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Abstract

Serotonergic Control of Brain-Wide Dynamics

Serotonin, one of the neuromodulators, is associated with multiple functions, such as
the wake-sleep cycle, decision making, and mood. Serotonin is also the primary tar-
get of medication for major depression (MD), notably by selective serotonin re-uptake
inhibitors (SSRIs). However, it is widely known that serotonergic antidepressants re-
quire long-term administration, and acute medication sometimes worsens symptoms.
Serotonergic regulation of brain-wide dynamics remains crucial for understanding its
roles in behavioral and cognitive functions as well as the mechanism of antidepres-
sant medication. First, I studied the influences of a serotonergic antidepressant on
brain dynamics with functional magnetic resonance imaging in rodents. I found that
the functional connectivity between the bed nucleus of steria terminalis (BST) and
the ventral retrosplenial cortex (vRSC) distinctively responded to acute serotonergic
antidepressant treatment, escitalopram. Additionally, long-term serotonergic antide-
pressant treatment promoted spontaneous locomotion and influenced anxiety-like be-
haviors only in context-dependent and individually variable ways. The results imply
that long-term serotonergic antidepressant treatment enhances intrinsic motivation,
but not anxiety. Additionally, I analyzed large-scale brain dynamics with functional
connectivity analysis and energy landscape analysis (ELA). My ELA analysis revealed
that chronic administration of serotonergic antidepressants maintained dynamic brain
states linking major attractor states, while conventional functional connectivity (FC)
analysis did not show any difference caused by serotonergic antidepressants. The in-
termediate brain states, which are supported by modular integration, are associated
with active exploration. My findings suggest that serotonergic antidepressants induce
resilience by stabilizing brain state dynamics as a result of shaping functional network
architecture. In the second study, I conducted a pilot experiment to assess serotonergic
modulation of brain dynamics by optogenetic stimulation of serotonin neurons in the
dorsal raphe nucleus (DRN). In the first animal test, I found brain responses in the
frontal cortical regions (the anterior cingulate cortex, the medial prefrontal cortex, and
the insular cortex), the striatum, and the ventral tegmental area (VTA). In a reward
delay task, optogenetic activation of DRN serotonin neurons enhanced waiting for de-
layed rewards, which confirmed the effectivenss of optogenetic stimulation. The result
suggested the feasibility of studying serotonergic modulation with opto-fMRI. My the-
sis delineates how the serotonergic system regulates brain-wide dynamics at short- and
long-term scales.
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Chapter 1

Introduction

1.1 Motivation

The role of the serotonin in neural systems is one of the enigmas in neuroscience. How
serotonin regulates neural dynamics? This is a central question that attracted attention
of not only in basic scientists but also clinical researchers. Psychiatrists would ask how
serotonin can produce its antidepressant effects, while neuroscientists would inquire
how serotonin regulates brain dynamics through its wide-spreading innervation.

To address those questions, I utilize resting-state functional magnetic resonance
imaging (rs-fMRI) for the rodent to clarify serotonergic control of brain-wide dynam-
ics, in combination with behavioral tests, pharmacology and optogenetics. By doing
so, I aim to characterize serotonergic control of the brian-wide dynamics from the
standpoints of basic and pre-clinical researches.

1.2 Outline of the thesis

I organize this thesis with the following chapters.

In the first chapter, I review the current status of the research on serotonergic regu-
lation of neural circuits and cognitive behaviors, especially positive and negative reward
systems and motivation. I also explain the rs-fMRI literature in the human and other
mammalian brains, its application in psychiatry, and analytic methods for functional
network, temporal dynamics, and multi-modal data integration. I finally propose the
two main projects combining rs-fMRI for the rodent brain with pharmacology and
optogenetics to decipher its control of brain-wide dynamics.

In the second chapter, I describe the first project about accute and chronic effects of
serotonergic antidepressant on brain-wide dynamics. Serotonin is deemed as the critical
target for medication for psychiatric disorders. I utilize serotonergic antidepressant
treatment over two weeks and rs-fMRI recording across multiple sessions to address the
question of where and how serotonergic antidepressants influence brain-wide dynamics

1



2 List of Tables

after acute and chronic administrations and how they are related with behaviors.

The chapter 3 presents the project to clarify the role of a serotonergic sub-system
originating from the dorsal raphe nucleus (DRN). The serotonin system is composed of
nine sub-systems. Conventional systemic manipulation by pharmacology can obscure
the regulation by each sub-system. A recent advancement, so-called optogenetics,
enables us to manipulate serotonergic activity of a selcted sub-system in a temporarily
precise manner. Combining optogenetics and rs-fMRI, I address the question of where
and how the serotonergic sub-system regulate functional brain dynamics.

Finally, in the chapter 4, I summarize methodological limitation of the projects,
and discuss how we can take advantage of the findings and data for future serotonin
research.



Chapter 2

Modulation of neural dynamics and
cognition by the serotonin system

Serotonin is involved in various behavioral and cognitive functions, such as locomotion,
awake-sleep cycle, reward and punishment, decision making, and mood [65, 73, 156,
173]. Many researchers have attempted to study the relationship between serotonin
and reward/punishment systems, not only from a theoretical viewpoint, but also from
a clinical perspective [45, 57, 61]. Since serotonin is the major target for medications
to treat psychiatric disorders, it is also deemed an important factor for anxiety and
depressive mood [45, 99, 159, 160]. Despite abundant studies, serotonergic control of
cognitive functions and neural mechanisms of serotonergic medications remain enig-
matic.

In this chapter, I review the current understanding of neural circuits and of cog-
nitive functions of the serotonin system. I then introduce recent promising advances
in functional brain imaging and its combination with pharmacological and ontogenetic
manipulations.

Finally, I propose two experimental projects to elucidate serotonergic control of
brain-wide dynamics: rodent resting-state fMRI experiments under chronic serotoner-
gic medication and optogenetic stimulation of dorsal raphe serotonergic neurons. These
projects would contribute to understanding complex regulation of the serotonin system.

2.1 The neural circuit of the serotonin system

The serotonin system in the mammalian central nervous system (CNS) originates from
nine nuclei on the midline of the hindbrain and projects widely to diverse brain areas
and the spinal cord (Figure. 2.1).

Serotonin has at least 14 receptor subtypes, including ionotropic and metabolic

3



4 Modulation of neural dynamics and cognition by the serotonin system

Figure 2.1: The representative figure of serotonergic projections. DRN serotonergic
neurons mainly project to prefrontal regions, including the mPFC and the OFC, the
caudate putament (Cpu), and the ventral tegmental area (VTA). Meanwhile, MRN
serotonergic neurons innervate the hippocampal complex (HPC) and the amygdala
complex (Amy) [193, 199].



2.1 The neural circuit of the serotonin system 5

receptors, expressed pre- and post-synaptically and its extracellular concentration is
regulated by serotonin transporters (SERT) [91, 163, 177].

2.1.1 Afferents and efferents of the serotonergic nuclei

Most studies of the serotonergic system have focused on the two major nuclei, the
dorsal raphe nucleus (DRN) and the median raphe nucleus (MRN). DRN serotonergic
neurons have wide projections to the forebrain, such as prefrontal regions and the
striatum, while MRN serotonergic neurons have projections to the hippocampus and
the midbrain, including the habenula complexes [193, 199].

Serotonergic neurons in the DRN and MRN also receive multiple inputs from many
brain regions [148, 150, 204]. Although outputs for the serotonergic system are nucleus-
dependent, synaptic inputs to DRN and MRN serotonin neurons are from similar
sources, such as the amygdala, the inferior colliculus (IC), the ventral striatum, the
prefrontal regions, including the anterior cingulate cortex (ACC) and prelimibic area,
the somato-motor areas, the pallidal regions, the lateral habenula (LHb), and the
lateral hypothalmic area (LH) [148]. Although there is no distinguishing difference
between input regions of the DRN and MRN, it revealed that DRN serotonin neurons
have seven-fold larger connection inputs than MRN serotonin neurons [148].

The heterogeneity of DRN serotonin neurons has recently been featured [1, 41,
70, 190]. The DRN has been divided into three subareas, ventro-medial (vmDR),
ventro-lateral (lateral wings, lwDR), and dorsomedial DR (dmDR) [28, 121, 189, 190].
Serotonergic projections of the vmDR mainly target a portion of the somatosensory
cortex and the barrel cortex. Output projections of dmDR serotonin neurons were
found in prefrontal regions, such as the mPFC and nucleus accumbens (NAc). Sero-
tonergic innervations from the dlDR mainly project to subcortical regions, such as
the dorsolateral periaqueductal gray (dlPAG) and the rostral ventrolateral medulla
(RVLM). The dlPAG is especially known as stress-related circuitry [13]. Compared to
the vmDR, serotonergic neurons in the lwDR exhibit different physiological properties
of spontaneous activity, not only in a healthy state, but also after repeated social defeat
stress [41, 42]. GABAergic neurons in the DRN are thought to participate in regulating
neuronal dynamics in the DRN [6, 150, 192]. Interestingly, GABAergic neurons in the
lwDR are predominantly interneurons. One study revealed that glutamatergic neurons
from the vmPFC selectively innervate GABAergic neurons in lwDR, and the gluta-
matergic population to the DRN from the vmPFC augmented social avoidance [31].
Top-down control of serotonergic modulation might be driven by GABAergic innerva-
tion. However, another study [198] showed an antidepressant effect in the forced swim
test by stimulating the GluvmPFC−DRN circuitry in a similar manner to that reported
by Challis et al. [31]. The basis for the discrepancy remains unknown.



6 Modulation of neural dynamics and cognition by the serotonin system

2.1.2 Serotonin receptors and transporters

Heterogeneous expression of serotonin receptors also ambiguates understanding of the
serotonergic system. There are seven categories (5-HT1−7R) and over 14 subtypes [40,
145]. Almost all receptors have metabotropic G-coupled proteins except for iontropic
5-HT3 receptors. Inhibitory metabotropic 5-HT1A receptors coupled to Gi proteins are
expressed in somata of DRN serotonin neurons [39]. Extracellular serotonin suppresses
neuronal firing of DRN serotonergic neurons by activating 5-HT1A receptors. This
inhibitory mechanism is believed to prevent excessive release of serotonin [3, 17]. While
there is evidence of the involvement of other receptors in the aforementioned functions,
their explicit roles are still unknown [208].

Serotonin transporter (SERT) blockers have been used to understand serotonin
regulation in the brain. Selective serotonin re-uptake inhibitors (SSRIs) are routinely
prescribed as SERT blockers for patients with major depression (MD). Although mul-
tiple studies have attempted to reveal how SSRIs affect cognitive functions, few studies
have attempted to show how SSRIs regulate brain-wide dynamics[131, 132, 164]. Mc-
Cabe et al. hypothesized that SSRI medication normalizes abnormal brain regulation
in MD subjects, targeting the dorso-medial PFC (dmPFC) [131, 132]. Consistent with
this hypothesis, they found that SSRIs reduced functional connectivity between the
dmPFC and the amygdala. Schaefer et al. found that a single dose of SSRIs glob-
ally reduces centrality in cortical regions, but increases centrality in the thalamus and
cerebellum [164]. Furthermore, it is also known that acute SSRI administration some-
times worsens the symptoms of MD patients, and more than two weeks of medication
are required before they begin to impact symptoms. On the other hand, some stud-
ies suggested that SERT subytpes determine antidepressant responses based on their
structures [151, 184].

Nonetheless, how SSRI regulates brain-wide dynamics along a medication time
course remains unknown [29, 208].

2.2 Serotonergic control and cognitive behaviors

Serotonergic function has been classically studied in the context of aversive signaling.
In early studies, serotonin was thought to regulate behavioral inhibition [173]. How-
ever, it has been also suggested that behavioral inhibition reflects encoding of negative
outcomes [178]. Therefore, it is hard to distinguish serotonergic encoding of negative
values from mere physical behavioral inhibition. In 2002, Daw et al. proposed that
serotonin regulates a negative system, including punishment and negative consequence
prediction [45]. This hypothesis was inspired by the dopamine hypothesis of reward
prediction error, and attempted to capture regulation in a negative system by the sero-
tonin system, in apposition to the dopamine system [89, 166]. The theory was driven
by serotonin involvement in negative value or prediction coding underlying behavioral
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inhibition with respect to fight-or-flight responses. Some evidence supported the theory
[43, 44]. This theory is also consonant with serotonin roles in stress control. A series of
studies indicated that uncontrollable stress induces increased extracellular serotonin in
the DRN to cause learned helplessness [2, 16, 125]. Amat et al. showed that venterome-
dial PFC (vmPFC) prevents stress-induced activation of DRN neurons[2]. Nonetheless,
it is challenging for the theory to reconcile inconsistencies with effects of serotonergic
antidepressant treatment.

On the other hand, in 2002, Doya proposed that serotonin regulates temporal dis-
counting for delayed positive rewards. This can be interpreted as serotonin modulation
in a positive reward and temporal system. The theory is consonant with behavioral
symptoms of depressed subjects. This hypothesis led researchers to implement vari-
ous serotonin studies [47, 136, 138, 139, 168, 182, 183], although some results revealed
different serotonin roles, such as positive-value coding, but not reward discounting
[23, 114, 141, 170]. Recent studies have demonstrated serotonin regulation in neg-
ative and positive systems [36, 85, 130]. These theories highlight the complexity of
serotonin’s roles in cognitive functions [20, 46]. Reflecting its complexity, Luo’s group
concluded that the function of serotonin is to evaluate and balance net benefit, consid-
ering positive and negative reward systems [123].

Furthermore, recent studies have shown that the serotonin system controls effort-
related behaviors and vigor for exploration and rewards. In human studies, two groups
showed that serotonin modulates effort-related behaviors and brain regions such as the
ACC [135, 165], while serotonin involvement is rather controversial in rodent stud-
ies [55, 98, 161, 209]. Meanwhile, some evidence has revealed a relationship between
serotonin system and vigor [38, 120]. Although transient serotonin activation caused
behavioral inhibition in spontaneous locomotion, long-term stimulation of DRN sero-
tonin systems promoted spontaneous locomotion [38]. Lottem et al. showed that
serotonin activation with optogenetics promotes active exploitation of a reward site
prior to giving up [120]. Distinguishing between effort-related behaviors and vigor is
challenging, since reduction of cost to act and enhancement of intrinsic motivation are
hard to discriminate.

In summary, we can interpret serotonin involvement in four categories, negative/positive
reward systems and extrinsic and intrinsic motivational behaviors (Figure.2.2). Its in-
volvement in miscellaneous functions reflects its broad projections and dynamics in the
brain. Nonetheless, there is no integrative consensus regarding serotonin regulation.

