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Abstract

State engineering in one-dimensional quantum gases

The development of quantum technologies requires the understanding, controlling and
engineering of quantum states of interacting systems, a challenge currently driven by
experimental progress. In this work I study, both analytically and numerically, two
specific models of one-dimensional ultracold atomic systems to determine their states
and accessible dynamical behaviour. The first part of the work deals with the creation
of a bosonic atom dispenser, a tool which would allow to deterministically separate
any number of atoms from an interacting ultracold gas or create a many-particle noon
state. By engineering an effectively three-level system, I show that a robust adiabatic
process exists that connects the initial and target Fock states. Moreover, I demonstrate
its potential to be experimentally implemented using radio-frequency traps.

In the second part, I derive an analytical single-particle solution for the arbitrary
finite Kronig–Penney model. In this model the atoms are trapped in an infinite square
well which contains an arbitrary number of arbitrarily positioned point-like barriers of
arbitrary heights. I also demonstrate that using certain parameters in the model as
extra (virtual) dimensions one can observe the emergence of higher-dimensional physics
in this one-dimensional system. In particular, I show the appearance of edge states and
the emergence of a Hofstadter butterfly-like momentum spectrum in various configu-
rations of the model. Finally, using the single-particle solutions, I study many-body
correlations in a gas of either infinitely repulsive bosons or non-interacting fermions.
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Introduction

Zero Kelvin was first defined classically as a temperature when the molecules of an ideal
gas stop moving, but understanding of what this limit actually represents came later,
with the advent of quantum mechanics in the beginning of 20th century. The limit
turned out to be unreachable due to the Heisenberg uncertainty principle. However,
the region of the temperature scale near zero Kelvin promised exciting new physics of
ultra-cold matter.

In the early 1920s Bose introduced a new way of deriving Planck’s law for the en-
ergy spectrum of black-body radiation [2], and in 1925 Einstein used his results, which
were valid for photons, to study the behaviour of a dilute gas of indistinguishable non-
interacting particles near absolute zero [3]. He predicted that after being cooled to
a threshold temperature, a gas of non-interacting bosonic particles exhibits quantum
mechanical behaviour on a macroscopic scale, defining a new state of matter - the
Bose-Einstein Condensate (BEC). However, long before reaching the Bose–Einstein
condensation temperature, normal matter would undergo a more conventional transi-
tion to a liquid or a solid state. Only in extrememly diluted gases it is posible to avoid
such an undesirable transition. Experimental challenges such as cooling of a gas to
sufficiently low temperatures and its confinement delayed experimental realisation of
Bose-Einstein condensation in gases for 70 years. Advanced cooling techniques, such
as Doppler [4], evaporative [5], and sideband cooling [6], and trapping methods, such
as magneto-optical [7] and purely optical [8, 9] trapping, had to be developed first, and
in 1995 Ketterle, Cornell and Wieman [10, 11] succeeded in producing a BEC in dilute
atomic gases. They were awarded with the Nobel Prize in Physics in 2001 for this
achievement. New experimental techniques became available later [12, 13], allowing
for great flexibility and detailed control in BEC experiments. Ultracold gases became
a widespread model to study quantum mechanical effects in clean and controllable
situations.

The connection of superfluidity, a phenomenon where a fluid flows without viscosity,
and Bose–Einstein condensation of delocalised particle pairs was already suspected in
1938 by London [14] and further developed by Landau and Tisza [15, 16]. The discovery
of superfluidity in liquid Helium by Kapitza, Allen and Misener in 1938 [17, 18] can
be considered as first evidence for the BEC. Landau’s criteria of superfluidity was first
confirmed in a BEC by Raman et al. in 1999 [19].

Theoretical description of many-body quantum systems, cooled down to ultra-cold
regimes, is a big challenge because of the inherent difficulty of solving the many-body
Schrödinger equation. In general, a mean-field approach has to be applied in order to
simplify the problem, but some models, especially in lower dimensions, can still be stud-
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2 Introduction

ied exactly. Despite their apparent simplicity, low-dimensional systems offer complex
physics usually attributed to higher dimensions, such as non-trivial topological [20, 21]
and thermodynamical [22–24] properties.

In this work I treat one-dimensional ultracold atomic models both analytically and
numerically to investigate interesting states of one-dimensional system with multiple
traps and develop theoretical tools of engineering of such states. The structure of this
thesis is as follows.

In chapter 1 I introduce the field of one-dimensional quantum gases, and talk about
integrability and integrable systems in section 1.4. In chapter 2, section 2.2 I review
one of the quantum state engineering techniques, the spatial adiabatic passage, and
in section 2.4 I present a new protocol which allows to separate an arbitrary number
of particles from a gas of interacting bosons (the boson dispenser). I also propose a
possible experimental realisation of this protocol using radio frequency traps and show
its robustness (section 2.5). I investigate the entropy dynamics during the particle
separation protocol in section 2.6.

