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Summary

Genomes of animals and plants contain a large number of transposable
elements (TEs). TEs often transpose into genic regions, affecting expression of
surrounding genes. Intragenic TEs mostly reside in introns, and in much the same way as
intergenic TEs, they are targeted by repressive epigenetic marks for transcriptional
silencing. Silenced intragenic TEs generally co-repress expression of associated genes,
while in some cases they significantly enhance splicing and transcript elongation.
Genomes have evolved molecular mechanisms that allow the presence of silenced TEs
within transcriptionally permissive chromatin environments. Epigenetic modulation of
intragenic TEs often contributes to gene regulation, phenotypic expression, and genome

evolution.
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Introduction

Transposable elements (TEs) are parasitic genetic elements in the genomes of
most organisms that can amplify their own copy numbers in the genome, contributing to
genome expansion and evolution (/, 2). For instance, TEs comprises nearly 50% of the
human genome (3, 4) and over 80% of the maize genome (5). Since TEs are mutagenic,
host genomes transcriptionally inactivate TEs using epigenetic silencing mechanisms,
such as DNA cytosine methylation, histone H3K9 methylation, and RNAi (6, 7).
Nevertheless, substantial numbers of TEs accumulate within transcriptional gene units.
In the human genome, 60% of TEs are localized within introns that comprise only 24%
of the genome (&). Interestingly, these “intragenic” TEs are associated with repressive
epigenetic marks and form heterochromatin, in much the same way as intergenic TEs,
even within actively transcribed regions. Organisms have evolved specific molecular
mechanisms that allow the presence of heterochromatic TE sequences within a
transcription-permissive chromatin environment. Recent findings of epigenetic
regulation of intragenic TEs and their functional implications, especially in animals and

plants, will be reviewed.

Genome evolution and intragenic TEs.

Insertion of TEs into genic regions causes transcriptional attenuation of genes,
due to disruption of the coding sequence and creation of novel regulatory elements, such
as polyadenylation signals, cryptic promoters, and donor/acceptor sequences for
alternative splicing (3, 9) (Figure 1). Still, many TEs are found within transcriptional gene
units in eukaryote genomes (/0). In mammals, the majority of intragenic TEs, especially
Long Interspersed Nuclear Element 1 (LINE 1; L1) and Short Interspersed Nuclear
Element (SINE) families, are enriched in introns (3, 8). Their sequences are often
integrated as a part of mature transcripts, a state termed “exonization” (//), which
contributes to splicing variant diversity of transcripts (/2, 13) (Figure 1).

As in animals, plant genomes also harbor intragenic TEs that contribute to gene
organization and genome evolution. For example, about 10% of genes in the maize

genome contain >1 kb TEs in their introns (/4). The genome of Norway spruce (Picea



abies, a gymnosperm) is >100-fold larger (~20 Gb) than that of the model plant
Arabidopsis thaliana (130 Mb), although the number of genes (~28,000) and their exon
sizes are comparable. Instead, genes in Norway spruce have longer introns (/5). This is a
result of accumulation of LTR-type retrotransposons in intronic regions over millions of
years, without elimination of those sequences. A recent analysis of the A. thaliana genome
showed that 0.7% of annotated genes contain about 3% of all TEs, the majority of them
(~80%) residing within introns (/6). Arabidopsis lyrata, a close relative of A. thaliana,
has much longer introns than A. thaliana due to TE accumulation, suggesting that intron
expansion by TE insertion can occur in species-specific manner. These observations
indicate that intragenic TEs, especially intronic TEs, are tolerated within transcriptional
units in many species, even though they are potentially deleterious for both coding

sequences and regulatory elements.

Epigenetic regulation of intragenic TEs

Intragenic TEs are subjected to both genetic and epigenetic regulation. In A4.
thaliana, most intragenic TEs are much shorter than intergenic TEs, suggesting that full-
length, intact TEs are selected against and are degraded during evolution (/6-18). TE
sequences as well as their cryptic regulatory sequences, such as promoters and polyA
signals, can be eliminated by mechanisms of unequal homologous recombination and
illegitimate recombination (/9). In addition to the genetic changes, epigenetic
mechanisms play important roles in inactivation of intragenic TEs. Intragenic TEs are
targeted by repressive epigenetic marks, such as DNA methylation and histone H3K9
methylation, even within genes actively transcribed by RNA polymerase II (20). Recent
studies in mammals showed that repressive histone H3K9 methylation is deposited on L1
family in intronic region for transcriptional silencing, which is likely mediated by the
H3K9 methyltransferase SETDB1 (27). H3K9 methylation is recruited to L1s by the
human silencing hub (HUSH) complex, comprising TASOR, MPPS8, and periphilin
proteins (27-23). In addition, Microrchidia 2 (MORC2; MORC2A in mice), a member of
the conserved ATPase domain-containing protein family, is required for deposition of
H3K9 methylation to intergenic/intronic TEs, as well as endogenous retroviruses (21, 24)
(Figure 2A). Lls targeted by HUSH/MORC?2 tend to be full-length, evolutionarily