2.3 Resting-state functional magnetic resonance imag-
ing (rs-fMRI)

Functional magnetic resonance imaging (fMRI) is perhaps the most common tool to
measure brain-wide activities in the human brain. Since its invention, it has mainly
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Figure 2.2: There are multiple aspects of serotonin studies. There are four categories
of studies about serotonergic roles of cognitive behaviors. 1. Negative reward system
such as coding of negative signals and prediction. 2. Reward system coding positive
signals, prediction, and temporal discounting. 3. Extrinsic motivational behaviors
such as cost sensitivity and stress responses. 4. Intrinsic motivational behaviors in
spontaneous exploration. Each circle includes related-studies.
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been used to study brain activities evoked during cognitive tasks. However, many
researchers found that some brain areas are more active at rest or during a task-free
state during fMRI runs. FMRI detects hemodynamic blood-oxygen-level dependent
(BOLD) signals reflecting neuro-physiological states [117]. Rs-fMRI especially captures
low-frequency hemo-dynamic signals ranging from 0.01 to 0.1(Hz). Previous studies
defined five frequency band (1) slow-5 (0.01-0.027 Hz), (2) slow-4 (0.027-0.073 Hz), (3)
slow-3 (0.073-0.198 Hz), (4) slow-2 (0.198–0.5 Hz), and (5) slow-1 (0.5–0.75 Hz) [215]
based on electrophysiological studies[25, 149]. The slow-5 and slow-4 frequency bands
are robust and covers the standard frequency range 0.01-0.08Hz[215].

Those brain regions include the angular gyrus, the medial prefrontal cortex (mPFC)
and the posterior cingulate cortex (PCC) and they are recognized as the default mode
network (DMN) [77, 78, 155]. FMRI measurement of subjects instructed not to engage
in any particular thought is called resting-state fMRI (rs-fMRI) or task-free fMRI
[15, 68, 111].

Follow-up rs-fMRI studies identified other reproducible brain activity components
that are linked to specific cognitive functions, which are called functional brain networks
[69, 113, 152, 186]. Functional brain networks reflect multiple states and features
of subjects, such as emotion [124], cognitive demand [63], cognitive flexibility[191],
intelligence level [86], and aging [185].

Recent studies have shown that functional connectivities measured by rs-fMRI are
robustly reproduced in multiple imaging sessions on different days, and can be sim-
ulated by neural networks models based on the anatomical connections measured by
diffusion-weighted MRI [51, 64, 75, 78, 90].

Another analysis of low-frequency oscillations (LFO) by rs-fMRI was amplitude
of low-frequency fluctuations (ALFF), which detects regional spontaneous neuronal
activity [211, 214]. ALFF measures amplitude of power spectrum at the standard
low-frequency range (0.01-0.08 Hz), and has been applied to abnormal activity in
subjects with mental disorders such as major depression [207] and autism spectrum
disorders[180].

These observations suggest that rs-fMRI enables us to capture not only sponta-
neous mental processes but also individual personality, and group categories, including
psychiatric disorders.

2.3.1 rs-fMRI for psychiatry

Due to its simple procedure and applicability to a wide range of subjects, rs-fMRI has
attracted attention from neuro-psychiatrists [68, 113]. Multiple studies have exploited
rs-fMRI to find brain markers for diagnosis of psychiatric disorders [76, 92, 162, 171,
172, 181]. For example, depressed patients showed abnormal functional connectivity
and unstable synchronization in DMN-related areas [54, 76]. Since DMN is active
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during task-free states, DMN may have some roles in imagination or self-referential
processing. From this perspective, rs-fMRI study of DMN has become the major
method to elucidate spontaneous mind processes, such as imagination, day dreaming,
and rumination [34, 35, 67, 79].

Rs-fMRI has also been utilized in model animals in pre-clinical, translational studies
since we can combine multiple invasive approaches. It has been shown that mammalian
brains, including those of monkeys, rats, and mice retain a common functional orga-
nization, including the DMN-like structure [116, 122, 176, 197] despite the anatomical
differences across species, such as in the prefrontal cortex [14].

Rs-fMRI with rodents can provide information about brain-wide activity with the
same methodology used in human studies to facilitate translational studies of animal
models [93, 102]. Current validities of animal models of psychiatric disorders, such as
construct validity, face validity, and predictive validity, have been based on behavioral
assessments [205]. New validities also have been proposed, based on neurological cri-
teria [10, 142]. Rs-fMRI with model animals allows us to build a translational map
between human and animal brains satisfying such criteria.

Recent advancement in high-magnetic field functional magnetic resonance imaging
(fMRI), enables us to access brain-wide dynamics in the rodent brain. Thus, fMRI for
rodents may provide a framework to establish a pre-clinical translational map under-
lying neural circuits across species.

2.3.2 Analysis and modeling methods for rs-fMRI

Rs-fMRI enables us to observe spontaneous brain-wide dynamics without external stim-
uli. A series of studies revealed linkage with cognition and personality, implying that
such spontaneous dynamics underlie internal thinking processes. Multiple methods
such as network analysis, temporal analysis, and integrative modeling have been sug-
gested to explore such spontaneous dynamics. These approaches have potential for
simulation of brain-wide dynamics under multiple conditions, including diseases and
drug manipulation.

Network analysis

As a conventional approach, network analysis has been used in rsfMRI studies[157,
174, 175]. Temporal correlation of BOLD signals among brain regions has been called
"functional connectivity" (FC). Multiple studies have exploited FC analysis to reveal
linkage between brain dynamics and behaviors. Some studies have also utilized net-
work analysis, such as centrality[119] and rich club coefficient[187] to study multiple
FC structure, often called "functional networks." In addition, network analysis has
also exploited graph clustering methods, such as the Louvain algorithm, to investigate
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underlying activation patterns in functional networks [8, 116, 175]. Structural connec-
tions, similarly called "structural connectivity" (SC), have been studied by diffusion-
weighted magnetic resonance imaging (DWI)[81, 107]. Association between FCs and
SCs indicates a topological advantage to control brain dynamics[50, 78, 133].

Analysis for temporal dynamics

Multiple studies have offered analytical methods to inspect temporal functional brain
dynamics. Those have been formalized with terms such as dynamic functional connec-
tome, chromatonome, or dynome [27, 109, 154]. Human functional imaging studies also
revealed an abnormality possibly associated with a depressive symptoms in temporal
functional brain dynamics [54, 103, 206].

There are some methods for detecting temporal dynamics, such as dynamic func-
tional connectivity (dFC) analysis [95, 154], energy landscape analysis (ELA) [60, 200],
and a hidden Markov model [194–196]. ELA, an especially promising method for ana-
lyzing temporal dynamics, enables us to determine brain states in an a priori manner.
Previous ELA studies revealed individual differences in brain dynamics in perceptual
switching [202], abnormal brain state dynamics in subjects with autistic spectrum dis-
orders (ASD) [203], and age-dependent brain state dynamics [59]. Furthermore, some
evidence implies neuro-anatomical and neurophysiological links with state dynamics
[4, 80].

Network simulation

Integrative approaches to understand underlying mechanisms of spontaneous brain dy-
namics has been used in human rs-fMRI studies. Multiple researchers combine neuronal
firing models with empirical data from rs-fMRI and anatomical connection to emulate
brain activities [51, 52, 83, 133]. The field aims to investigate the relationship between
anatomical connections and functional dynamics from a dynamic perspective [50, 52].
This integrative approach has further potential to understand detailed neuronal modu-
lation by integrating precise neural manipulations, such as immuno-chemistry, chemo-
genetics, and optogenetics in rodent studies [62, 71, 82, 118].

2.4 Pharmacological and optogenetic approaches

A major advantage of animal models in pre-clinical studies is that we can apply phar-
macological or optogenetic manipulations that are technically or ethically impossible
in human studies. Although many studies have been done to associate such manipula-
tions with behaviors, their combination with rs-fMRI has enabled new opportunities to
assess their effects on brain-wide dynamics. Integration of such brain-wide dynamics
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and multi-modal data with evolving integrative approaches (Section.2.3.2) should con-
tribute to understanding complex regulation of the serotonin system on brain dynamics
and cognitive behaviors for future research 2.3.2.

Pharmacological fMRI

Pre-clinical studies leverage rodents to probe antidepressant drug effects on behavioral
assessment. Serotonergic antidepressant treatments are hypothesized to normalize ab-
normal brain activities in MDD-related brain regions, including default mode network
and limbic network, which are the key regions for controlling motivation and mood.

Consistent with this hypothesis, acute and sub-chronic serotonergic antidepressants
in humans reduced brain-wide cortical centrality and functional connectivity between
the amygdala and medial prefrontal cortex, respectively [131, 132, 164]. It is clinically
well known that serotonergic antidepressants alter their influence along a time course
of about two weeks. Acute medication tends to promote anxiety in some cases [24].
However, there have been no human brain imaging studies that addressed how seroton-
ergic antidepressant medication alters brain-wide dynamics during a treatment time
course.

Pharmacological fMRI has been used for rodents [7, 102]. Multiple studies aimed
to characterize brain-wide mapping of pharmacological manipulations on the brain
[19, 106, 167]. Some studies revealed brain-wide activation patterns in affective regions
including the Amygdala, the Cpu, and the prefrontal cortex, and the ventral tegmen-
tal area (VTA) by SSRI administration [106, 167]. Nonetheless, association of SSRI
influence on the human brain and the rodent brain has not been well characterized.

Furthermore, serotonin is the major target of medication for MD. Since one of the
major symptoms in MD patients is characterized by rumination, which is repetitive
negative spontaneous thoughts [37, 126, 146], the serotonin system may influence brain-
wide, time-varying dynamics and even subjective state. However, little is known about
serotonin modulation of brain-wide dynamics.

Chemogenetic and optogenetic fMRI

There is a novel trend to capture causality of brain dynamics by combining brain-wide
imaging with chemogenetics and optogenetics[22, 53, 62, 71, 112, 118]. Consistent with
implications from structural studies, one chemogenetic study showed that the serotonin
system activates affective regions, such as the amygdala, the mPFC, and the striatum
[71]. To be more temporally precise, a combination of fMRI and opogenetics, so-called
optogenetic fMRI (ofMRI) has been used to study dopaminergic modulation in neural
circuits [22, 53, 62, 118]. Their application to the serotonergic system may help to
reveal serotonergic modulation.
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Previous optogenetics studies to address the effect of serotonin stimulation on mo-
tivational behaviors [38, 66, 97, 120, 137, 139]. Two research groups independently
showed that optogenetic stimulation induced waiting behaviors for delayed rewards
[66, 137, 139]. In addition, different cognitive roles such as spontaneous locomotion
[38], learning [97], and punishment [129]. It is interesting to combine ofMRI and these
cognitive tasks to identify neural circuits associated with cognitive behaviors.

2.5 Experimental plan

In order to clarify serotonergic influence on brain-wide dynamics and how it changes
during a time course of SSRI medication, I employ a combination of pharmacology,
optogenetics, rs-fMRI, and behavioral tests in rodents. Specifically, I performed the
following two experiments, which are detailed in the following chapters.

• Pharmacological rs-fMRI experiments to assess the short-term and long-term
effects of serotonergic antidepressant medication on whole-brain dynamics

• Optogenetic rs-fMRI experiments to identify phasic modulation of dorsal raphe
serotonergic neuronal activation.





Chapter 3

Pharmacological fMRI study of acute
and chronic effects of SSRI

3.1 Aims

In this chapter, I report procedures and results of a pharmacological fMRI experiment
aimed at answering the following questions.

1. How does serotonergic antidepressant administration for two weeks affect be-
havioural performance?

2. How do whole-brain network dynamics change over two weeks of serotonergic
antidepressant administration?

3. Is there any correlation between behavioral performance and brain network dy-
namics?

To answer these questions, we conducted experiments with rs-fMRI and two be-
havioural tests (Figure. 3.1). First, we compared behavioural parameters between
SSRI and control groups. Second, we extracted significantly different functional con-
nectivity between the two groups. We then checked whether there is an association
between functional connectivity and behavioural parameters. Finally, we asked whether
temporal dynamics exhibit differences using large-scale components. The project was
done as a part of the collaborative work with Dr. Abe, Dr. Takata, and Dr. Tanaka
for awake resting-state fMRI setups. I conceived and performed the all experiments
and all analyses.

15
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Figure 3.1: Subject underwent four imaging sessions, and two behavioral tests. After
7 days of acclimation training, the first session was performed without any interven-
tion. From the 1st day of SSRI administration, we started injecting SSRIs to subjects
(10mg/kg, p.o., saline to the control group). Two behavioral experiments, open-field
and elevated-plus maze tests, were done after imaging sessions.

3.2 Methods

3.2.1 Experimental paradigm

The experiment was composed of four resting-state fMRI (rs-fMRI) sessions and two
subsequent behavioral tests after imaging sessions, as shown in Figure 3.1. In the
week before a session, there were no injections to subjects. SSRI was administrated
to a group one hour prior to the 1st day imaging sessions. We administered SSRI to
a group for 19 days including the day of the 1st day imaging session while saline was
administered to a control group.

3.2.2 Subject and acclimation

We introduced wild-type C57BL6J male mice (n=64, over 12-19) to our SSRI ex-
periments. We completed all experiments for 48 subjects (SSRI:n=28, Cont:n=20).
We divided subjects into two groups, and there were no statistical differences in age
(P = 0.9, U-test) or body weight change during SSRI administration between the two
groups (Table 3.2). An acrylic bar (3x3x27 (mm)) was attached to each mouse skull
prior to rs-fMRI sessions. All mice were bred in the reversed day/dark cycle, and mice
underwent all experiments during the dark period (10 am - 10 pm, GMT+9). In order
to perform awake imaging, we applied the head fixation and acclimation protocols re-
ported in [210]. We initiated acclimation with subjects after a 7-10-day recovery period
of the head fixation. All mice were acclimated to MRI sounds (2 hours, 80-113dB),
which were recorded from a high-field 11.7 tesla MRI scanner with a cryoprobe and an
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optical microphone (Opto MIC model 1140, KOBATEL Co., Japan), combined with a
noise meter (TYPE 6236; Aco Co., LTD, Japan) and a linear PCM recorder (TASCAM
DR-40, TEAC, Co., Japan). We performed the acclimation protocol at least for seven
days before the imaging session, and resumed training for 3 days prior to the other
three imaging sessions (3.1).