In chapter 3 I introduce the Bethe ansatz technique and examine the example of
the Lieb–Liniger model in a box in detail in section 3.2. In sections 3.3 and 3.4, I show
the violation of the Yang–Baxter equations in the case of two particles and multiple
barriers. I then introduce and solve the arbitrary finite Kronig–Penney model for a
single particle in section 3.5.

I discuss topological phenomena in one- and two-dimensional systems in sections
4.1 and 4.2, and apply the obtained solution to investigate the existence of the edge
states in the single-particle and Tonks–Girardeau limit of many-body AFKP model
and the appearance of the Hofstadter butterfly-like momentum spectrum in section
4.3. Finally, in chapter 5 I review numerical methods which were used in my work and
conclude in chapter 6.



Chapter 1

One-dimensional Bose gases

1.1 Introduction
Many-body systems in dimensions lower than three often exhibit drastically differ-
ent behaviour in comparison to higher dimensions. In one dimension both macro-
scopic processes, such as phase transitions [25, 26] and thermalisation [22, 27], and
microscopic properties, such as interaction between particles, are vastly different from
the the 3D and 2D counterparts. Unlike most higher dimensional cases, some one-
dimensional models can be solved exactly. Such integrable systems have enjoyed both
great attention due to their immense usefullness in understanding basic low-dimensional
physics [28] and, in some sense, dismissal due to their simplicity. System which are
simple enough to be integrable are perceived as too boring for anything exciting to
happen within them since they cannot even thermalize [29, 30], and there is seem-
ingly no room for anything topologically non-trivial. However, a closer look reveals
that integrable systems can still exhibit non-trivial thermodynamical [22–24, 27, 31]
and topological behaviour [20, 21, 32, 33]. For example, it was shown that integrable
1D systems exhibit a special type of thermalisation behaviour called prethermalisa-
tion which can be described by a generalised Gibbs ensemble, but they cannot achieve
normal equilibrium [24].

The models of many-body systems in one dimension may seem to be of purely
theoretical interest, but they became very attractive from an experimental point of
view after a theoretical study conducted by M. Olshanii in 1998, which showed that
one-dimensional interaction strengths can be manipulated by changing the external
potential shape. In this study Olshanii derived a mathematical expression for the
effective scattering length of transversally confined atoms which are free to move along
one axis [34], given by

a1D = −a
2
⊥

2a

(
1− C a

a⊥

)
. (1.1)

Here a is the original 3D s-wave scattering length, a⊥ =
√

2~2

mω⊥
is the ground state size

of the harmonic oscillator potential in the transverse direction, ω⊥ is the frequency of
the harmonic transverse trapping potential, m is the particle mass and C = 1.4603...
is a constant.

One can immediately see the dependence of the 1D scattering length on a⊥, which
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4 One-dimensional Bose gases

in turn inversely depends on
√
ω⊥. The inverse dependence of a1D on a is even more

surprising, leading to weaker 1D interactions for stronger 3D interactions. The result
in 1.1 is very important because it allows flexible tuning of the interaction strength
g1D = − 2~2

ma1D
in 1D systems by tuning the transverse confinement ω⊥.

The interaction strength g1D increases with decreasing effective 1D scattering length,
which in turn decreases when the transverse confinement frequency is increased, so it
is possible to approach the Tonks–Girardeau limit g →∞ by squeezing the transverse
confinement. Direct observations of a Bose gas in the TG limit was done by Paredes
et al. in 2004 [35] and Kinoshita et al. in 2005 [36]. Experimental studies of one
dimensional systems have been very active for about fifteen years now, realising both
non-trivial external potential shapes [37–39] and various interaction regimes [40–45].

There are several models which can describe ultra-cold Bose gases in one dimension.
In this section I will review some of them.

1.2 One-dimensional gases in a continuum space

Let us consider a Bose gas in a potential Vext(~r) with very strong confinement in the
Y and Z directions. This confinement leads to an energy spectrum, where excitation
energies in Y and Z directions are larger than the chemical potential. Thus we can
approximate the YZ ground state by a stationary solution and focus on the wave-
function dynamics in the X direction ψ(x1, ..., xN).

The most general many-body one-dimensional Hamiltonian with identical particles
interacting through Vint(xi − xj) is

Ĥ =
N∑
i=1

[
− ~2

2m

∂2

∂x2
i

+ Vext(x̂i)

]
+

N∑
i<j=1

Vint(x̂i − x̂j). (1.2)

This Hamiltonian can in general not be solved exactly, so various approximations have
to be used.

An approximation assuming the absence of the external potential Vext = 0 and the
presence of the contact interaction Vint(x) = gδ(x) (the Lieb–Liniger model) was
introduced and solved by Lieb and Liniger in 1963 [46]. If g = 0, it becomes a system
of non-interacting bosons, while for g →∞, it becomes a hard-core or Tonks–Girardeau
gas. This model will be discussed in great detail in chapter 3 as a case study of the
Bethe ansatz method.

