structural 
transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by 
in situ X-ray diffraction, J. Power Sources. 229 (2013) 239–248. 

[61] T. Ohzuku, Solid-State Redox Reactions of LiCoO2 (R3m) for 4 Volt Secondary Lithium Cells, J. 
Electrochem. Soc. 141 (1994) 2972. 

[62] T. Ohzuku, Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium 
Cells, J. Electrochem. Soc. 140 (1993) 1862. 

[63] A. Rougier, P. Gravereau, C. Delmas, Optimization of the Composition of the Li1 − zNi1 + zO2 Electrode 
Materials: Structural, Magnetic, and Electrochemical Studies, J. Electrochem. Soc. 143 (1996) 1168–1175. 

[64] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. 
Rev. B. 61 (2000) 14095–14107. 

[65] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping 
and nonadiabatic effects, Solid State Commun. 143 (2007) 47–57. 

[66] R. Baddour-Hadjean, J.-P. Pereira-Ramos, Raman Microspectrometry Applied to the Study of Electrode 
Materials for Lithium Batteries, Chem. Rev. 110 (2010) 1278–1319. 

[67] M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Effect of Surface Carbon Structure on the Electrochemical 
Performance of LiFePO4, Electrochem. Solid-State Lett. 6 (2003) A207. 

[68] N. Tran, L. Croguennec, C. Labrugère, C. Jordy, P. Biensan, C. Delmas, Layered 
Li1+x(Ni0.425Mn0.425Co0.15)1−xO2 Positive Electrode Materials for Lithium-Ion Batteries, J. Electrochem. 
Soc. 153 (2006) A261. 

[69] B.J. Hwang, Y.W. Tsai, D. Carlier, G. Ceder, A Combined Computational/Experimental Study on 
LiNi1/3Co1/3Mn1/3O2, Chem. Mater. 15 (2003) 3676–3682. 

[70] R. Prasad, R. Benedek, A. Kropf, C. Johnson, A. Robertson, P. Bruce, M. Thackeray, Divalent-dopant 
criterion for the suppression of Jahn-Teller distortion in Mn oxides: First-principles calculations and x-
ray absorption spectroscopy measurements for Co in LiMnO2, Phys. Rev. B. 68 (2003) 12101. 

[71] Z.F. Huang, F. Du, C.Z. Wang, D.P. Wang, G. Chen, Low-spin Mn3+ ion in rhombohedral LiMnO2 
predicted by first-principles calculations, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007) 54411. 

[72] Z.-D. Huang, X.-M. Liu, S.-W. Oh, B. Zhang, P.-C. Ma, J.-K. Kim, Microscopically porous, 
interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium ion batteries, J. Mater. 
Chem. 21 (2011) 10777. 

[73] T. Eriksson, A.M. Andersson, A.G. Bishop, C. Gejke, T. Gustafsson, J.O. Thomas, Surface Analysis of 
LiMn2O4 Electrodes in Carbonate-Based Electrolytes, J. Electrochem. Soc. 149 (2002) A69. 

[74] S.F. Lux, I.T. Lucas, E. Pollak, S. Passerini, M. Winter, R. Kostecki, The mechanism of HF formation in 
LiPF6 based organic carbonate electrolytes, 2012. 



[75] W. Li, B.L. Lucht, Lithium-Ion Batteries: Thermal Reactions of Electrolyte with the Surface of Metal 
Oxide Cathode Particles, J. Electrochem. Soc. 153 (2006) A1617. 

[76] S.K. Martha, H. Sclar, Z. Szmuk Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. 
Markovsky, D. Aurbach, A comparative study of electrodes comprising nanometric and submicron 
particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20, J. Power Sources. 189 
(2009) 248–255. 

[77] J.R. González, R. Menéndez, R. Alcántara, F. Nacimiento, J.L. Tirado, E. Zhecheva, R. Stoyanova, High-
intensity ultrasonication as a way to prepare graphene/amorphous iron oxyhydroxide hybrid electrode 
with high capacity in lithium battery, Ultrason. Sonochem. 24 (2015) 238–246. 

[78] Q. Li, C. Wang, Q. Li, R. Che, The role of graphene in nano-layered structure and long-term cycling 
stability of MnxCoyNizCO3 as an anode material for lithium-ion batteries, RSC Adv. 6 (2016) 105252–
105261. 

[79] R. Armstrong, M. Holzapfel, P. Novák, C.S. Johnson, S.H. Kang, M.M. Thackeray, P.G. Bruce, 
Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode 
Li[Ni0.2Li0.2Mn0.6]O2, J. Am. Chem. Soc. 128 (2006) 8694–8698. 

[80] Z. Lu, J.R. Dahn, Understanding the Anomalous Capacity of Li/Li[NixLi(1/3−2x/3)]Mn(2/3−x/3)O2 Cells Using 
In Situ X-Ray Diffraction and Electrochemical Studies, J. Electrochem. Soc. 149 (2002) A815. 

[81] A.M. Andersson, D.P. Abraham, R. Haasch, S. MacLaren, J. Liu, K. Amine, Surface Characterization of 
Electrodes from High Power Lithium-Ion Batteries, J. Electrochem. Soc. 149 (2002) A1358. 

[82] T. Eriksson, A.M. Andersson, C. Gejke, T. Gustafsson, J.O. Thomas, Influence of temperature on the 
interface chemistry of LixMn2O4 electrodes, Langmuir. 18 (2002) 3609–3619. 

[83] K. Edström, T. Gustafsson, J.O. Thomas, The cathode–electrolyte interface in the Li-ion battery, 
Electrochim. Acta. 50 (2004) 397–403. 

[84] D. Bar-Tow, E. Peled, L. Burstein, A Study of Highly Oriented Pyrolytic Graphite as a Model for the 
Graphite Anode in Li-Ion Batteries, J. Electrochem. Soc. 146 (1999) 824. 

[85] N.N. Sinha, N. Munichandraiah, Synthesis and Characterization of Carbon-Coated LiNi1/3Co1/3Mn1/3O2 
in a Single Step by an Inverse Microemulsion Route, ACS Appl. Mater. Interfaces. 1 (2009) 1241–1249. 

[86] M. Xu, L. Zhou, Y. Dong, Y. Chen, J. Demeaux, A.D. MacIntosh, A. Garsuch, B.L. Lucht, Development 
of novel lithium borate additives for designed surface modification of high voltage LiNi0.5Mn1.5O4 
cathodes, Energy Environ. Sci. 9 (2016) 1308–1319. 

 