Table 3.1: Demographic Table

Method SSRI-treated group Control group p values with unpaired t-test
Sex male male -
Age 15.33 (3.9641) 15.45 (3.804) P = 0.9062

No. Subjects 28 20 -
Average No. one week before Sessions 2.19 (SD=0.69) 2.10 (SD=0.74) P = 0.69

Average No. 1st day Sessions 2.27 (SD=0.78) 2.21 (SD=0.63) P = 0.79
Average No. 1st week Sessions 2.35 (SD=0.79) 2.11 (SD=0.46) P = 0.24
Average No. 2nd week Sessions 2.23 (SD=0.71) 2.11 (SD=0.57) P = 0.53

3.2.3 SSRI administration

Escitalopram, a SSRI, was mixed with saline. The mixed escitalopram (10 mg/kg,
p.o.) was administered to the SSRI-treated group (n=28) while the saline-treated
group (n=20) received only the same amount of saline. We performed administrations
one hour before each session in 1st day, 1st week, and 2nd week imaging sessions while
administrations were executed in the dark period on other administration days.

3.2.4 Open-field test

The experiment with the open-field box test was performed in a sound proof box
(50x50cm). The open-field box (O’Hara & Co., Tokyo) consisted of a grey box. We
defined a center region (20x20cm) as the center arena. Each session was performed for
10 minutes with white illumination (15 lux). After each session, the open-field box was
sterilized with 75 % ethanol.

Table 3.2: MANOVA of Body weights

Source Sum Sq. d.f. Mean Sq. F Prob>F
group 0.033 1 0.0331 0.01 0.9104
period 7.512 3 2.50389 0.96 0.4124
group*period 6.574 3 2.19128 0.84 0.473
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3.2.5 Elevated-plus maze

The experiment with the elevated-plus maze was performed in a sound proof room [108].
The elevated plus maze (O’Hara & Co., Tokyo) was composed of a center platform and
four arms (two open and two closed arms with walls; 25 x 5 x 16 (cm) (LxWxH) for
Closed arms, and 25 x 5 x 0.5cm for Open arms), and the maze was elevated 50 cm
above a base [108]. X and Y positions of each mouse were continuously tracked with
a video camera on the ceiling of the sound proof room (2 frame/second). Each session
was performed for 15 minutes with white illumination (100 lux). After each session,
the maze was sterilized with 75 % ethanol.

3.2.6 MRI imaging

Each mouse was placed in the MRI animal bed. After the body temperature of a mouse
stabilized at 36 ± 1 (C◦), T2-weighted structural imaging and T2* functional imaging
were performed. MRI images were acquired with an 11.7 T MRI scanner for small
animals (Biospec 117/11 system, Bruker Biospin, EmbH, Ettlingen, Germany) with a
a cryogenic quadrature RF surface probe (Cryoprobe, Bruker BioSpin AG, Fällanden,
Switzerland). T2-weighted structural imaging was performed with a fast spin echo
sequence using the following parameters: 140 x 140 matrix, 13.5 x 13.5 mm2 field-of-
view, repetition time(TR)/effective echo time(TE) 4000/18.75 (ms), 32 coronal slices,
slice thickness: 300 µm, and a total acquisition time of 2 min.

After T2-weighted structural imaging was performed. All T2* functional imaging
was performed using a gradient-echo echo planar imaging (EG-EPI) sequence, which
is a conventional functional MRI acquisition sequence. Interleaved slice acquisition
was also applied to our EPI sequence in order to minimize the influence of cross-
slice artifacts. Our EPI sequence was performed with the following parameters: a 90
x 90 matrix, flip angle, 13.5 x 13.5 mm2 field-of-view, TR/TE 2000/14.2 (ms), flip
angle: 50◦, Bandwidth: 400k(Hz), 41 coronal slices and slice thickness: 300 µm, 300
repetitions, and a total acquisition time of 10 min.

3.2.7 Preprocessing and de-noising

The first five functional images in each run were deleted from analyses in order to
prevent contamination of initial imaging artifacts due to motion and non-steady state
image quality. Statistical Parametric Mapping (SPM12). 10-fold magnification of
images was done to process images with Statistical Parametric Mapping (SPM12),
which is designed to process human-size brain images. Therefore, the voxel size was
1.5x1.5x3mm in analytical steps. Pre-processing including motion correction, realign-
ment, co-registration, normalization to a C57BL6/J template, and spatial smoothing
(kernel with 3x3x6mm) were executed by Statistical Parametric Mapping (SPM12).
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Since each slice of 3D brain image was taken at a different time, slice timing correc-
tion was applied to correct slice-timing differences by temporal interpolation. Next,
realignment of 3D brain images was conducted to correct motion-related changes of
brain position. Then, co-registration was executed to overlay functional T2* images
onto structural T2 images and to save coordination changes of T2* images for nor-
malization. During normalization, T2 structural images were first warped to fit the
average C57BL6/J template [87]. Then T2* functional images were further warped
to the template using the co-registered coordination change of the images. In spatial
smoothing, voxel signals were spatially smoothed using a gaussian kernel (3x3x6mm).
In the de-noising process, linear de-trend filtering, temporal filtering (0.01-0.08 Hz),
6 motion regressions, signal regression of grey matter(GM), white matter(WM), and
cerebrospinal fluid (CSF) de-spiking and motion scrubbing were employed so as to re-
duce false-positive functional connectivity [153] with a MATLAB toolbox, functional
connectivity toolbox (CONN17; Table.A.1). Linear de-trend filtering was applied to
remove the linear accumulation of imaging noise. Temporal filtering was done over the
standard 0.01-0.08 Hz frequency range, because the lower frequency of T2* signals re-
flects spontaneous brain signals [215]. Six motion-related artifacts in T2* signals, such
as x, y, z coordinates and pitch, and raw, yaw rotations were regressed out for possible
correlation. Average signals of GM, WM and CSF were further removed to reduce
potential influence of non-physiological signals. Motion-related artifacts were further
smoothed with a squashing function in the despiking step. Prior to these analyses,
motion scrubbing was finally executed to remove signal outliers (z-score > 5).

3.2.8 Extraction of BOLD signals

A C57BLJ mouse atlas from the Allen Brain Atlas (ABA) was spatially warped to
a C57BL6J mouse template [87] using Advanced Normalization Tools (ANTs;Figure.
A.1). We extracted mean BOLD signals from the regions of interest (ROIs) based
on the atlas (Supplementary Section. A.2). We further utilized ROIs from spatial
independent component analysis (sICA) to examine how SSRIs regulate large-scale
functional components understood as cognitive brain modules. We extracted a mean
time-series from the large-scale ROIs for conventional functional connectivity analysis
and energy landscape analysis (ELA;Supplementary section. A.4).

3.2.9 Seed-based FC analysis

We performed seed-based FC analysis with a subset of depression-related target regions
including the caudate putamen (Cpu), the bed nucleus of the stria terminalis (BST),
the dorsal raphe nucleus (DRN), the medial prefrontal cortex, the orbital area (OA),
the ventral tegmental area (VTA) from ABA with functional connectivity toolbox
(CONN; Figure. A.1). Using these regions of interest (ROI), seed-based functional
connectivity (FC) analysis was applied to test the hypothesis that SSRIs influence
signals in depression-related brain targets [131, 132]. Seed-based FC analysis was
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composed of two steps. First, Pearsons’ correlation between a time series of an average
seed ROI and each voxel in images was calculated, and regional clusters were formed by
thresholding (uncorrected p<0.001). In the second step, formed clusters were further
statistically corrected with the positive false discovery rate (pFDR; p < 0.05). By
comparing the SSRI-treated and control groups, it is possible to identify brain regions
influenced by SSRIs. For a further validation with seed-based FC analysis, different
frequency range (0.01-0.1 Hz) was applied in temporal filtering, and seed-based FC
analysis was performed with liberal thresholding (uncorrected p<0.01) for regional
clustering and corrected with pFDR (p < 0.05).

3.2.10 Analysis of amplitude of low-frequency fluctuations

Amplitude of low-frequency fluctuations (ALFF) was performed to detect difference in
regional activity between SSRI and control groups. After preprocessing was executed,
Fourier transformation was applied to each voxel, and sum of amplitudes of low fluctu-
ations at multiple ranges of low-frequency dynamics (0.01-0.08, 0.01-0.1, and 0.01-0.15
Hz) was compared between the groups. The analysis was executed by MATLAB.

3.2.11 Large-scale component extraction with independent com-
ponent analysis (ICA)

Spatially independent component analysis (sICA) is one of the common approaches
to extract synchronously activated spatial components from fMRI data. Such com-
ponents are known to correspond to functional organization of the brain and to exist
both in human and animal brains[122, 176, 212]. The default mode network (DMN) is
the major representative component that is active during a task-free state. Previous
studies revealed that there are multiple functional modules in the mouse brain. There-
fore, we used sICA to extract multiple functional components with Group ICA of the
fMRI Toolbox(GIFT; Supplementary Table. A.1). We selected ten interpretable and
previously known brain regions (Table. 3.3; [122, 176, 212]).

3.2.12 Energy Landscape analysis

We performed energy landscape analysis (ELA) using large-scale components extracted
from sICA. ELA renders brain dynamics as a ball in the energy landscape, and en-
ables us to define local minima as the state of dynamics (Supplementary Section.
A.4). Energy in this case does not refer to any metabolic or biological senses, but the
information-theoretical sense. First, we set regions of interest (ROIs) to extract brain
signals. Then, extracted signals were binarized using the thresholding mean. Next,
we fit the binarized signals to the pairwise maximum entropy model to define local
minima. A disconnectivity graph was utilized to visualize local minima of the energy



3.3 Behavioral Results 21

ROI id ROI name Corresponding anatomical regions
1 DMN-like component mPFC, dorsal RSC
2 Parietal component parietal cortex, auditory cortex
3 Thalamic component thalamic complex
5 Visual component Primary visual cortex
6 Mid component ventral RSC, Auditory cortex
7 Fronto-lateral component Primary motor cortex
8 cerebellar component Cerebellar complex
9 Ventral hippocampal complex CA1, CA2, CA3, Denate gyrus
10 Striatal component Caudate putamen, nucleus accumbens

Table 3.3: Extracted large-scale brain components

landscape. Energy in the disconnectivity represents the percent of time in the open
field test that the test animal remained in the center region, encoded or recorded in
brain activity patterns. By applying the results of local minima, ELA allows us to
statistically test behaviors of brain dynamics.

3.3 Behavioral Results

We examined whether long-term medication influences behavioral performance. Sub-
jects underwent two behavioral tests, the open-field test and the elevated-plus maze,
subsequent to four imaging runs (Figure.3.1.).

3.3.1 Serotonergic antidepressants promote spontaneous loco-
motion

We first investigated whether long-term serotonergic antidepressants affect anxiety-like
behaviors(Figure. 3.2.). We could find no statistical difference in the average of percent
stay in the center region of the OF test and in the open arms of the EPM test, between
SSRI and control groups(Figure.3.2.B,G.). Although there was no statistical difference
in the variance in the OF test, we found significant difference in the variance in the
EPM test(P < 0.001, F-test; Figure.3.2.G).

Next, we examined whether spontaneous locomotion changed during chronic SSRI
administration(Figure.3.2.C-E,H-J). The SSRI-treated group showed statistically longer
total moving distance in both tests(Figure.3.2.C,H.). We decomposed total moving dis-
tance into two contributing factors, average speed during movement and immobility
time. We verified whether either or both factors showed significant difference be-
tween SSRI-treated and vehicle-treated groups. We found that contributing factors
were dependent on tasks. Average moving speed and percent immobility were signif-
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icantly different in the OF test (moving speed: P < 1e−10, U-test; immobile state:
P < 1e−8, U-test), while only percent immobility was significantly different in the
EPM test(P < 0.0005, U-test;Figure.3.2.E,E,I,J).

If long-term SSRIs promote general motor outputs, behavioral measures in the
two tasks should be correlated. However, neither of the behavioral measures were
significantly correlated in the two tests (Figure.3.3.A,B.). We then tested whether the
difference between groups in average moving speed and percent immobility depended
on the locations (Figure.3.4.). Both near the walls in the OF test and in the closed arm
in the EPM test, the average moving speed was significantly higher(OF test: P < 1e−9,
EPM test: P < 0.05 ;Figure.3.4.A,E.), and percent immobility was significantly lower
in the SSRI group compared to the control group(OF test: P < 1e−9, EPM test:
P < 0.005;Figure.3.4.C,H.). These measures were not significantly different in the
center region in the OF test and the open arm in the EPM test, except for marginal
significance of average moving speed in the center region of the open field (P < 0.01,
U-test;Figure.3.4.B,D,F,G,I,J.).

Hence, we concluded that although influence on anxiety-like behaviors is context-
dependent, serotonergic antidepressants promote spontaneous locomotion, especially
in secure regions, but this enhancement may not be due to general motor output.

3.4 Anatomical seed-based functional connectivity anal-
ysis

3.4.1 SSRI influences functional connectivity from depression-
related brain regions

Previous studies showed that neural circuits in motivation and mood are especially
influenced by SSRI administration [24, 106, 129, 131, 132, 167]. Therefore, we hypoth-
esized that the effects of short-term and long-term SSRI medication on the whole-brain
dynamics, including the cortico-limbic regions, are different. To test this hypothesis,
we first performed anatomical seed-based FC analysis with six seed regions selected
in depression-related regions, namely, the caudate putamen (Cpu), the bed nucleus
of stria terminalis (BST), the dorsal raphe nucleus (DRN), the medial prefrontal cor-
tex (mPFC), the dorsal retrosplenial cortex (dRSC), and the ventral tegmental area
(VTA). The DRN is the core of serotonin system. The Cpu and VTA are the main
components of a neural circuit in motivation whereas the BST, mPFC, and dRSC are
parts of a neural circuit controling mood. Their locations were based on the Allen
rodent brain atlas (Supplementary Figure.A.1 and Table.A.1).