TheCalogero model [47] assumes the external potential to be harmonic, Vext(x) =
1
2
mω2x2, or absent, Vext = 0, and the interaction potential to be of the form of
Vint(xi, xj) = g

(xi−xj)2 . The Hamiltonian of the Calogero model is

Ĥ =
N∑
i=1

(
− ~2

2m

∂2

∂xi2
+ Vext(xi)

)
+

N∑
i<j=1

g

(xi − xj)2
. (1.3)

The interaction term,
∑N

i<j=1
g

(xi−xj)2 , has a singularity at xi = xj. At g = 0 it
represents a gas with no interaction between the particles, unless xi = xj. This implies
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that the interaction potential in this case is δ(xi−xj) with infinite interaction strength
(Tonks–Girardeau limit).

Besides inverse squared and point-like interactions there are other types of interac-
tion potentials which have relevant physical applications. For example, an interaction
term of the form Vint(x) = 1

|x|3 approximates a system of polarized dipoles in one dimen-
sion, such as dipolar bosonic molecules [48]. The integral of the inverse cubic potential
converges in 1D, thus resulting in essentially short-range physics.

Another example is the unscreened Coulomb potential Vint(x) = 1
|x| , which describes

systems with charged particles, such as in ion traps [49].
Various shapes of the external potential, such as shallow periodic [50] or disor-

dered [51, 52] potentials, are also important models in solid-state physics. One special
case is the Tonks–Girardeau limit of interactions, which can be solved analytically in
many trap geometries by using the Bose–Fermi mapping [53].

1.3 One-dimensional gases in lattice models
In addition to continuum models, there are models which describe bosons in a discrete
periodic limit.

Let us consider a deep periodic external potential, for example Vext(x) = V0 cos(2πx
a

).
For low energies this configuration can be regarded as a discrete lattice with a lattice
parameter a and amplitude V0.

Creation and annihilation of a particle in such an environment can be simplified to
creation and annihilation of a particle at the lattice sites. The corresponding creation
and annihilation operators are denoted as b̂†j and b̂j.

If there are nj particles at the site j and |nj〉 is the corresponding state, then
b̂j|nj〉 =

√
nj|nj − 1〉 and b̂†j|nj〉 =

√
nj + 1|nj + 1〉.

The eigenstate wave function of a particle in one isolated node is called a Wannier
orbital, while the eigenstates of one particle delocalised over the whole lattice (all nodes
are included in the calculations) are called Bloch orbitals for this external potential.
In other words, Bloch orbitals are the exact delocalised representation of the particles
in a lattice, and Wannier orbitals are the approximated localised representation. The
Wannier approximation becomes more accurate with increasing lattice depth, and in
this so-called tight-binding regime we can write the creation and annihilation operators
in the basis of Wannier orbitals w0(x) which belong to the lowest Bloch band (ground
state) for Vext = V0 cos(2πx

a
). The Hamiltonian of the system can then be written as [47]

Ĥ =
L∑

j,k=1

[
−tjkb̂†j b̂k +

L∑
l,m=1

V int
jl,kmb̂

†
j b̂
†
l b̂kb̂m

]
. (1.4)

Here
tjk = −

∫
w∗0(x− ja)Ĥ0(x)w0(x− ka)dx (1.5)

is the kinetic energy term which corresponds to the particle tunnelling, and

V int
jl,km =

∫
w∗0(x− ja)w∗0(x′ − la)Vint(x− x′)w0(x′ − ka)w0(x−ma) (1.6)
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is the potential energy term which corresponds to the scattering of two interacting
particles, and Ĥ0 = − ~2

2m
∂2
x + Vext(x).

This Hamiltonian can also not be solved exactly unless an approximation is applied.
There are many theoretical models for different regimes, and in the following I will
discuss some of them.

The Bose–Hubbard model approximates the Hamiltonian (1.4) by assuming that
the interaction range is small compared to the lattice parameter, so we can neglect
nearest-neighbour interaction terms [54] while including the on-site interaction term
with strength U

ĤBH =
L∑
i=1

[
−t(b̂†i b̂i+1 + b̂†i+1b̂i) +

U

2
b̂†i b̂
†
i b̂ib̂i

]
(1.7)

The Bose–Hubbard model is not exactly solvable for finite values of U
t
, but in the limit

U
t
→∞ it becomes a lattice analogue of the Tonks–Girardeau gas.
One of the most remarkable predictions of the Bose–Hubbard model is the exis-

tence of a phase transition from a superfluid (where particles can move freely across
the lattice) to an insulating state (where particles are essentially pinned to one lattice
site), known as the Mott insulator phase [55, 56]. With the number of particles kept
constant, the ratio U/t between the on-site interaction and the nearest-neighbour tun-
neling strength controls the transition, with the Mott insulator phase taking over at
U/t & 1. This phase transition was observed experimentally in [57–59].

The Extended Bose-Hubbard model also describes a deep lattice, with the
particles localised around one node. In contrast to the Bose–Hubbard model, it includes
diagonal and nearest-neighbour terms [47], and the Hamiltonian becomes

ĤEBH =
L∑
i=1

[
−t(b̂†i b̂i+1 + b̂†i+1b̂i) +

U

2
b̂†i b̂
†
i b̂ib̂i

]
+

L∑
i=1

V n̂in̂i+1, (1.8)

where n̂i = b̂†i b̂i is the site occupation operator and V is the nearest-neighbour interac-
tion strength. This model approximates particles with long-range interaction trapped
in a deep lattice, such as dipoles or Rydberg atoms [60]. The EBH model predicts
the existence of yet another phase where superfluidity coexists with the long-range
crystalline order more characterstic to solids [61–63]. This novel phase is called the
supersolid phase, and recently its existence was supported experimentally [64, 65].