younger, and enriched in the transcriptionally permissive chromatin environment
associated with active epigenetic marks, such as H3K4 methylation and H3K27
acetylation (27, 22). Transcriptional induction of Ll-containing genes results in
accumulation of HUSH/MORC2 on intronic L1 sequences, suggesting that RNA
polymerase II (Polll) transcription is required for recruitment of the silencing complex to
the intronic TEs. The Polll-dependent recruitment of H3K9 methylation is similar to the
process for heterochromatin formation at pericentromeric repeats in fission yeast (25).
In plants, intronic TEs are also associated with repressive epigenetic marks,
such as CG and non-CG methylation, H3K9 methylation, and small interfering RNAs
(siRNAs) (26), that are required for formation of heterochromatin at TE sequences (/6).
In A. thaliana, the heterochromatic state of intronic TEs can be maintained by
maintenance CG methylase MET]1, histone H3K9 methyltransferases KYP/SUVH4,
SUVHS, SUVHG6, and the chromatin remodeler DDM1 (/6, 27). Although detailed
molecular events for recognition and initiation of epigenetic silencing of intragenic TEs
still remain elusive, TEs newly inserted into intragenic regions can be recognized by host
defense mechanisms involving RNA-directed DNA methylation (RADM) (28) (Figure
2B). A recent study using a heat-inducible LTR-type retrotransposon ONSEN/COPIA78
showed that after transposition into an intron of an active gene, TEs seem to be maintained
in active chromatin state for multiple generations (29). Interestingly, genetic crosses of
Arabidopsis strains efficiently induce DNA methylation and silencing of intronic ONSEN.
This silencing process depends on siRNA and RdDM, since loss of RNA polymerase 1V,
which is required for production of 24-nt siRNA and de novo DNA methylation, abolishes
the silencing (Figure 2B). It is likely that siRNAs produced from homologous ONSEN
copies in other loci can guide the RADM machinery to the newly introgressed intronic
ONSEN in the genome. The TE silencing occurs immediately and efficiently in F1 plants,
but how this silencing in trans takes place during plant development remains unclear.

Transgenes inserted in intronic regions also show behavior similar to that of TEs (30).

Impact of intragenic TEs on gene expression

In general, repressive epigenetic modifications spread into neighboring

chromatin and down-regulate expression of surrounding genes. Indeed, in mammals,

heterochromatin formation on intronic L1s by binding of HUSH and MORC2 causes co-



repression of both the TEs and associated genes (21, 22) (Figure 2A). It is also reported
that genic H3K9 methylation inhibits Polll elongation, causes accumulation of Polll over
H3K9 methylated regions, and promotes alternative splicing (3/, 32). In plants, TEs
associated repressive epigenetic marks also have a negative effect on gene expression;
therefore, TEs have been evolutionarily purged from genic regions (33, 34). However,
recent studies in plants indicate that outcomes of heterochromatin formation at intronic
TEs may differ from those in mammals, in some respects. For example, expression levels
of TE-containing genes in some plant species are comparable to those of genes without
TE insertions (/4, 15). In addition, loss of intronic heterochromatin in A. thaliana leads
to premature polyadenylation within or before intronic TE sequences, rather than de-
repression of associated genes (/6, 27). These observations suggest that in plants, intronic
heterochromatin tends to enhance proper splicing and/or to mask cryptic polyA signals
within TE sequences.

Plants seem to have evolved specific epigenetic mechanisms to “skip”
obstructive heterochromatic domain within introns. Genetic and biochemical studies in
Arabidopsis identified factors required for this mechanism. ENHANCED DOWNY
MILDEW 2 (EDM2) was identified as a factor required for proper transcription of a
disease-resistance gene that contains many heterochromatic TEs in introns (27, 35).
EDM2 has PHD domains that recognize H3K9 methylation, and a putative
methyltransferase domain in its C-terminal part (36). Another factor, INCREASE IN
BONSAI METHYLATION 2 (IBM2) /ANTI-SILENCING 1 (ASI1) /SHOOT
GROWTH 1 (SG1) contains an RNA-Recognition Motif (RRM) and a Bromo-Adjacent
Homology (BAH) domain that likely binds to chromatin (36-39) (Figure 2B). In addition,
several interacting factors of EDM2 have been identified (40). Mutants of these factors
show similar molecular phenotypes: transcripts from genes containing heterochromatic
domains in their introns are prematurely terminated and polyadenylated within the intron.
This defect is similar to that in mutants defective in heterochromatin formation, such as
ddml and suvh456 (The triple mutant for KYP/SUVH4, SUVHS, SUVH6) (16, 27).
However, intronic heterochromatin is still maintained in ibm2 and edm?2, indicating that
these factors are acting downstream of DNA methylation and H3K9 methylation. In
addition, PollI elongation seems not to be affected by loss of these factors (37), suggesting
their roles in post-transcriptional events, such as splicing and suppression of polyA

signals. How these factors are preferentially recruited to intronic TEs, but not to intergenic



TEs remains unclear.