First, we compared regional spontaneous dynamics of the seed regions by fractional
ALFF (fALFF) with multiple frequency ranges (0.01-0.08, 0.01-0.15, and 0.01-0.2 Hz)
across imaging sessions. However, we could not observe any statistical difference of the
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Figure 3.2: A. Open field box. Mice underwent the open-field (OF) test 17 days after
SSRI/vehicle doses for 15 min (15 lux). B. There are no significant differences in the
mean and variance of percent stay in the center region in the OF test. C. The SSRI-
treated group showed significantly longer total distance than the control group in the
OF test (p < 1e−11, U-test). D, E We inferred that the significantly longer distance was
influenced by average speed (cm/s) or percent immobility. Average speed (P < 1e−10,
U-test) was significantly higher and immobility was significantly shorter (P < 1e−8,
U-test). F. Elevated-plus maze (EPM) test. Mice subsequently underwent the elevated-
plus maze 19 days after SSRI/vehicle doses for 10 min (100lux). G. There are significant
differences in the mean and variance of percent stay in the open arms in the EPM test.
H. We confirmed significant longer total distance in the SSRI-treated group in the
EPM test (p<0.05, U-test). I, J. We also checked influences of average speed (cm/s)
and percent immobility in the EPM test. Although there was no significant difference
in average speed (cm/s) between groups (p=0.076, U-test), the SSRI-treated group
showed significantly less percent immobility (p < 5e−4, U-test).
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Figure 3.3: A. Correlation of behavioral parameters. Speed was compared between
SSRI and control groups. There was no statistically significant correlation between
the groups (SSRI: r = 0.18, P = 0.32; Cont: r = 0.04,P = 0.82). B. Correlation
of behavioral parameters. Immobility was also examined between SSRI and control
groups. There was no statistically significant correlation between the groups (SSRI:
r = 0.31,P = 0.07;Cont: r = 0.07,P = 0.69).
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Figure 3.4: A, B. Average Speed in peripheral and center regions in the OF test. The
SSRI-treated group showed significantly higher speed in both conditions (peripheral:
P < 1e−9, U-test; center: P < 0.01, U-test). C, D. Percent immobility in peripheral
and center regions. Percent immobility was also significantly different in the two regions
(peripheral: P < 0.01, U-test). E,F,G. Average speed in the EPM test. Although there
were no significant differences in the center and open regions, we found statistically
higher speed in SSRI-treated group in closed arms (P < 0.05, U-test). H,I,J. Percent
immobility in the elevated-plus maze. There was a significant difference only in the
closed arms (P < 0.005, U-test).
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six selected ROIs in fALFF (see the detail in the section 3.2.10).

Next, we compared SSRI and control groups between acute and chronic SSRI ad-
ministration. Our seed-based analysis revealed two significantly different FCs between
BST and ventral RSC, and DRN and the thalatmic reticular nucleus (RT;Figure.3.5 and
3.6. We also observed FC differences across sessions using the FCs(Figure.3.8.A,B.).
In the both FCs, there were statistically significant difference between one week before
and 1st day sessions (BST-vRSC: P < 0.001; DRN-RT: P < 0.005, unpaired t-test).
However, we could not find a statistically significant difference between one week before
and 2nd week sessions (BST-vRSC: P = 0.54; DRN-RT: P = 0.81, unpaired t-test).
Consistently, we found similar changes of FCs between BST and ventral RSC, and
DRN and RT under different frequency range (0.01-0.1 Hz; Figure.3.7).

Our seed-based analyses suggest that the influence of acute SSRI administration is
associated with reshaping neural circuits in the DMN-limbic and the mid-brain circuits.

3.5 Functional network-based analysis

We next investigated whether brain-wide functional components identified by sICA
were altered by SSRI administration.

3.5.1 Ten functional networks identified by sICA

We employed spatial independent component analysis (sICA) to extract functional
brain network components. From the joint data of all animals in all four scans, sICA
extracted 30 spatial independent components. Among those, we identified 10 inter-
pretable spatial components, including DMN-like, frontal, hippocampal, and striatal
components (Figure. 3.9). Similar functional components were identified by sICA in
previous studies [122, 176, 212].

3.5.2 SSRI administrations did not affect functional connectiv-
ity between functional brain networks

We calculated FCs among the ten functional networks along the time course of drug
administration. However, no FCs showed statistically significant differences in the time
course of administration (Figure. 3.10). This result may indicate that SSRI effects are
limited within each functional module, but do not affect large-scale dynamics. Another
possibility is that conventional FC analysis over the whole scanning session is insuffi-
cient to extract dynamic changes in the functional networks by SSRI administration.
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Figure 3.5: A. Seed-based analysis with the seed region, BST, revealed statistically
significant contrast in the retrosplenial cortex (RSC), a homolog of the PCC in mouse
brain (uncorrected P < 0.01 for cluster forming, and further correction with cluster
size PFDR < 0.05). B. The seed region, DRN, also revealed a statistical difference
in the thalamic reticular nucleus(RT; uncorrected P < 0.01 for cluster forming, and
further correction with cluster size PFDR < 0.05).
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Figure 3.6: We confirmed that higher statistical threshold resulted in statistically
significance of FCs between BST-RSC and DRN-thalamic RT A. Seed-based analysis
with the seed region, BST, revealed statistically significant contrast in the retrosplenial
cortex (RSC) with cluster forming (uncorrected P < 0.001) and further corrected about
the number of voxels (PFDRcorrected < 0.05). B. The seed region, DRN, also revealed a
statistical difference in the thalamic reticular nucleus(RT; PFDRcorrected < 0.05).
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Figure 3.7: We further confirmed change of FCs between BST and RSC, and DRN
and thalamic RT with different frequency range (0.01-0.1 Hz). A. Seed-based analysis
with the seed region, BST, revealed statistically significant contrast in the RSC with
cluster forming (uncorrected P < 0.01) and further corrected about the number of
voxels (PFDRcorrected < 0.05). B. The seed region, DRN, also revealed a statistical
difference in the thalamic reticular nucleus(RT; PFDRcorrected < 0.05).
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Figure 3.8: A. Change of FC between the BST and the vRSC across sessions. There
was a statistically significant difference in the change from one week before to the 1st

day(P < 0.001, unpaired t-test). However, we could not find statistically significant
difference between one week before and 2nd week sessions (P = 0.54, unparied t-
test). B. Change of FC between the DRN and the RT across sessions. There was a
statistically significant difference in the change from one week before to the 1st day(P <
0.005, unpaired t-test). However, we could not find a statistically significant difference
between one week before and 2nd week sessions (P = 0.81, unpaired t-test). *** means
P < 0.005 with unpaired t-test.
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Figure 3.9: Extracted functional network components. A. DMN-like component, B.
Mid-cortical component, C. Thalamic component, D. Visual component, E. Mid com-
ponent, F. Fronto-lateral component, G. Cerebellar component, H. Frontal component,
I. Hippocampal component, J. Striatal component
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Figure 3.10: We extracted time-series from 10 resting-state networks, and calculated
Pearsons’ correlation among them. (A,D,G,J) We averaged correlation matrices in
the SSRI-treated group from one week before, 1st day, 1st week, and 2nd week sessions,
respectively. (B,E,H,K) We also averaged correlation matrices in the control group from
one week before, 1st day, 1st week, and 2nd week sessions, respectively. (C,F,I,L) We
tested whether there is a statistically significant difference (PFDR<0.05). Blue and light
green pixels indicate no value and no statistically significant difference, respectively.
No FCs in any sessions exhibited significant differences.
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3.6 Energy landscape analysis revealed the effect of
SSRIs on transient brain dynamics

Conventional FC analysis could not reveal distinct changes in brain-wide functional
networks. We then considered the possibility that averaging brain-wide dynamics with
FCs over the ten-minute scans might neglect reconfiguration of brain dynamics on a
shorter time scale. To check this possibility, we leveraged the energy landscape analysis
(ELA), which approximates brain dynamics as transitions among attractors of different
energy levels. ELA is a promising analytical method to detect changes in whole-brain
dynamics by fitting time-series data to a simple stochastic model (see details in the
Supplementary section.A.4).

3.6.1 Representative brain state patterns by energy landscape
analysis

We first binarized time courses of the ten sICA components and obtained eight energy
local minima by fitting all data from all sessions to a Boltzmann machine model (Fig-
ure.3.11 A-B). The eight states were symmetrical brain patterns, for which active and
inactive states are complementary. We found two dominant states, 1st and 2nd states
and 7th and 8th states (Figure. 3.11A.). All active and inactive components were
composed of the dominant states. The 3rd and 6th states are the intermediate states
between the dominant states. 3rd state comprises the active posterior brain components
including the DMN-like component, the parietal component, the visual component, the
cerebellar component, and the hippocampal component, while the 6th state contains
active anterior components, the thalamic component, the mid cortical component, the
frontal lateral component, the frontal component, and the striatal compoment. The
4th and 5th states are minor states.

Next, we defined the local minima as the representative states, and categorized
neighboring states of each local minimum as the attractor basin. Brain activity patterns
in each session were transformed to a series of attractor states. We then compared the
percentage of time in each attractor state from one week before to 2nd week sessions in
SSRI and control groups (Figure.3.11C-F). The time spent in states 3 and 6 in the SSRI
group was significantly smaller in the 2nd week session (P < 0.005;Figure.3.11F.).

This result implies that the energy landscape is reshaped by chronic SSRI treatment.
In order to confirm whether the intermediate states are prominently diminished in SSRI
groups, we separately applied ELA to SSRI and control imaging data from one week
before to 2nd week sessions, and defined the attractor states in the same manner as with
all imaging data (Figure.3.12 and 3.13). ELA with SSRI data yielded six representative
states, excluding those corresponding to the intermediate states identified from all data
(Fig 3.12 A). On the other hand, ELA with control data resulted in the corresponding
eight states (Figure. 3.13 A).
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Additionally, we examined whether intermediate states from the control group could
detect energy landscape differences in the SSRI group. Our analysis showed that state
duration in the intermediate states are statistically smaller in the SSRI group compared
to the control group only in the 2nd week session (Figure. 3.13.C-F).

These analyses indicate that long-term serotonergic medication, but not acute med-
ication reshapes brain activity patterns.

We further investigated how durations in the 3rd and 6th states changed across
imaging sessions in SSRI or control groups (Figure. 3.14A-C.). We refer to the 3rd and
6th states as intermediate states. The results revealed that change of state duration in
intermediate states in the 2nd week session increased significantly in the control group
only in the 2nd week session (P < 0.005, unpaired t-test; Figure. 3.14). Since there
is no increase of state duration in the SSRI group, the results suggest that long-term
serotonergic antidepressant treatment suppresses the increase in state duration.

3.6.2 Change of modular structure underlying brain activity
patterns in the intermediate states

We further analyzed what brain dynamics corresponding to the attractor states 3rd

and 6th, which we call "intermediate states," which were affected by chronic SSRI ap-
plication (Figure.3.15). First, original BOLD signals during the intermediate states in
the ELA were extracted and Pearsons’ correlations among the ten sICA components
were calculated(Figure. 3.16.A-D). We examined alteration of modular structure by
calculating modular integration and segregation with averaged within-module FCs and
modular segregation with averaged across-module FCs. There was a significant increas-
ing trend in modular integration (MANOVA, session, P = 0.104, group: P < 0.005)
and a decreasing trend in modular segregation in the control group (MANOVA, session,
P = 0.162, group: P < 0.001). However, we could not identify such trends in the SSRI
group.

In summary, our observations imply that SSRI administration suppresses reshaping
of modular structures.

3.6.3 Modular integration and segregation alters along sessions

Next, we examined the possibility that long-term serotonergic antidepressants impact
the association between brain state dynamics and modular structures. Association
between brain state dynamics and modular structures is initially examined between
sessions. However, we could not find any significant correlation between them (data not
shown). We assumed that the association is not directly reflected. Therefore, linkage
between alteration of brain state dynamics and modular structures across sessions
was further studied. The observations resulted in statistically significant correlation
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Figure 3.11: (A) Local minima and their activity patterns from all data. We applied
ELA to all imaging data including one week before to 2nd week sessions from both
groups. We identified 8 activity patterns as local minima from the data. Given each
local minimum, we also defined corresponding states in which activity are attracted to
each local minimum. (B) Disconnectivity graph. We visualized disconnectivity for local
minima. (C-F) Percent stay in each session. Using 8 states, we compared dominance
of each state in the SSRI-treated group and control group from one week before to 2nd

week sessions, respectively. We found that states 3 and 6 were statistically smaller in
the SSRI group (PFDR<0.005).
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Figure 3.12: Local minima and their activity patterns only from SSRI data. We
applied ELA to imaging data, including one week before to 2nd week session from
SSRI group. We identified 6 activity patterns that appear in all experimental and
control data. Given each local minimum, we also defined corresponding states in which
activity is attracted to each local minimum. Disconnectivity graph. We visualized
disconnectivity graphically for local minima. C-F. Using given 6th states, we compared
dominance of each state in the SSRI and control groups from week before to 2nd week
sessions, respectively. No patterns exhibited significant differences.
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Figure 3.13: Local minima and their activity patterns only from control data. We
applied ELA to imaging data including one week before to 2nd week sessions from
control. We found all 8 activity patterns as local minima correspond to the pattern from
all imaging data. Given each local minimum, we defined corresponding states in the
same manner of the all data case. Disconnectivity graph. We visualized disconnectivity
graph for local minima. C-F. Using 8 states, we compared dominance of each state in
the SSRI and control groups from one week before to 2nd week sessions, respectively.
As with all data, we found that states 3rd and 6th were statistically smaller in the SSRI
group (PFDR < 0.005).
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Figure 3.14: A-B. Changes of state duration of 3rd and 6th states across sessions,
respectively. There were significant differences between one week before and 2nd week
sessions in the both 3rd (P < 0.005, unpaired t-test) and 6th states (P < 0.005, unpaired
t-test), respectively. C. Changes of state duration of concatenated intermediate states
across sessions. There were also significant differences between one week before and
2nd week sessions in the intermediate state (P < 0.005, unpaired t-test).
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between alteration of modular integration and state duration across sessions in the
SSRI group (1st day vs. week before: r = 0.51, P < 0.01; 1st week vs. week before:
r = 0.61, P < 0.001, 2ndweekvs.weekbefore:r = 0.45,Puncorrected < 0.05) but not
consistent in control group (1st day vs. week before: r = 0.41, P = 0.08; 1st week
vs. week before: r = 0.58, P < 0.005, 2nd week vs. week before:r = 0.31,P =
0.21;Figure.3.17.). However, we could not identify such an association in modular
segregation (Figure.3.18.).

These results suggest that serotonergic antidepressant treatment indirectly shapes
the relationship between modular integration of functional networks and brain state
dynamics.

Figure 3.15: We further confirmed whether brain state dynamics are associated with
underlying functional module structure in intermediate states. First, we segregated
the original time series from state dynamics defined by corresponding states into time
series in states. Next, we formed functional network matrices for states by calculating
Pearsons’ correlation among the components. Network analysis was further perfomed
by calculating modular integration and segregation. We finally checked association
with module features, including average within-module functional connectivity and
across-module functional connectivity.
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Figure 3.16: A. A representative figure of within-module FCs summing total FCs
in two modules in the intermediate states. We calculated average within-module FCs
based on module partitioning. B. Accordingly, we summarized change of within-module
FCs between the SSRI and control groups along sessions MANOVA, session: P =
0.104, Group difference: P < 0.005). C. A representative figure of across-module FCs
summing FCs across two modules, but not within modules in intermediate states. We
measured average across-module FCs. D. we also compared changes of across-module
FCs between SSRI and control groups.