The t-V model, also called the quantum lattice gas model [66], can be used if the
interactions are long-range (e.g. dipolar ultra-cold atoms) and the on-site interaction
strength U is very large (so one can assume it to be infinitely large). In this case a
state with two particles in one site will be energetically unfavourable, and therefore the
on-site interaction term can be neglected. However, the nearest-neighbour interaction
term, V n̂in̂i+1, cannot be neglected and the Hamiltonian becomes

Ĥt−V =
L∑
i=1

[
−t(b̂†i b̂i+1 + b̂†i+1b̂i) + V n̂in̂i+1

]
. (1.9)

This model is equivalent to an anisotropic spin-1
2
model [66] and can be solved using

the Bethe ansatz.
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1.4 Integrable systems
Some of the models of quantum systems can be solved exactly, but a priori there is no
easy way to determine if a system is integrable. The notion of complete integrability is
different for classical and quantum physics. There is a clear definition of complete in-
tegrability for classical systems, while for quantum systems there is no useful necessary
and sufficient condition of integrability [28, 67].

In what follows I will briefly discuss the notion of complete integrability in classical
physics and compare it to the quantum physics case, while discussing the latter in more
detail.

Let us consider a classical system described by the HamiltonianH and the constants
of motion ~L = (L1, ..., LK). The necessary and sufficient condition of integrability of
such a system is {

{Li, H} = 0

{Li, Lj} = 0
i, j = 1...K, (1.10)

where {A,B} denotes the Poisson brackets [28].
The analogous definition of integrability for quantum systems, derived from the

classical one by substituting the Poisson brackets with commutators, although techni-
cally valid, does not hint on how to actually obtain the solution [28, 68], so it makes
more sense to talk about more constructive conditions of quantum integrability.

To simplify the description, let us restrict ourselves to one-dimensional quantum
systems of N identical particles, which interact with the repulsive potential V (r). We
assume this interaction potential to be short-ranged (the interaction between the parti-
cles vanishes sufficiently quickly with the distance between the particles) and symmet-
rical. An examples of such a potential is the point interaction potential δ(r). Also, we
assume the total number of the particles N , ordered such that x1 < x2 < ... < xN and
the energy E and total asymptotic momentum P to be conserved. The wave function
for all other orderings of the particles are given by the quantum statistics (Bose or
Fermi). The Hamiltonian of the system is

Ĥ = − ~2

2m

N∑
j=1

∂2

∂x2
j

+
N∑

1=j<k

V (xk − xj). (1.11)

There are N − 1 kinds of scattering processes possible in this system: two-body
scattering, three-body scattering and so on. For short-range interaction potentials in
1D the conservation of total asymptotic momentum implies that two-body scattering
can only swap the momenta of the scattering particles and add a phase to the wave
function. If N = 2, where no three-body scattering is possible, the asymptotic wave
function is thus

Ψ(x1, x2)→ ei(k1x1+k1x2) − e−iθ(k1−k2)+i(k2x1+k1x2). (1.12)

For N > 2 the asymptotic wave function has to incorporate all other higher order
scattering events and therefore takes the form

Ψ(x)→
∑
$

A($)ei(k$1x1+...+k$N xN ) + S[P,E] (1.13)
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Here A($) are the scattering amplitudes, $ is a permutation of the quasi-momenta kj
and S[P,E] is the higher order scattering term with total momentum P and energy
E fixed. The scattering amplitudes corresponding to two permutations, which differ
from each other by two exchanged indices, are related by the two-body phase shift,
A$
A$′

= eiθ(k−k
′).

The sum constitutes the Bethe ansatz wave function, and the higher order scat-
tering term S[P,E] can be treated as a diffraction term. Models where the diffraction
term is absent are called nondiffractive and can be solved by the asymptotic Bethe
ansatz. In the case of contact interactions the asymptotic region is everywhere except
for the point where the particles coincide, and therefore such a solution becomes ex-
act. This is the original version of the Bethe ansatz, and I will discuss it in Chapter
3. This fact implies that the models, where all scattering events can be viewed as a
sequence of two-body scattering, can be solved exactly in the asymptotic region. This
does not imply, however, that only nondiffractive models can be solved this way, but
the property of nondiffraction is clear and easy to define and can be used as a test of
integrability for quantum systems. The advantage of this approach lies also in the fact
that it is constructive, providing a clue of how to solve the problem rather than just
stating the existence of an analytical solution.