Gene regulatory role of intragenic TEs

Intragenic TE sequences associated with epigenetic modifications often acquire
regulatory roles in gene expression, and eventually affect individual phenotypes. In
humans, DNA hypermethylation of A/u elements in introns of the proopiomelanocortin
(POMC) gene causes downregulation of POMC, that is significantly associated with
childhood obesity (47). In another case, DNA methylation of L1 in the intron of the /-
globin gene (HBB) spreads into promoter and enhancer regions, that induce pS-
Thalassemia (42). In plants, several studies revealed the impact of epigenetic regulation
of intronic TEs in gene function. In oil palm, methylation status of the LINE family
retrotransposon Karma in the intron of the DEFICIENS gene affects splicing of the gene,
where hypomethylation of Karma causes mis-splicing of the gene and results in the
mantled phenotype of oil palm (43). Some plants require a cold period for transition from
vegetative phase to reproductive phase, so called vernalization (44). In winter wheat,
vernalization treatment induces DNA methylation at TEs in the intronic region of VRN-
A1, which leads to transcriptional activation and promotion of flowering (45). In addition,
population genome study of A. thaliana showed that the promoter and intron of the floral
repressor gene Flowering locus C (FLC) are identified as a “hotspot” of TE insertion
among natural accessions (46). Especially enriched are LTR retrotransposons, including
ONSEN/COPIA78, and accessions having the TE insertion tend to show early flowering
phenotypes, suggesting that insertion of the TE attenuates the function of FLC. How the
epigenetic state of intronic TEs affects FLC expression in response to heat stress has yet

to be investigated.

Conclusion

Epigenetic silencing of intragenic TEs is a two-edged sword. Aggressive TEs that
transpose to transcription-permissive genic regions are a serious threat to gene function
and genome integrity. On the other hand, silencing of intragenic TEs attenuates Polll
transcription of the associated genes. Observed accumulation of heterochromatic TEs

especially in intronic regions may be a result of a trade-off between TE silencing and



protection of gene function. In the case of plants, the heterochromatic state of intronic
TEs enhances splicing/elongation of transcripts by specific molecular mechanisms. This
would lead to further accumulation of TEs and expansion of intronic sequences in the
genome, which would increase costs of maintenance and propagation. Although so far
there are few reports that imply that epigenetic modification of intragenic TEs controls
gene function, further studies would allow us to understand the impact of epigenetic

regulation of intragenic TEs and their contributions to adaptation and evolution.
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Legends to Figures

Figure 1. Transcriptional defects caused by insertion of transposable elements (TEs) into
intronic regions of genes. (A) Cryptic polyA signals encoded by intronic TE cause
premature polyadenylation. (B) Internal promoters encoded by TEs can create cryptic
transcription start sites. (C) Incorporation of TE sequence as part of mature mRNAs,
known as exonization, which changes coding sequences of genes. (D) Epigenetic
silencing of intronic TE causes co-repression of associated genes. Black lollipops
represent repressive epigenetic marks such as DNA methylation. Light blue boxes
represent exon sequences. Red bars denote mRNAs. Arrows indicate transcription start

sites.

Figure 2. Epigenetic regulation of intronic TEs in mammals and plants. (A) Epigenetic
silencing of intronic L1 elements in mammals. It is suggested that transcription of
associated genes can recruit the HUSH/MORC complex to L1 for silencing (21).
HUSH/MORC further recruits the H3K9 methylase SETDB1. Heterochromatic state of
intronic TEs down-regulates associated genes. (B) Epigenetic silencing of intronic TEs
in plants. siRNAs produced from homologous TEs at other loci directs RNA-directed
DNA methylation (RdADM) to newly inserted TEs in intronic regions. This process is
enhanced by genetic cross. Heterochromatic state of intronic TEs is maintained by
DNA/histone methyltransferases such as MET1, SUVHs and chromatin remodeler
DDM1, which enhances splicing of heterochromatic intron. IBM2 and EDM2 may bind
to intronic heterochromatin via BAH and PHD domains and enhance splicing/elongation.
Black lollipops represent repressive epigenetic marks such as DNA methylation. Light
blue boxes represent exon sequences. Red bars denote mRNAs and siRNAs. Arrows

indicate transcription start sites.
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