3.7 Intermediate states in ELA are correlated with
anxiety-like behaviors.

Finally we tested whether brain activity patterns identified by ELA and affected by
chronic SSRI dosage were correlated with behavioral performances affected by chronic
SSRI, namely, the average speed in the open-field test and percent immobility in the
open-field and elevated plus maze tests.

We performed correlation analyses of individual subject data and found that the
duration of intermediate states was significantly correlated with percent immobility in
the EPM test in the SSRI group, but not in the control group (SSRI: r = 0.478, P <
0.01, Control: r = 0.250, P = 0.302; Figure. 3.19A.).
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Figure 3.17: A. Correlation between change of average within-module FCs and change
of appearance of the intermediate states in one week before versus 1st day sessions
(SSRI: r=-0.51, Control: r=-0.41). B. The correlation in one week before versus 1st

week sessions (SSRI: r=-0.61, Control: r=-0.61). C. Correlation between them in one
week before versus 2nd week sessions (SSRI: r=-0.45, Control: r=-0.30). Arrowed dots
are outliers but we found no significant correlation with and without outliers.

Furthermore, we examined whether durations in states were correlated with immo-
bility. In the SSRI group, the time in the 3rd state was significantly correlated with im-
mobility in the EPM test (SSRI: r = 0.523, P < 0.005, Control: r = 0.183, P = 0.3454;
Figure. 3.19B.)

Taken together, since intermediate states in the SSRI group, but not the control
group were correlated with behavioral performance, our results indicate that the degree
of reduction of the intermediate brain state, especially state 3, in the chronic SSRI
group was correlated with reduced immobility time in a novel anxious environment.
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Figure 3.18: A. Correlation between change of average across-module FCs and change
of appearance of intermediate states in one week before versus 1st day sessions (SSRI:
r = −0.35, Control: r = −0.29). B. The correlation between one week before and 1st

week sessions (SSRI: r = −0.35, Control: r = −0.52). C. Correlation between them in
one week before versus 2nd week sessions (SSRI: r = −0.29, Control: r = −0.20).

3.8 Discussion

In the present study, we studied the influence of chronic serotonergic antidepressants
on behaviors, functional connectivity and brain-wide dynamics with energy landscape
analysis. Our results showed that spontaneous locomotion, but not anxiety-like behav-
iors was altered by long-term serotonergic antidepressant administration ( Figure.3.2.).
Our seed-based FC analysis revealed reshaping of the cortico-limbic circuit across SSRI
administrations. We also found that long-term serotonergic antidepressants suppressed
changes of state duration in intermediate states( Figure.3.14.A-C.), also reflects active
exploration in a novel anxious environment( Figure.3.19.A-B.). Furthermore, alteration
of modular integration underlying brain activity patterns is associated with alternation
of brain-wide dynamics in the SSRI group, but not the control group( Figure.3.17).

OF and EPM tests are common methods to observe anxiety-like behaviors and
spontaneous locomotion[108]. Our observation showed average speed and activity time
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Figure 3.19: A. We quantified Pearsons’ correlation between state duration in the
intermediate state and immobile state in EPM in SSRI groups. We found significant
correlation only in the SSRI group (SSRI: r=0.48, P < 0.005; control: r=0.25, P =
0.302). B. There was significant correlation between state duration in the 3rd state and
immobility (SSRI: r = 0.523, P < 0.005, Control: r = 0.183, P = 0.3454).

in the OF test were increased, but only active time in the EPM test was enhanced.
Furthermore, individual behavioral performance between two tests were uncorrelated.
This behavioral result implies that long-term serotonergic antidepressants did not in-
fluence general motor output, but possibly a motivational factor. The serotonin system
has been suggested to work together with the reward system, including the striatum,
nucleus accumbens (NAc), and VTA [114, 123]. Promoted spontaneous locomotion
may be attributed to synaptic plasticity in the reward system[21] or neurogenesis[84]
by chronic serotonergic antidepressants. Consistently, a previous study revealed that
long-term DRN serotonergic stimulation enhances average moving time in the OP test,
but did not affect speed and motor control in the motor rod test [38].

Meanwhile, we could not observe any mean difference over anxiety-like behaviors.
However, we found higher individual differences of active exploration in the EPM test.
SSRIs can require several weeks of intakes to work, and transient and intermediate time
courses of intake sometimes negatively impact symptoms of MD patients. Hence, 19-
day intakes may retain negative effects. Individual molecular profiles in those regions
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may influence expression of anxiety-like behaviors.

Exploiting conventional seed-based FC analysis, we found that FCs between BST
and vRSC varied across sessions. This finding concurs with the concept that BST is
associated with acute effects of serotonergic antidepressant treatment[129]. Further-
more, the ventral RSC is a part of the DMN, which is one of the key regions for mood
abnormalities in MD patients[77, 78]. A human functional imaging study[74] revealed
that the BST is functionally linked to the posterior cingulate cortex (PCC), a homolog
of the RSC in the mouse brain[122]. Modulation of depressive symptoms by seroton-
ergic antidepressants can occur due to control of the neural circuit between the BST
and DMN.

With energy landscape analysis, we studied the influence of serotonergic antide-
pressants on brain dynamics and behavioral performance combining conventional FC
analysis and energy landscape analysis. Although conventional FC analysis did not
exhibit any statistical difference, data-driven analysis with ELA revealed two interme-
diate brain states that did not appear in the SSRI group. This is because state duration
of the intermediate states increased in the control group during imaging sessions, but
the duration remains no different in the SSRI group. Furthermore, activity patterns
of intermediate states were identical to two partitioned modules. Module integrity did
not directly reflect brain state dynamics, such as state duration or state transitions.
However, we found a change of module integrity was associated with a change of brain
dynamics during sessions in the SSRI group, but not in the control group. Finally,
brain state dynamics of intermediate states were linked to an active exploration state
in a novel anxious EPM test. These findings suggest that serotonergic antidepressants
suppress large-scale brain state dynamics, which underlie immobility in the EPM test
by affecting functional network structure of the state.

Our study supports the notion that SSRIs influence large-scale brain state dynamics
in the mouse brain. Previous studies demonstrated that SSRIs influence regional syn-
chronized activity and brain-wide functional network[105, 106, 131, 132, 164]. However,
none of them provided evidence about brain dynamics. Our study further provided link-
age between temporal variation in brain-wide dynamics and behavioral performance
during rest. Although previous studies did not observe behavioral or state measures,
we found long-term SSRI administration is linked to brain state dynamics.

One of our results about functional module structures underlying brain activity
patterns via the energy landscape is consistent with results from a previous human
imaging study [4]. Furthermore, it is consistent with our study, the human imaging
study reported within and between module FCs’ scores poorly predicted the appearance
of brain states. Although brain state dynamics remains linked to its network structure,
the network structure does not maintain a simple association between them. However,
in the present study, fluctuation of within-module FC scores during imaging sessions
was correlated with fluctuation in appearance of the intermediate states only in the
SSRI group. Serotonergic antidepressants are able to influence the relationship between
module network integrity and state dynamics.
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Additionally, appearance of an intermediate state (3rd state) was positively corre-
lated with immobility in the EPM test in the SSRI group. This showed that immobility
in the EPM test does not reflect a general motor output, but rather vigor for explo-
ration. Hence, at least the 3rd state might be associated with active exploration in
the EPM test. In human functional imaging, there are some studies analyzing tem-
poral shifting brain dynamics about major depressive disorder (MDD)[54, 103]. MDD
subjects showed increased time in varying functional synchronous activity between the
medial prefrontal cortex and the insular cortex, which is also associated with their
rumination score [103]. Rumination is a distressing spontaneous thought as a typical
symptom of MDD subjects[35, 67]. Resting-state functional dynamics have been re-
cently featured to study spontaneous thoughts since resting-state dynamics are deemed
to reflect imagination or internal thoughts without external stimuli. Abnormal brain
dynamics in mental disorders are thought to reflect internal mental processes of sub-
jects [35]. The core of such spontaneous thought is suggested to be associated with
the posterior parietal cortex (a homolog of retrosplenial cortex), hippocampus, parietal
cortex, and visual cortices. Although we could not discern a clear association between
modular partitioning and certain functioning, module partitioning in the 3rd state re-
tains similar components. Since SSRIs are a clinical drug intervention to alleviate such
symptoms, this modular partitioning may reflect internal processes in the subjects and
might be useful to observe abnormalities in animal models of depression.

It is also worth mentioning state appearance of intermediate states in the control
group. Our observation showed enhanced state appearance along imaging sessions.
In spite of acclimation, long-term repetition of awake imaging with mice might cause
excessive stress, contributing to the enhancement in the control group, which showed
lower active time in a novel environment. In contrast, the SSRI group displayed no
alteration during sessions. One study previously found that intake of imipramine, a
serotonin and norepinephrine antidepressant, reversed the signature of a depression-
like phenotype, and evoked resilience-related gene expression [5]. One of the effica-
cious serotonergic antidepressants can provoke neural circuits of stress-resilience. This
notion is consonant with another theory that serotonergic antidepressants normalize
abnormal activity in MDD patients[131, 132]. Furthermore, one study advanced the
theory that serototonergic antidepressants make brain responses robust against inter-
ferent stimuli[165]. In this regard, serotonergic antidepressants might normalize brain
dynamics confounded by stress. However, from another perspective, serotonergic an-
tidepressants stabilize brain dynamics against stress.

It is noteworthy to discuss key limitations of the experiments. First, rs-fMRI for ro-
dents requires body fixation, and causes loud imaging noise. Although we acclimatized
the mice to reduce imaging stress, it might have caused interaction between cumula-
tive noise and chronic SSRI administration. Second, there are significant differences
between the mouse brain and the human brain. It is well known that these brains
exhibit prominent differences in cortical architecture. We found consistent responses
in affective networks after SSRI administration, but other cortical regions may respond
to SSRI and stress. It would be worth validating the functional differences in brains of
MDD patients and animal models of depression, as a translational study. Third, SSRI
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administration is a systematic way to control brain dynamics. Therefore, it is chal-
lenging to infer causal relationships between brain responses and serotonin sub-systems
such as DRN and MRN. It is interesting to utilize chemogenetics or optogenetics to
target serotonergic influences to specific areas of the brain. For example, a recent re-
port employed chemogenetics with rsfMRI and positron emission tomography (PET).
Correia et al. reported that short-term and long-term serotonin transmission exhibit
opposite influences on spontaneous locomotion [38]. Transient serotonin transmission
under different synaptic serotonin levels would be helpful to reconcile dichotomous
serotonergic effects on spontaneous locomotion.

Further studies are required to understand serotonergic control of functional ar-
chitecture and brain-wide dynamics under transient and repetitive administration of
serotonergic medications. Nonetheless, this study offers new insights regarding effects
of serotonergic antidepressants on brain-wide dynamics.



Chapter 4

Brain-wide modulation of serotonin
neurons with optogenetics

4.1 Aims

In this study, we aim to investigate serotonin control of brain-wide dynamics by stim-
ulating the major serotonin subsystem, the dorsal raphe nucleus (DRN), with optoge-
netic fMRI. Optogenetic fMRI (ofMRI) is a recent advancement employing a combina-
tion of optogenetics and fMRI, which allows us to evaluate brain-wide causal control
by a specific neuronal system [11, 115]. As the stimulation target, we chose the DRN,
which sends numerous serotonergic neurons into depression-related brain regions such
as the mPFC, striatum, and VTA. The project was done as a part of a collaborative
study with Dr. Abe, Dr. Takata, and Dr. Tanaka (for optogentic fMRI setups and
analyses), and with Dr. Miyazaki for a delayed reward task setup. I performed all
imaging and behavioral experiments and analyses.

4.2 Methods

4.2.1 Animal subjects

One adult C57BL/6 male transgenic mouse (id: TS258) was used for the experiment.
The channelrhodopsin 2 variant (C128S) was expressed in central serotonin neurons by
targeting the tryptophan hydroxylase 2 (Tph2) promoter [139]. The C128S was step-
function opsin, which can produce sustained depolarisation [12]. This opsin enables
us to cause sustained neural activities without excessive laser heat, which can cause
artifacts [33]. After surgery, the subject underwent habituation training [210], an MRI
session, and a reward delay task in turn.

47
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4.2.2 Streotaxic surgery

The subject was initially sedated with 3% isoflurane, and we administered three types
of mixed anesthetic agents (1 (mg/mL) of medetomidine, 5.0 (mg/mL) of midaloram,
and 5.0 (mg/mL) of butorphanol) [104]. We removed the head skin and fixed a plastic
bar (3x3x27mm) to the mouse skull with dental cement. We also implanted an optical
fiber toward the DRN. After at least one week of recovery, mice were habituated to the
MRI environment for another week. Mice subsequently underwent imaging sessions.

4.2.3 MRI experiments

A mouse was placed in the MRI animal bed. After we confirmed that its body tem-
perature was stable at 36 ± 0.5 (C◦), T2-weighted structural imaging and three T2*
functional imaging sessions were performed. MRI images were acquired with a 11.7
tesla MRI scanner for small animals (Biospec 117/11 system, Bruker Biospin, EmbH,
Ettlingen, Germany) with a cryogenic quadrature RF surface probe (Cryoprobe, Bruker
BioSpin AG, Fällanden, Switzerland). We performed T2-weighted structural imaging
with a fast-spin echo sequence with subsequent parameters: 140 x 140 matrix, 13.5 x
13.5 mm2 field-of-view, repetition time(TR)/effective echo time(TE) 4000/18.75 (ms),
32 coronal slices, slice thickness: 300 µm.

After T2-weighted structural imaging was performed, a functional MRI session was
further executed. A functional MRI session was composed of three imaging runs, a
resting-state run (without any stimulation), a blue-light stimulation run, and a yellow-
light stimulation run. All functional imaging was performed using GE-EPI sequence
with following parameters: 67 x 67 matrix, 13.5 x 13.5 mm2 field-of-view, TR/TE
1000/10.7 (ms), flip angle: 50◦, bandwidth: 333k(Hz), 32 coronal slices and slice thick-
ness: 300 µm, and 640 repetitions.