The Lieb–Liniger model [46] describes a system of N free bosons with contact
interaction, and has the Hamiltonian

Ĥ = − ~2

2m

N∑
i=1

∂2

∂x2
i

+ g
N∑

i<j=1

δ(xi − xj), (1.14)

where δ(x) is the Dirac delta function, and g is the interaction strength. In the 2-
particles case the Hamiltonian can be explicitly written as

Ĥ = − ~2

2m

∂2

∂x2
1

− ~2

2m

∂2

∂x2
2

+ gδ(x1 − x2). (1.15)

If g < 0 (attractive interaction), then bound states will be created in free space
(molecules will be formed), and the solution will look more complicated. I will therefore
consider only repulsive interaction (g > 0).

One interesting limit of the Lieb–Liniger model is one-dimensional Bose gas in
Tonks–Girardeau gas with infinitely strong interactions, g → ∞. This model is
exactly solvable by mapping it to a system of spinless fermions [53], which reveals the
equivalence of the density function of strongly interacting bosons and non-interacting
spinless fermions [69]. Due to strong repulsion the wave function must vanish where
the coordinates of the particles coincide (xi = xj), which imitates the Pauli exclusion
principle. The total fermionic wavefuction can then be constructed from the single-
particle wave-functions as the Slater determinant. If we define the sign function as

usual and define the function S(x1, x2, ..., xN) =
N∏

i<j=1

sign(xi− xj), we can rewrite the

bosonic wave function from the fermionic one as [70]

ΨB(x1, x2, ..., xN) = S(x1, x2, ..., xN)ΨF (x1, x2, ..., xN). (1.16)
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Here ΨF (x1, x2, ..., xN) is a many-body wave function of an ideal gas of spinless fermions,
and ΨB obeys Bose statistics

ΨB(..., xi, ..., xj, ...) = ΨB(..., xj, ..., xi, ...). (1.17)

In the absence of an external potential (V (x) = 0) on a ring of circumference L with
periodic boundary conditions the ground state is [53]

Ψ0
B(x1, x2, ..., xN) ∝

∏
i<j

sin
π

L
|xi − xj|. (1.18)

The corresponding energy is E0 = ~2(πρ0)2

6πm
, where ρ0 = N

L
is a mean particle density.

The behaviour of the Tonks–Girardeau gas in various potentials, such as har-
monic [71] and double-well potentials [72] has been studied as well.

The Bose–Fermi mapping approach was generalised for excited states and for any
value of interaction strength of the Lieb–Liniger model [73], as well as for time evolution
studies. Using the exact solution, in 2005 Minguzzi and Gangardt investigated the
time evolution of the harmonically trapped TG-gas with arbitrary time dependence
of the trapping frequency. In the case of the confinement being switched off, they
observed fermionisation of the momentum distribution, while in the case of a change
of the trapping frequency the momentum distribution exhibited oscillations between
fermion-like and boson-like structure [74]. The dynamical properties of the TG-gas
have attracted a lot of attention since then [75–77].

In 2002 Das, Girardeau and Wright proved that the TG regime can be achieved
for finite temperatures, allowing for experimental realisation [78]. The groups of Bloch
and Weiss were the first to achieve the Tonks–Girardeau limit for rubidium atoms in
an 2D optical lattice [35] and in a 1D horizontal crossed dipole trap [36], respectively,
in 2004.

An inverse approach of mapping a system of strongly interacting quasi-1D fermions
to weakly interacting one-dimensional bosonic system was employed by Granger and
Blume in 2004 [79].





Chapter 2

Spatial adiabatic passage

2.1 Introduction and motivation
For many applications in the field of quantum engineering, such as matter wave interfer-
ometry, quantum metrology and quantum computing, it is crucial to be able to control
the spatial degrees of freedom of the atoms [80–86]. In case of particle transport, the
usual approach consists of trying to control the direct tunneling of particles between
adjacent traps by manipulating the potential barriers between them. The fidelity of
this approach depends strongly on the method and the timing of the potential barrier
manipulations, and usually results in a well-known Rabi-like oscillations between the
two coupled traps.

An alternative approach, spatial adiabatic passage (SAP), follows a specially
engineered eigenstate of the system to transfer a particle between two distant traps.
This ability to follow the eigenstate relies on the adiabatic theorem which states that
in the absense of level crossings the system will remain an eigenstate if it is driven
slowly enough as not to introduce any excitations [87, 88]. Unlike direct tunneling,
high-fidelity particle transfer using SAP processes is robust for a large range of system
parameters [89], and is thus a good quantum engineering tool for the aforementioned
applications. Various shortcuts which speed up adiabatic processes can be used to
rectify the major drawback of SAP, its time requirement [90–93].

Since its first appearance in the work by Eckert et al. [89], the SAP protocol has been
extensively studied [94–96] and extended to quantum dots [97], waveguides [98], mul-
tiple dimensions [99] and particles [1, 100, 101]. Many new application were explored,
such as hole transport [85], vibrational state filtering [102] and particle separation [103].

2.2 The spatial adiabatic passage
The essense of the single-particle spatial adiabatic passage can be more easily under-
stood if we consider a model with three harmonic traps in 1D (see Fig. 2.1) [89]

V (x) =
1

2
mω2 min

[
(x+ d12)2, x2, (x− d23)2

]
. (2.1)

In this external potential d12 and d23 are the distances between the centers of the left
and middle traps and the middle and right traps, m is the particle mass and ω is the

11
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|1i |2i |3i

d12 d23

 ! !

Figure 2.1: Schematic of a SAP setup using a triple harmonic trap system. The
ground states of the left, middle and the right traps are given by |1〉, |2〉, and |3〉,
respectively. The distances d12 and d23 between the traps can be changed independently
to achieve a high fidelity transfer of a particle from the left trap to the right one.

frequency of the harmonic traps, identical for all three traps to ensure tunnelling reso-
nance. From here on I use natural units with energies measured in Eu = ~ω, which is
proportional to the ground state energy of the harmonic oscillator, and lengths mea-
sured in Lu =

√
~/(mω), which corresponds to the ground state size of the harmonic

oscillator. We assume that the particle is initially in the ground state of the left trap.
Assuming adiabatic time evolution, we can describe this system using only the ground
states of the traps, |1〉, |2〉 and |3〉. Such a system is effectively three-level, and can be
desribed by the Hamiltonian

Ĥ(t) = ~

 0 Ω12(t) 0
Ω12(t) 0 Ω23(t)

0 Ω23(t) 0

 , (2.2)

where the Ωij are the coupling frequencies between the states |i〉 and |j〉. The coupling
frequencies depend on the distance between the traps dij for i, j = 1, 2, 3. One of the
eigenstates of this Hamiltonian with zero eigenvalue, the so-called dark state, involves
only the left and the right traps

|D(θ)〉 = cos θ|1〉 − sin θ|3〉, tan θ =
Ω12

Ω23

. (2.3)

If we follow the ground state by adiabatically changing the distances between the traps
in such a way that the mixing angle θ changes from 0 to π/2, a particle initially
trapped in the left trap will be transferred to the right trap. In terms of the tunneling
rates, θ = 0 corresponds to the ratio of the tunneling rates Ω12

Ω23
being very small. This

can be achieved if the distance between the left and the middle traps is much larger
than the distance between the middle and the right traps. The mixing angle θ = π/2
corresponds to the reversed ratio Ω23

Ω12
being very small, meaning that d23 � d12. The

way the traps have to be brought closer and then separated is rather counter-intuitive
because the empty right and the middle traps approach each other before the left trap
starts moving. This process for the three-level approximation is shown in Fig. 2.2 (a),
with the top dot-dashed blue line corresponding to the center of the right trap and
the bottom red dashed line tracing the center of the left trap. First the right trap
adiabatically approaches the middle trap while the left trap is still far away, then the
left trap starts moving closer to the middle, passing the point when both traps are
equidistant from the middle (θ = π/4). Finally, the right trap moves back towards its
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Figure 2.2: (a) Positions of the three harmonic well minima for the SAP protocol [1]
(dashed red: d1, dotted green: d2, dot-dashed blue: d3). The initial (and final) distance
between wells is dmax = 9, ensuring to tunneling occurs between the middle and the
outward traps on the timescales of the process. The minimum distance is dmin = 3
and the time delay between the two approaches is T/10, where T is the total time of
the process. (b) Energy eigenvalues of the single-particle Hamiltonian (2.2), with the
one corresponding to |D〉 displayed in blue. (c) Coefficients of |D〉 in the {|j〉} basis
(dashed red: |1〉, dotted green: |2〉, dot-dashed blue: |3〉).

initial position while the left trap is still relatively close to the middle. The middle
trap stays stationary throughout the whole process.

The eigenenergies of the Hamiltonian 2.2 at each step of the SAP process are shown
in Fig. 2.2 (b), with the dark state energy highlighted as thick blue line. Initially all
eigenstates start as degenerate, split in the middle of the process due to non-zero
coupling, and finally revert back to degeneracy.

Fig. 2.2 (c) demonstrates the occupation dynamics during the SAP process for the
left (dashed red), middle (dotted green) and right (dot-dashed blue) traps. It is easy
to see that initially the atom is entirely in the ground state of the left trap. The left
and the right traps then gradually swap population while the occupation of the middle
trap stays negligible.

The SAP process does not depend on the exact shape of the movement, but instead
depends only on the relative coupling strengths between the traps, making it robust
to experimental uncertainties. There are no peer-reviewed accounts of experiments
demostrating SAP with massive particles to date, but high fidelity transfer of light using
SAP has been achieved in wave guides [104], which is analogous to the single-particle
SAP. This analogy can be explained by considering a system where monochromatic



14 Spatial adiabatic passage

light propagates in three thin coplanar waveguides with only the fundamental mode
considered [104]. In this case the direction of propagation plays a role of the temporal
component in the Schrödinger equation, and the movement of the traps is replaced
with the change of the coupling between adjacent waveguides.

2.3 Transfer of two interacting particles

In the non-interacting case, the SAP protocol can be readily generalized to arbitrary
number of particles, but the presence of finite interactions adds significant complica-
tions due to the loss of tunnelling resonances [1]. Below I will discuss the SAP protocol
for transfer of two particles that was investigated in [1], as it is essential to understand
a more general case with arbitrary number of particles.