Resting-state fMRI was initially performed. In the opto-fMRI session, we initiated
blue stimulation 40s after the onset of imaging. We repeated 5s blue-light stimulation
(2.7-2.9 (mW), 465 (nm)) 10 times, once every 60s. Yellow-light stimulation (1.2-
1.4mW, 595 nm) followed 20s after the onset of blue light stimulation. We also applied
a yellow light opto-fMRI session instead of blue illumination. 5s yellow light was
repeated every 60s x 10. Another yellow illumination was followed 20s after the onset
of yellow light stimulation. We removed the first 10 images from subsequent analysis.

4.2.4 Pre-processing

Data were pre-processed and activation maps were calculated using SPM12 (Wellcome
Trust Centre for Neuroimaging, London, UK). We performed realignment, motion cor-
rection, co-registration, normalization, and spatial filtering (4 mm, FWHM Gaussian
kernel).
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4.2.5 A reward delay task

We leveraged a reward-delay task in which subjects were required to maintain a nose-
poke to obtain delayed rewards [139] (Fig. 4.3 A). Subjects were trained to initiate trials
by nose-poking into a tone site 500 (ms). In short, the reward-delay task is composed
of reward trials (75%) and omission trials (25%). We adopted two types of stimulation
protocols (Fig. 4.3 B). In the onset of reward and omission trials, either blue or yellow
illumination was delivered. In the reward trials, blue/yellow light stimulation was
delivered for 800 (ms) at the onset of each trial, and yellow light was delivered when
subjects waited for 6 (s). However, yellow illumination was also given when subjects
failed to wait for 6 (s). On the other hand, in omission trials, yellow stimulation
was given when mice gave up waiting for delayed rewards while light stimulation was
delivered in the same manner as in reward trials. In the pilot experiment, we fixed a 6
(s) reward delay in reward trials, while no reward was given in omission trials.

4.3 Optogenetic phasic stimulation of DRN serotonin
neurons

First, we sought to investigate whether optogenetic stimulation evoked BOLD signals
with the general linear model to map observe whole-brain stimulation contrast. How-
ever, we could not observe any BOLD responses. Next, we sought to study whether
optogenetic stimulation evoked BOLD signals in DRN. We extracted an averaged time
series of BOLD signals from DRN using the Allen brain template (Supplementary Fig-
ure.A.4 A-E.). As selection criteria for putative BOLD signals, we thresholded BOLD
signals by the total average, and selected the average positive response (40(s) duration
5(sec) after the onset of each stimulation) considering slow rising of BOLD signals.
The last three stimuli were selected as putative responses. Furthermore, in order to
validate this assumption, we again leveraged the general linear model (GLM) to map
spatial activation patterns correlated with the last three stimuli. Consistent with the
hypothesis, prominent activation originating from the DRN, mPFC, left CPu, right
Cpu, and VTA was found (Figure. 4.1 and Figure. 4.2 A,C,E,G, and I). Furthermore,
activation from the insular cortex, the hypothalamic regions, and retrosplenial cortex
(RSC) were also found. Meanwhile, BOLD signals could be led by visual stimuli due
to illumination leaks from an optic fiber. Therefore, we checked whether signals were
evoked by yellow illumination. However, we could not observe such activation in ei-
ther a resting-state or during yellow stimulation runs. Finally, we found a significant
correlation between motion artifacts and BOLD signals (Supplementary Table.A.2;
Supplementary Figure.A.4.). Hence, our results suggest that stimulated DRN sero-
tonin neurons potentially evoked BOLD responses in those target regions, but motion
artifacts may also have induced the BOLD signals.
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Figure 4.1: Activation map by the general linear model (GLM). The color bar in-
dicates uncorrected Student’s t-test values. The map implies prominent activation in
DRN, mPFC, left striatum, right striatum, and VTA.
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Figure 4.2: A,C,E,G,I: Averaged BOLD signals in the last three stimulations from
DRN, mPFC, left striatum, right striatum, and VTA in the blue-illumination trial.
B,D,F,H,J: Averaged BOLD signals in the last three stimulations from DRN, mPFC,
left striatum, right striatum, and VTA in the yellow illumination run. Blue and yellow
background colors indicate time courses of optogenetic blue and yellow illuminations
for 20(s), respectively.
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4.4 Transient activation promotes waiting for delayed
rewards

We investigated whether the evoked BOLD responses with subject TS258 were pro-
duced by optogenetic stimulation. In order to validate it, we utilized a reward delay
test that we previously used to observe the influence of optogenetic stimulation on
waiting behaviors [139]. In the previous study, TPh2 transgenic mice showed longer
waiting times in omission trials in blue light stimulation trials. Therefore, TS258 was
subsequently trained to perform a reward delay task. We tested whether blue light stim-
ulation to DRN serotonin neurons elongates waiting time in omission trials with this
subject (Fig. 4.3 C and D). We found that TS258 showed significantly longer waiting
time under blue light stimulation (P = 1e−6, U-test; blue stim: mean time=11.96(s),
SD = 1.82; yellow stim: mean time=10.91(s), SD = 1.64). Furthermore, mean
waiting ratio was 1.096(s), which is consistent with previous experiments. Hence, we
concluded that DRN serotonin stimulation induced longer waiting for delayed rewards
with TS258.

4.5 Discussion

Here, we conducted a pilot experiment to assess to specific DRN serotonin regulation
of brain dynamics with ofMRI in awake mice. Our pilot experiment with a single
subject showed that optogenetic activation of DRN serotonin neurons evokes BOLD
responses in the mPFC, the insular cortex, the striatum, and the VTA although BOLD
responses may have been evoked by motion artifacts. Furthermore, in order to con-
firm optogenetic activation of serotonin neurons, we also conducted a waiting task for
delayed rewards with the same subject[139]. Consistent with our previous research, op-
togenetic activation elongates waiting time for delayed rewards. Hence, we concluded
that evoked BOLD signals originated from optogenetic activation of DRN serotonin
neurons.

Our attempt entails two potential methodological advances. Our ofMRI was per-
formed with mice in an awake state. In previous studies, anesthesia was introduced
to prevent motion artifacts during imaging possibly due to leaks of illumination [62,
111, 118]. However, anesthesia can lessen BOLD responses, and the choice and level
of anesthesia can ambiguate interpretations of evoked signals [56]. Three preparations,
introduction of step function opsin expressed in transgenic mice, stereotaxic surgery
with a mixture of dental cement and carbon, and acclimation training with visual
stimuli, could be helpful to perform optogenetic fMRI in awake animals.

Recent opto-fMRI studies focus on phasic optogenetic manipulation of neuromod-
ulatory systems, especially of the dopamine system [53, 62, 111, 118]. These studies
leveraged the major advantage of ofMRI to access direct and indirect modulation of
neuronal dynamics among distant brain regions, and successfully showed dopamine
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Figure 4.3: A. Schematic diagram of the reward delay task [139]. A mouse was re-
quired to nose-poke a tone site in an experimental chamber to initiate a trial. If the
mouse successfully nose-poked the tone site for 500 ms, a tone was given. The mouse
was required to maintain the nose-poke in a reward site in the chamber. If mice main-
tained the nose-poke at the site for 6 (s), a reward was given in 75 % trials. On the
other hand, in the 25% omission trials, rewards were never given. Therefore, the mouse
needed to determine when to give up waiting. The mouse repeated the procedure for
multiple trials in order to obtain statistically significant number of data points. B.
Stimulation time-course. Random blue- or yellow-light stimulation was given to sero-
tonergic neurons at the onset of trials after each nose-poke to the tone site. Additional
yellow illumination was applied at the offset of the trial by reward presentation or by
ceasing to wait. C. We counted waiting time in both blue- and yellow-stimulation tri-
als separately from omission trials. Mean time for blue-illumination trials was 11.96(s)
and 10.9(s) for yellow-stimulation trials. D. We tested whether blue illumination suc-
cessfully stimulates DRN serotonin neurons. There was significantly higher waiting
time in blue illumination wait error trials than in yellow illumination wait error trials
(P < 10−6, U-test).
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Figure 4.4: Replication of an activation map by DRN serotonin neurons with another
subject (TS339). A. Activation map by DRN serotonin neurons (Blue light: 10.0mW,
Yellow light: 7mW) Considering possible artifacts in a pilot study, we introduced a
head fixation with dental cement with carbon, acclimation with visual illumination,
and higher intensity of illumination. We applied GLM for all activation in an imaging
session. We found an activation in the mPFC and striatum. A color bar indicates
statistical t-score. B. Time-couse of BOLD signals in the mPFC. Blue highlight indi-
cates 20s stimulation course. C,D. Average BOLD responses in the mPFC and VTA.
We overlaid BOLD responses by blue light stimulationin the mPFC(Figure.4.4.C) and
VTA(Figure.4.4.D). We found statistical significance in BOLD signals during blue-light
stimulation and 20 second later compared to the baseline, which is defined by mean
of 20 s BOLD signals(** indicates uncorrected P < 0.01, *** indicates uncorrected
P < 0.005).
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modulation in the mPFC and structually non-connected regions, such as the NAc. A
recent study also attempted to apply chemogenetics to map brain-wide DRN sero-
tonergic activation [71]. It would be useful to observe brain-wide tonic modulation by
chemogenetic or optogenetic activation of serotonin system, since the system has a slow
impact on brain dynamics by acting on metabolic receptors [30]. For example, depres-
sion and stress vulnerability are encoded in spatial-temporal dynamics [54, 94, 103].
Such spatial-temporal dynamics could be modulated non-linearly by tonic serotonin
modulation. Additionally, a recent study also revealed that daily repetitive optoge-
netic stimulation of the DRN serotonin system promoted spontaneous locomotion op-
posite to transient optogenetic stimulation [38]. Long-term modulation may underlie
slow therapeutic efficacy of serotonin antidepressants. Such slow modulation is possi-
bly better clarified by dissecting spatio-temporal dynamics with optogenetic fMRI and
network analysis.

It is necessary to mention critical limitations of the study. The pilot experiment
revealed the possibility of accessing brain regulation with optogenetic DRN serotonin
stimulation. However, we failed to replicate putative and similar activation maps. We
speculate that illumination-induced motion artifacts and diminishing light intensity are
the two major confounding factors. First, illumination leaks may cause motion artifacts
by surprising subjects. As correlation between motion artifacts and BOLD responses,
we identified light leaks from the skull. Furthermore, we confirmed that motion noise
in opto-fMRI sessions showed higher variance compared to resting-state imaging. To
reduce such noise, we fixed an optic fiber with a mixture of dental cement and carbon
powder. Carbon prevents illumination leaks from the mouse skull. Additionally, we
also introduced blue-light stimulation during acclimation training prior to the imaging
session. Our follow-up experiment showed that training successfully decreases motion
artifacts. However, we could not replicate putative evoked signals with the training.
This might be due to a second factor, diminished light intensity. In the pilot and
follow-up experiments, we used a cannula (diameter: 400 µm) to illuminate tissues.
We found that maximum light intensity decreased from 2.7 mW to 1.2 mW (465 nm),
presumably by repetitive use of the cannula. Introduction of higher light intensity may
allow us to replicate the result. A recent attempt showed a replication by considering
these factors4.4.

Application of ofMRI to the serotonin system has promise to uncover its compli-
cated role of brain modulation. Our ofMRI approach with step-function opsion aimed
at both phasic and tonic modulations in a serotonin subsystem. We attempted to
develop the procedure, and performed preliminary experiments. However, we failed to
establish a protocol for further validation. Nonetheless, our pilot experiment opens a
new possibility to access serotonin modulation of brain-wide dynamics.





Chapter 5

Discussion

5.1 Summary of the experiments

In the SSRI project, we found that a serotonergic antidepressant influenced sponta-
neous locomotion and a DRN-related affective system. Furthermore, such spontaneous
locomotion was associated with large-scale brain dynamics. Preliminary optogenetic
functional mapping showed brain responses from anatomically known DRN terminal
targets, and our replication of functional mapping by optogenetic stimulation will be
used for further validation of the results.

5.2 General limitation of the studies

It is worth noting general limitations of studies of relying upon resting-state fMRI and
a brain atlas.

Due to its convenience and task information, resting-state fMRI has been utilized
to reveal abnormal brain dynamics from subjects with mental disorders. However,
some personal characteristics such as aggressiveness and resilience, the capability for
rapid recovery from mental stresses, might be challenging to capture. Task fMRI is
predominant in human studies, but there are few rodent studies. The main hindrance
to employing task fMRI with rodents is body fixation during imaging. Although some
studies focused on sensory-evoked brain response in rodent studies, body fixation during
imaging is the most difficult task, especially for studies that require body movement,
such as goal-directed decision making and spontaneous locomotion. One possibility to
enhance flexibility of subject movement is to introduce a treadmill type of animal bed.
Brain imaging studies employ treadmills with head-fixation. An additional advantage
of a treadmill is potential reduction of stress by body fixation. Although acclimation
training with body fixation induced significant reduction of stress responses, long-term
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training can be stressful. As we found state duration of the intermediate state may be
caused by repetitive body fixation stresses. A treadmill type of an animal bed may be
able to prevent such confounding factors. However, a treadmill could degrade signal-
to-noise ratio of brain imaging due to movement. Establishing a training protocol for
a treadmill would be critical for its introduction.

Another significant limitation of the present studies is creating translational func-
tional brain maps across species. Pre-clinical trials are used to validate effectiveness
of treatment with animals, but not with humans, for ethical reasons. Although there
has not been any one-to-one quantitative mapping, quantitative translational brain
mapping using the same methodology, including fMRI would be worthwhile to fill
the anatomical and functional gap across species. In this study, we confirmed that
homologs of putative brain regions were consistently influenced in the mouse brain.
However, there is room for improvement in future studies. Our brain atlas is based
on brain parcellation from the Allen brain atlas, which is designed for divisions of the
mouse brain by cell-type. There have been some attempts to coordinate homologs
across multiple species [9, 122, 127, 143, 197]. It should be beneficial to take advantage
of brain differences to create a translational functional map. Furthermore, there are
some human brain regions that do not exist in the rodent brain. For example, the
rodent brain does not have regions homologous to the dorsolateral prefrontal cortex
(dlPFC) and the posterior cingulate cortex (PCC), although there are some partial
anatomical overlaps. These regions serve a social function, notably the theory of mind
and subjectivity. Those functions are key to abnormalities in mental diseases. There-
fore, the major difficulty in evaluating animal models of mental diseases is due to their
anatomical distinctions. Nonetheless, it would be worth reconciling the anatomical gap
in order to establish an interspecific pre-clinical translational map.

Finally, it is noteworthy that strong illumination intensity can be the key for opto-
genetic fMRI, but a dilemma can emerge. Induction of strong optogenetic activation
might induce biologically implausible brain responses although fMRI might not detect
weak activation by weaker optogenetic stimulation. The dilemma require balanced
control of a system invasion. However, it is unclear whether identifying an appropriate
balance is possible, unless a system is fully explored. Hence, determination of balanced
stimulation is a challenge to be discussed in the field.

5.3 Future research direction

In the optogenetic preliminary study, we successfully replicated functional mapping
of DRN serotonergic neurons. I would like further to statistically validate phasic and
slow serotonergic regulation by daily repetitive optogenetic stimulation. Correia et al.
revealed that antithetical effects of serotonin on spontaneous locomotion by phasic ac-
tivation and long-term activation. Optogenetic fMRI may show distinctive functional
mapping by repetitive stimulation of the DRN serotonin system due to synaptic plas-
ticity. From the SSRI project, we also found SSRI influence on functional connectivity



5.3 Future research direction 59

and brain attractor dynamics. The previous human study showed abnormal functional
connectivity in the affective network and the default mode network (DMN) in MD
subjects. Serotonergic antidepressants has been hypothesized to normalize abnormal
functional connections in the affective network and DMN in MD subjects[131, 132].
Consistent with the notion, our findings showed acute SSRI influence on functional
connectivities in those functional networks between BST and dRSC, and DRN and
thalamic RT. Rodent fMRI studies also showed SSRI involvement in the functional
networks [71, 82]. For example, Hai et al. found signal reduction in BST by infusion of
an acute serotonergic antidepressant into the Cpu [82]. Another study by Giorgi et al.
revealed increased activity in the DRN and the thalamic area by chemogenetic activa-
tion of serotonin systems [71]. Especially, the BST circuit is modulated by serotonin
for anxiety-like behaviours [129]. It will be interesting to observe influence on the BST
circuit by acute and chronic serotonergic antidepressants in human imaging.

Furthermore, recent human studies with MD subjects showed abnormal dynamic
functional connectivity, which is associated with depression scores[103, 213]. One of the
representative symptoms in MD subjects is rumination, repeated distressing thoughts.
Since rumination is a mental state of repetitive stress, such a mental state might
be represented by a brain state [35]. Therefore, depressed subjects can be defined
by the abnormal appearance of ruminative brain states. Our findings about a sero-
tonergic antidepressant on brain attractor dynamics implicates normalization of the
such ruminative brain state dynamics by a serotonergic antidepressant. Moreover,
psychotherapies including cognitive behavioral therapy and mindfulness-based cogni-
tive therapy for depression may exhibit a similar normalizing influence on ruminative
brain state dynamics[58, 128]. It is also interesting to address the question of whether
long-term serotonin activation reshapes brain state dynamics against stresses[72]. The
serotonergic system might be linked to temporal internal processes [34, 35]. Another
potential project would be to investigate how human brain state dynamics respond to
serotonergic antidepressants with ELA. Functional imaging with experience sampling
using human subjects would enable us to clarify the influence of antidepressants on the
internal process.

As a general research direction, the aforementioned limitation will be a potential
research target. First, introduction of a foot-free rodent MRI apparatus, such as a
treadmill, might be the next target. Serotonin serves multiple functions in spontaneous
and goal-directed behaviors. Task fMRI enables us to capture serotonergic regulation
of task-relevant brain activation during these tasks.

Next, a translational functional map between human and rodent brains should
be beneficial. Rodent fMRI allows us to observe brain-wide dynamics of the rodent
brain with the same methodology as in human fMRI. This is advantageous to validate
underlying neural mechanisms in pharmaceutical pre-clinical tests with animal models
of depression and other mental disorders. There are three conventional criteria in
animal models of mental disorders, which are based on three non-neuronal validities:
construct, face, and predictive validities. Construct validity is about the cause of a
behavioral abnormality, such as social defeat in animal models of depression. Face
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validity is similar to symptoms, such as learned helplessness and reduction of social
interaction in the models [32, 72]. Last, predictive validity is whether drug treatment
has the same recovery effect on the models. Ethological observation suffices for those
criteria, but underlying neuronal mechanisms may differ. It has been suggested to
introduce other validities such as homological and mechanistic validities in order to
further legitimize animal models of mental disorders [10]. Concomitantly, multiple
groups have identified depression-related neuro-markers using fMRI studies [96, 172].
It has also been found that depression-related target regions showed abnormal brain
activity patterns in rodent studies. RsfMRI for the rodent brain is a promising tool to
validate mechanistic and remission validity collaboratively with human fMRI studies.

Furthermore, multi-modal and integrative approaches would reveal complicated
serotonin modulation of brain dynamics and mental processes. Methodological and
computational advances have enabled us to collect and analyze large datasets [26, 110,
169]. A recent trend in neuroscience is to facilitate multi-modal databases, includ-
ing genetic expression, structural projections, electrophysiological data, BOLD signal
data, behavioral data, diagnostics, and etc. For example, the Allen Brain Institute
(ABA) [179] has started opening genetic, anatomical, and functional datasets of the
human and mouse brains. The Human Connectome Project (HCP) [188] collects task-
free fMRI, task-fMRI, EEG, MEG, and behavioral results, and questionnares from
each of over 1000 subjects, enhancing neuro-imaging genetics through meta analysis
(ENIGMA) [100, 147]. Those databases make it possible study relationships among
different modalities. The serotonin system has multiple components, such as 9 nuclei,
over 14 receptors, sub-types of transporters, wide-spread projections, and stimulus-
sensitive regulation. Hence, a multi-modal approach allows us to examine nonlinear
relationships of each component.

Integrative approaches are also a promising tool to unite multi-modal datasets of
the serotonin system. The conventional integrative approach is model-based analysis.
Model-based approaches became well-known due to the dopamine temporal difference
error hypothesis in reinforcement learning [45, 57, 166]. In a framework of a model-
based approach, cognitive models are hypothesized to underlie task behaviors, usually
goal-directed behaviors, and to fit models to neuronal and behavioral data to analyze
contributing factors. Several groups leverage this approach to decode serotonin mod-
ulation in goal-directed behaviors [120, 123, 136, 138–140]. This approach is helpful
to understand relationships between cognitive process and neuronal dynamics. On
the other hand, another recent integrative approach focuses on understanding emer-
gent properties of functional dynamics based on anatomical projections [48, 49, 51].
Resting-state brain dynamics is spatio-temporarily organized and retains task-relevant
information. Resting-state functional dynamics can underlie task-relevant brain re-
sponses and behavioral performances.

Along with this trend, researchers have started to apply this integrative approach
not only to the human brain, but also to the mouse brain. For example, the Virtual
Mouse Brain (TVMB) is the connectome-based simulation platform to emulate brain-
wide dynamics by leveraging anatomical projections from ABA and neuronal models
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[134]. Although the TVMB does not explicitly consider neuro-modulatory regulation,
it can be extended to exploit data from neuromodulatory regulation by regulating the
global coupling parameter, which controls the amplitude of neural firing. The serotonin
system regulates multiple regions, predominantly by metabolic receptors, and its slow
and widespread regulation may cause nonlinear dynamics, which have been challeng-
ing to delineate by conventional methods. Additionally, while this is computationally
very expensive, it is easy to take into account receptor regulation in neuronal models.
Therefore, this connectome-based integrative approach has potential to explain slow
and nonlinear modulation of the serotonin system. This connectome-based integra-
tive approach can be categorized as data-driven modeling, which explicitly exploits
empirical data to construct hidden dynamics with approximate equations. Such data-
driven modeling may foster understanding of the serotonin system and clinical effects
of serotonergic antidepressants.

Taken together, by exploiting new data platforms and large datasets, it is promis-
ing to integrate multi-modal data and to disentangle the complexity of the serotonergic
system from an integrated perspective, considering molecular, anatomical, physiologi-
cal, and network variables. Exploiting brain-wide functional data from my concurrent
studies will contribute to future studies.





Conclusion

In this thesis, I studied long-term modulation and phasic activation of the serotonin
system using pharmacology and optogenetics. In the first experiment, I explored
the influence of serotonergic antidepressant treatment on spontaneous locomotion and
anxiety-like behaviors, brain dynamics, and the linkage between behaviors and brain
dynamics. My results delineated resultant changes in spontaneous locomotion and
functional connections in the affective system. Furthermore, network dynamics analy-
sis revealed maintenance of dynamic brain states, which is linked to active exploration
by serotonergic antidepressant treatment. My results suggest an influence of seroton-
ergic antidepressant treatment on abnormal brain activity by balancing brain state
dynamics. In the second experiment, I preliminarily showed that phasic optogenetic
activation of DRN serotonergic neurons revealed BOLD responses in affective brain
regions among the projection regions of the DRN.

Further investigation is required to understand the relationship between serotoner-
gic regulation of brain dynamics and behaviors. Nonetheless, my findings have enabled
new understanding of short- and long-term serotonergic modulation of brain-wide dy-
namics.
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Supplementary information

A.1 Software

A.2 Atlas Creation

We utilized an anatomical template from the Allen brain atlas (ABA) for the C57BL6J
mouse. First, we transformed a nissel image template from ABA to fit a C57BL6J T2
template [87] with advanced normalization tools (ANTs; see Supplementary Table A.1).
Next, we used the transformation coordinates in the previous step to fit corresponding
labels to the T2 template by interpolating with the nearest neighbor method. Finally,
we concatenated multiple labels for FC calculations, and bilateral 10 brain regions were
defined including DRN and VTA.

A.3 Large-scale components creation with ICA

A.3.1 Preproecssing

We first performed realignment, co-registration, normalization and spatial smoothing
with SPM12 (Supplementary Table. A.1). We applied linear trend filter and temporal
filter ([0.01, 0.08] Hz) to all preprocessed data from the first sessions with REsting
State fMRI data analysis Toolkit (REST). Next, we performed sICA analysis with
Group ICA Of fMRI Toolbox (GIFT) with following parameters: the number of in-
dependent components n=30, ICA algorithm (Infomax), and ICASSO (10 runs and
min/max cluster size=8/10; [88]). In order to obtain stable independent component,
we performed ICASSO, which is a software for checking estimate reliability of ICA
results. We selected 10 interpretable independent components out of 30 components
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Software and Data Source Indentifier
MATLAB 2015b Mathworks https://

jp.mathworks.com/
products/
matlab.html

Statistical
Parametric Mapping
12 (SPM12)

University College London http://
www.fil.ion.ucl.ac.uk/
spm/software/spm12/

functional
connectivity toolbox
(CONN)

The Gabrieli Lab, McGovern
Institute for Brain Science

https://
www.nitrc.org/
projects/conn

Group ICA Of fMRI
Toolbox (GIFT)

Mia lab. University of New Mexico. http://mialab.mrn.org/
software/

Advanced
normalization tools
(ANTs)

Penn Image Computing and Science
Lab. University of Pennsylvania.

http://
stnava.github.io/
ANTs/

Resting-State fMRI
Data Analysis
Toolkit (REST)

State Key Laboratory of Cognitive
Neuroscience and Learning, Beijing
Normal University.

http://restfmri.net
/forum/ index.php

C57BL6/J
anatomical template Department of Physiology, Keio

University School of Medicine.
https://
www.nitrc.org/
projects/tpm_mouse/

C57BL6J/J
brain parcellation Allen Brain Institute http://

help.brain-map.org/
dis-
play/mousebrain/API

C57BL6/J
large-scale
components

Doya Unit available soon

R code for for
advance
normalization

Doya Unit available soon

MATLAB codes for
CONN Batch
processing

Doya Unit available soon

Table A.1: Software and Data
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Figure A.1: We leverage Allen mouse brain atlas labels to extract functional con-
nectivity among brain regions. First, we transformed a nissel image template to fit
a C57BL6J T2 template with advanced normalization tools [87]. Next, we used the
transformation corrdinates in the previous step to fit corresponding labels to the T2
template. Finally, we concatenated multiple labels for FC calculations, and 157 brain
regions were defined including DRN, MRN, and VTA.
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for the subsequent analyses such as large-scale FC analysis and ELA analysis.

A.4 Energy Landscape Analysis

The brain is a nonlinear dynamical system, and its neuronal dynamics represents cog-
nitive information or mental states. In conventional literature in rs-fMRI studies, they
are focused on functional dynamics in the over all time-series with FC analysis, and
showed relevance in multiple cognitive functions. However, such methodology neglects
time-varying shifts of signals, and it was urged to analyze a complex dynamics which
is inherited in the brain in nature. To gain this goal, multiple groups started proposing
methods to analyze neuronal dynamics taken by neural recording, EEG, MEG, and
fMRI. Energy landscape analysis (ELA) is deemed as a promising analytical method
for analyzing multivariate neural dynamics as a roaming ball in a landscape of infor-
mation theoretic ’energy’ but neither metabolic nor thermal energy [4, 60, 200–203].
ELAs originated from the Ising model in statistical mechanics to consider brain network
dynamics as probabilistic models, and ELA revealed individual difference in conscious
processing and abnormal dynamics in a mental disorder, autism [202, 203]. Here, we
hypothesize that the mouse brain retains functional brain transitions between brain
states, and SSRI can modulate configuration of an energy landscape. To test this, we
utilized a pairwise maximum entropy model (MEM).

A.4.1 Pairwise maximum entropy model (MEM)

Pairwise maximum entropy model (MEM) is one way to describe energy landscape of
neuro-imaging data [200, 201, 203]. The method analysis enables us to regard multi-
variate brain signals as a ball in an energy landscape. We only assume no information
is available in advance for unbiased distribution estimation. Given such setting, the
uncertainty miximization is the only reasonably possible method. It is known that
the maximum entropy probability distribution by maximizing the entropy leads to
the Bolztmann distribution [101]. The pairwise maximum entropy model adopts the
Boltzmann distribution to infer the energy function.

The algorithm is calculated as shown below[200, 201, 203].

Step 1. set the N regions of interests (ROIs), and extract time-series Xi(t) where repre-
sents time point t = [1, . . . , tmax] and a region of interest (ROI) i = [1, . . . , N ].

Step 2. binarize neuroimaging signals Xi(t) by thresholding the signals. We denote the
binalized signals, { σi(1), . . . , σi(tmax) }.

σi(t) =

{
1, if Xi(t) ≥ 〈Xi〉
−1, else

(A.1)
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Figure A.2: (a) Regions of interest. First, we choose regions of interest (ROIs) from
the brain. (b) Signal Extraction. Extract signals from ROIs after preprocessing and
denoising steps. (c) Binarization. Binarize the extracted signals. (d) Maximum entropy
method. Apply the binarized signals to MEM algorithm AA.4.1 in order to optimize
parameters h, J. We can define local minima based on the optimized parameters. The
optimized parameters allows us to obtain local minima and related brain states. and
(e) Disconnectivity graph. Calculate disconnectivity graph in order to visualize energy
landscape of local minima. (f) Energy of local minima represents depth of energy
landscape. Furthermore, empirical percent stay in each local minimum is associated
with basin size, which is defined by corresponding activity patterns.
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caution: thresholding is arbitrary but we used the time average 〈Xi〉 of original
time-series for each region i.