In case of two particles the continuum space Hamiltionian is

Ĥ = −1

2

∂2

∂x2
1

− 1

2

∂2

∂x2
2

+ V (x1) + V (x2) + gδ(x1 − x2). (2.4)

The interaction strength g can be calculated from the energy spectrum of two particles
in a harmonic trap [105]

g = −2
√

2Γ(1− Eg/2)

Γ((1− Eg)/2)
, (2.5)

where Γ(E) is the gamma function. From this we can define interaction energy Uint as

Uint = Eg − 2E0, (2.6)

Where E0 is the single-particle ground state energy and Eg is the two-particle ground
state energy of the harmonic trap.

We are interested in the transfer of both particles from the left trap into the right
trap, meaning that initially both particles are in the ground state of the left trap
|ψinit〉 = |2 0 0〉, and in the target state both particles are in the ground state of the right
trap |ψt〉 = |0 0 2〉. By numerically simulating the two-particle SAP process for different
interaction strengths g and plotting the fidelity of the two-particle process against g [1],
one finds the existence of a range of intermediate interaction strengths where the fidelity
remains high (see Fig. 2.3). The non-interacting case g = 0 predictably results in high
fidelity transport due to independent tunneling of the two particles, and the Tonks–
Girardeau limit case g =∞ can be mapped onto a system of non-interacting fermions,
resulting in essentially single particle tunnelling and giving similarly high fidelity.

In order to understand what is happening in the high fidelity plateau, we need
to look closer at how the band structure of the energy spectrum of the Hamiltonian
evolves during the SAP process [1] (see Figs. 2.4 and 2.5).

The states where the particles are separated into different traps have an energy
around Eg = 1 and are contained in the lowest energy band shown in Figs. 2.4 (a-b)
and 2.5 (a-b). The energy boundaries of the next band depend on the interaction
strength, and this band contains the states where both particles are in the same trap.
The two-particle dark state, similar to the one discussed in Eq. (2.3), is also within
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Figure 2.3: Final population in state |0 0 2〉 as a function of Eg after the two-particle
SAP protocol is carried out over a total time T = 4000 (blue) or T = 12000 (orange).
Dotted vertical lines indicate energies for which the spectrum is shown in Figs. 2.4 and
2.5 [1].

this band, and is shown in blue in plots (c-d) of both figures. Higher bands contain
higher excited states of the particles.

The dynamics of the Fock state composition of the dark state are shown in Figs. 2.4
and 2.5 (e-f). It is easy to see that within the high fidelity plateau the dark state bands
(Eg ≈ 1.25 and Eg ≈ 1.6) remain isolated from other bands, and the dynamics of the
Fock states are simpler and closer to the single particle behaviour than for the states
from the low-fidelity regions. For these values it is therefore possible to adiabatically
follow the dark state using the SAP protocol, resulting in high-fidelity transport of
both particles [1]. For values of interaction energies outside of the plateau the dark
state has many crossings and is hard to follow adiabatically, resulting in low fidelity
transfer.

Due to the effective single-particle behaviour of the repulsively bound pair in the
intermediate regime [106], all single particle protocols can be used, particularly one
can engineer a two particle noonstate by tuning θ from 0 to π

4
. The final state of the

system after the π
4
-SAP is 1√

2
(|2 0 0〉− |0 0 2〉), with |2 0 0〉 and |0 0 2〉 denoting states

with two particles in the left and in the right trap respectively. Such noonstates are
maximally entangled, and are considered an important resourse in quantum engineering
and metrology [101, 107], as they allow for phase measurements that can reach the
fundamental Heisenberg limit [108].

2.4 Particle separation

The existence of the dark state in SAP systems ensures that there is a way of high-
fidelity transfer of a particle between spatially separated traps. Another question one
might ask is if the SAP process can be generalized to degenerate states other than
spatially localized ones. One posibility is to develop a SAP-like protocol to transfer
multiple particles between different Fock states, essentially realizing coherent determin-
istic high-fidelity splitting or merger of clouds of interacting bosons. In the following
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Figure 2.4: (a,b) Lowest 12 instanteneous eigenvalues of Ĥ in Eq. (2.4) for the
SAP scheme with two weakly interacting particles and the trap moving sequence of
Fig. 2.2(a) for (a) Eg = 1.05 and (b) Eg = 1.25. In (b) the energy of the dark
state (asymptotically |2 0 0〉 and |0 0 2〉) and the state with which it couples the
most are marked in blue and orange, respectively. The inset shows a zoom-in of the
marked crossing between these two states (marked with a circle). (c,d) Instanteneous
eigenvalues of the Bose–Hubbard Hamiltonian for the same parameters as (a,b), with
the energy of the dark state drawn in blue. (e,f) Coefficients in the Fock basis of the
dark states in (c,d) (dashed red corresponds to |0 0 2〉, dotted green to |0 2 0〉, dot-
dashed blue to |0 0 2〉, and the solid lines to states where the two atoms are in different
traps) [1].
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Figure 2.5: (a,b) Lowest 12 instanteneous eigenvalues of Ĥ in Eq. (2.4) for the
SAP scheme with two strongly interacting particles and the trap moving sequence
of Fig. 2.2(a) for (a) Eg = 1.6 and (b) Eg = 1.85. In (a) the energy of the dark
state (asymptotically |2 0 0〉 and |0 0 2〉) and the state with which it couples the
most are marked in blue and orange, respectively. The inset shows a zoom-in of the
marked crossing between these two states (marked with a circle). (c,d) Instanteneous
eigenvalues of the Fermi–Hubbard Hamiltonian for the same parameters as (a,b), with
the energy of the dark state drawn in blue. (e,f) Coefficients of the dark state in (c,d)
the Fock basis (color coding is the same as in Figs. 2.4(e,f)) [1].
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Figure 2.6: Schematic of the three-level model for particle separation. Simultaneous
lift of the right and the middle harmonic traps by Vlift = Uint makes the three states
depicted resonant.