Step 3. calculate the empirical frequency Pempirical(σσσ) that represents appearance proba-
bility of each activity pattern.

Step 4. fit the Boltzmann distribution to the empirical data. The Boltzmann distribution
is defined as

P (σσσ|h,J) =
exp

[
− E(σσσ|h,J)

]∑2N

l=1 exp
[
− E(σσσl|h,J)

] (A.2)

where

E(σσσ|hhh,JJJ) = −
N∑
i=1

hiσi −
1

2

N∑
i=1

N∑
j=1,i 6=j

Jijσiσj (A.3)

E(σσσ|h,J) is the energy, and h = {hi},J = {Jij}(i, j = 1, . . . , N).

A.4.2 Likelihood maximization for the pairwise MEM

We aim to gain a set of parameters, h,J.

(h,J) = arg max
h,J

L(h,J) (A.4)

L(h,J) =
tmax∏
t=1

P (σσσ(t)|h,J) (A.5)

We applied a gradient descent method [202] for likelihood maximization.

hnewi − holdi =
ε

tmax

∂

∂hi
logL(h,J)

= ε(〈σi〉empirical − 〈σi〉model) (A.6)
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where

〈σi〉empirical =
1

tmax

tmax∑
t=1

σi(t) (A.7)

〈σi〉model =
2N∑
l=1

σliP (σσσl|h,J) (A.8)

〈σiσj〉empirical =
1

tmax

tmax∑
t=1

σi(t)σj(t) (A.9)

〈σiσj〉model =
2N∑
l=1

σliσ
l
jP (σσσl|h,J) (A.10)

A.4.3 Derivation of the likelihood maximization

First, we derivate the equation (A.6). Here,

∂

∂hi
logL =

∂

∂hi
log

tmax∏
t=1

P (σ(t)|h,J)

=
∂

∂hi

tmax∑
t=1

logP (σ(t)|h,J)

=
∂

∂hi

tmax∑
t=1

log
exp(−E(σ(t)|h,J))∑2N

l=1 exp(−E(σσσ(t)|h,J))

=
tmax∑
t=1

∂

∂hi

[
− E(σσσ(t)|h,J)− log

2N∑
l=1

exp(−E(σσσl(t)|h,J))
]

(A.11)

We calculate the terms ∂
∂hi

[
− E

]
and ∂

∂hi

[
log
∑2N

l=1 exp(−E)
]
, respectively.

∂

∂hi

[
− E(σ(t)|h,J)

]
=

∂

∂hi

[ N∑
i=1

hiσi(t) +
1

2

N∑
i=1

N∑
j=1,j 6=i

Jijσi(t)σj(t)
]

= σi(t) (A.12)
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∂

∂hi

[
− log

2N∑
l=1

exp(−E(σl(t)|h,J))
]

=
−1∑2N

l=1 exp(−E(σl(t)|h,J))

∂

∂hi
exp(−E(σl(t)|h,J))

= −
∑2N

l=1 σ
l
i(t)exp(−E(σσσl(t)|h,J))∑2N

l=1 exp(−E(σσσl(t)|h,J))

= −
2N∑
l=1

σliP (σσσl|h,J)

= −〈σi〉model (A.13)

Finally, we substitute the terms (A.12) and (A.13) into the equation (A.11).

hnewi − holdi =
ε

tmax

∂

∂hi
logL(h,J)

=
ε

tmax

tmax∑
t=1

[
σi(t)− 〈σi〉model

]
= ε(〈σi〉empirical − 〈σi〉model) (Q.E.D) (A.14)

Next, we also derive ε(〈σiσj〉empirical − 〈σiσj〉model) from the equation (??). Here,

∂

∂Jij
logL(h,J) =

∂

∂Jij
log

tmax∏
t=1

P (σσσ(t)|h,J)

=
∂

∂Jij

tmax∑
t=1

logP (σσσ(t)|h,J)

=
tmax∑
t=1

∂

∂Jij

[
− E(σσσ(t)|h,J)− log

2N∑
l=1

exp(−E(σσσl(t)|h,J))
]
(A.15)

In order to calculate the equation (A.15), we calculate ∂
∂Jij

[
−E
]
and ∂

∂Jij

[
log
∑2N

l=1 exp(−E)
]
,

respectively.

∂

∂Jij

[
− E(σσσ(t)|h,J)

]
=

∂

∂Jij

[ N∑
i=1

hiσi(t) +
1

2

N∑
i=1

N∑
j=1,j 6=i

Jijσi(t)σj(t)
]

= σi(t)σj(t) (A.16)
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∂

∂Jij
log

2N∑
l=1

exp(−E(σσσl(t)|h,J)) =
1∑2N

l=1 exp(−E(σσσl(t)|h,J))

2N∑
l=1

∂

∂Jij
exp(−E(σσσl(t)|h,J))

=
2N∑
l=1

σliσ
l
j

exp(−E(σσσl(t)|h,J))∑2N

l=1 exp(−E(σσσl(t)|h,J))

=
2N∑
l=1

σliσ
l
jP (σσσl|h,J)

= 〈σiσj〉model (A.17)

By substituting terms (A.16) and (A.17) into the equation (A.15),

Jnewij − Joldij =
ε

tmax

tmax∑
t=1

∂

∂Jij

[
− E − log

∑
σ′

exp(−E)
]

=
ε

tmax

tmax∑
t=1

[
σi(t)σj(t)− 〈σiσj〉model

]
= ε(〈σiσj〉empirical − 〈σiσj〉model) (Q.E.D) (A.18)

A.4.4 Energy barriers

Furthermore, the energy barrier for the transition from σ(α) to σ(β) is calculated by
Ēαβ − E(σ(α)).

The algorithm is to calculate Ēαβ shown as below.

Step 1. ascendingly enumerate local minimums.

Step 2. pick up the un-used smallest local minimum, and finalize Ēαα = E(σ(α)), Ēαβ =
E(σ(β)) for all neighboring local minimums of σ(α).

Step 3. Initialize Ēαβ′ for non-neighboring 2N −N − 1 local minimums σ(β′) with ∞.

Step 4. Using each finalized σ(β), update Eαβ′ for its all unfinalized neighbors with

Ēnew
αβ′ =

{
min(Ēold

αβ′ , Ēαβ), (Ēαβ ≥ E(σ(β′)))

E(σ(β′)), (Ēαβ < E(σ(β′)))
(A.19)

In this way, we finalize β′, which are neighbors of β.

Step 5. set β = β′, β′ = neighbors of finalized β′.
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Step 6. Repeat Step. 4 and 5 until all the pairs local minimums Ēαβ for a given σ(α) are
finalized.

Step 7. Repeat Step. 2-6 with un-used smallest local minimum until all the given paris
Ēαβ are finalized.

A.4.5 Basin Size

We defined local minima based on the algorithm in section A.4.4. We further can define
basin size in which each brain activity pattern belongs to as shown below.

Step 1. set unused state σl, and move to smallest neighboring states.

Step 2. repeat Step1. until we reach the local minimum E(σα) which there is no smaller
neighboring states. Then, we regard that the σl belongs to the local minimum
σα.

Step 3. repeat Step 1. and 2. until we define where all states belong to.

Step 4. calculate a basin size based on the number of brain states, which belongs to a
local minimum. We used the fraction of brain states given a local minimum to
the number of possible brain states as a basin size in this study.

A.5 Louvain Algorithm

For network clustering, we exploited a modularity-maximization method, the Louvain
algorithm. We describe mathematical definitions of modularity for signed graphs and
the louvain algorithm as implemented in the Brain Connectivity Toolbox (see Supple-
mentary Table.A.1).

A.5.1 Modularity-based partitioning approach

In our analysis, brain complex network are un-directed and fully connected. For n
nodes, a network is composed of n(n−1)

2
positive or negative connections. We also de-

note positive and negative connections as following.

Regarding a positive or negative connection between node i and node j,

w±ij ⊂ (0, 1] (A.20)
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Algorithm 1 Louvain algorithm
1: procedure Louvain(W )
2: n: the number of nodes
3: M : community assignments
4: Qold = −1, Qnew = 0: set initial modularity value
5: while Qnew −Qold > 1e−10 do . fine tuning of modularity
6: Qold ← Qnew

7: Q0 ← −∞
8: Calculate temporal modularity Qcur based on M
9: while Qcur −Q0 > 1e−10 do . main iteration

10: for nodei from <randomly sorted nodes> do
11: cx = ∆Q . cx is a community id
12: Mnodei ← cx

end
13: Q0 ← Qcur

14: Calculate modularity Qcurbased on revised M
end

15: Qnew ← Qcur
end

16: return M,Qnew

The positive or negative strength s± of node i means the total values of positive or
negative connection weights of the node i, respectively.

s±i =
∑
j

w±ij (A.21)

The positive or negative total weights v of a brain network is defined by the total values
of all positive or negative links, respectively.

v± =
∑
i

∑
j

w±ij (A.22)

Given the definitions, we first initialize assignments to community id. Modularity
is then iteratively calculated by assigning each remaining community to each node,
and a community id giving maximal modularity was reassigned to each node. Until
modularity is stable, we continue iterating this process.

A.5.2 Louvain algorithm for weighted undirected graphs

Multiple network clustering methods have been suggest to partition network graphs
into subdivisions for analyzing internal subgraphs. In this concurrent study, we em-
ployed a version of the Louvain algorithm for undirected and signed graphs [158]. Some
studies removed negative connections due to uncertainty of interpretations. However,
some information removals have been also pointed out. Hence, we consider negative
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weights in functional brain networks as well. It is assumed that positive connections
are the explicit core of module association of nodes, and negative connections are the
implicit support of module associations among nodes.

For a undirected and signed graph, modularity Q has been proposed as following.

Q± =
1

v±

∑
i

∑
j

(w±ij − e±ij)δMiMj
(A.23)

δMiMj
=

{
1, if Mi = Mj

0, otherwise
(A.24)

where e±ij =
s±i s
±
j

v±
, and Mi indicates which module the node i belongs to.

We followed assumptions of the asymmetrical importance of positive and negative
connections over functional brain networks. Finally, the modularity Q was used for the
algorithm.

Q = Q+ +
v−

v+ + v−
Q− (A.25)

=
1

v+

∑
i

∑
j

(w+
ij − e+ij)−

1

v+ + v−

∑
i

∑
j

(w−ij − e−ij) (A.26)

A.5.3 Community Detection

We performed network clustering with a community detection algorithm, the Louvain
algorithm [18, 144]. The Louvain algorithm is a clustering approach by maximizing the
modularity. We adopted a version of the algorithm considering signed and undirected
graphs [158], implemented in Brain Connectivity Toolbox (BCT) [157].

Because the Louvain algorithm is none-deterministic, in order to assess the ro-
bustness of the partition results, we applied this algorithm to the averaged functional
network in the ELA-defined intermediate states from each session. 10000 independent
runs were performed with randomly ordered initial clustering. Our results resulted in
100% consistent partitions for all sessions.

A.5.4 Module partitioning and the intermediate states

Previous human imaging study found association between brain states from ELA and
underling functional modular structures. We also sought to investigate the functional
mouse brain in our study. We then applied the community detection algorithm, Louvain
algorithm for extracting modular networks to the functional connectivity matrix for
each session. The result was that modular partitioning was identical to the binarized
states in the intermediate states (Supplementary Figure. A.3).
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Figure A.3: A. We defined 3rd and 6th states as the intermediate states. Partition
of the intermediate states is complementary each other. Network structure from brain
signals may underly such cluster partition. Therefore, we compared between brain
activity patterns and module partition in each session. We observed brain activity
patterns matched to module partition in any sessions. B-E. Functional connectivity
matrix aligned with the module partitioning result from first to fourth sessions in SSRI
group, respectively. F-G. Functional connectivity matrix aligned with the module
partitioning result from first to fourth sessions in control group, respectively.

A.6 Motion artifacts and BOLD signals

We sought to study whether there are motion artifacts in the sessions of resting-state,
blue stimulation, and yellow light stimulation (Supplementary Figure.A.4). Motion
artifacts of x, y, and z axes were detected by thersholding voxel size of the imaging
sessions (200 µm). We found no artifacts in the resting state session and multiple ar-
tifacts in the blue and yellow sessions (Supplementary Table. A.2). As we found light
leak from the skull during illumination, the finding suggest that light illumination in-
duced motion artifacts. Furthermore, association between motion artifacts and BOLD
signals in the DRN were studied in the sessions of resting-state, blue stimulation, and
yellow light stimulation (Supplementary Table. A.2). We found significant correla-
tion between motion artifacts and the BOLD signals. The finding suggest potential
contamination of the motion artifacts in the BOLD signals.
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Figure A.4: A. time-series of BOLD signals from DRN in blue light session. B-
D. X,Y,Z axis movements in the blue light stimulation, respectively. E. time-series of
BOLD signals from DRN in the yellow light session. F-H. X,Y,Z axis movements in the
yellow light stimulation, respectively. Blue and yellow color backgrounds indicate blue
light and yellow light stimulation, respectively. * marks indicate selected stimulations
for further analysis (Figure. 4.2).
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Measure REST session Blue light session Yellow light session
X axis artifact 0 6 1
Y axis artifact 0 13 4
Z axis artifact 0 50 39

diff X a.v.=0.0357 (SD=5.7806) a.v.= 0.0597 (µm) (SD=49) a.v.=0.2331 (SD=33.3222)
diff Y a.v.=0.1593 (SD=7.6838) a.v.= 0.8045 (SD=79) a.v.= 0.7929 (SD=45.3046)
diff Z a.v.=0.2946 (SD=21.9261) a.v.= 1.4171 (SD=79) a.v.=1.0242 (SD=178.2535)

Corr with X axis r = −0.49 (P < 1e−12) r = −0.41 (P < 1e−8) r = −0.33 (P < 1e−5)
Corr with Y axis r = −0.49 (P < 1e−12) r = −0.42 (P < 1e−8) r = −0.61 (P < 1e−19)
Corr with Z axis r = −0.77 (P < 1e−35) r = −0.58 (P < 1e−17) r = −0.69 (P < 1e−26)

Table A.2: a.v.= avarage, SD = standard deviation
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