I will discuss a process based on SAP which is not a straightforward generalization of
a single particle protocol, but which allows to split an initial many-particle state in a
controlled manner.

2.4.1 Two-particle case

First I will demonstrate the process of separation of two particles initially trapped in
the left trap into the left and the right traps. The initial and the target states are thus

|ψi〉 = |2 0 0〉 → |ψt〉 = |1 0 1〉. (2.7)

If we consider the unmodified SAP as in section 2.3, the initial and the final states are
in two different energy bands due to non-zero interaction. It is therefore necessary to
engineer the system in such a way as to compensate for the absence of the interaction
energy in the target state and match the energies of the two states. We can achieve
this by lifting the middle and the right traps by Vlift = Uint. In case of attractive
interaction the traps have to be lowered instead. This manipulation ensures the reso-
nance condition of the states |2 0 0〉, |1 0 1〉, and |1 1 0〉 and energetically separates
them from the rest of the energy spectrum. This isolation makes the system effectively
three-level, with a Hamiltonian analogous to Eq. (2.2) (see Fig. 2.6). Consequently,
there exist a dark-like state which involves only the initial and the target states. The
usual SAP positioning sequence then leads to the separation of the two particles. In
order to confirm that this separation scheme works, below I will present the results of
simulations of the system in the continuum case. I simulate the time evolution of the
initial state with two particles being in the ground state of the left trap ψi = |2 0 0〉
into the final state ψf = |1 0 1〉 obeing the full Hamiltonian Eq. (2.4) and calculate
the fidelity F = |〈ψf|ψt〉|2 of the process. This fidelity is shown in Fig. 2.7(b) for
Uint ∈

[
−1

2
, 1
]
as a solid blue line.

Even though in the weakly-interacting regime the fidelity drops to zero due to the
presence of several degeneracies, high fidelities can be seen for a large range of repul-
sive and attractive interactions. In the Tonks–Girardeau limit of infinitely repulsive
interaction (Uint = 1) the success of the separation is easy to explain by regarding
the bosons as non-interacting fermions [71]. The system then forms a harmonically
trapped Fermi sea at zero temperature, and by lifting the middle and the right traps
by Vlift = 1 we only allow the particle at the edge of the Fermi sea to tunnel. Therefore,
we expect a high fidelity of the particle separation in this case.

On the other hand, the drop of fidelity in the weakly interacting case can be ex-
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Figure 2.7: (a) Energy spectrum of the two-particle Fock states in the triple well
system with only the lowest two energy levels in each trap considered and Vlift = Uint.
The three degenerate states |2 0 0〉, |1 1 0〉 and |1 0 1〉 are in the band colored in
red and additional degeneracies can be seen to appear at Uint = 0 and Uint = −1/2.
(b) Fidelities of the particle separation process as a function of the interaction energy,
obtained using the full Hamiltonian time evolution (solid blue line) and BH model
(dashed red line). Degeneracies in the spectrum appear at points marked as vertical
dashed blue lines. The energies E and Uint are given in units of ~ω.
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plained by looking at the energy spectrum of the separation process (Fig. 2.8) for two
different values of Uint shown as points in Fig. 2.7(b). In the weakly interacting case
(Uint = 0.1) the SAP triplet in the lowest band containing the dark state overlaps with
the higher lying band, leading to multiple level crossing and difficulties in following the
dark state. For stronger interactions (Uint = 0.4), the lowest band becomes isolated
again, leading to high fidelity particle separation. Another region of low fidelity is
visible around Uint = −1

2
and will be discussed in section 2.4.2.

In the next sections I will extend the separation protocol to the many particle
case. However, since the numerical complexity of diagonalization and integration of the
Schrödinger equation using the full Hamiltonian scale exponentially with the number
of particles, I introduce a Bose–Hubbard (BH) treatment of this system. I will first
compare the two-particle results obtained above with the BH model and then use the
BH model to simulate the three-particle case.

2.4.2 Bose–Hubbard treatment

Let us consider a system with three harmonic traps with their ground state energies
shifted by V1, V2 and V3, counted from left to right. Each trap is assumed to have
mL vibrational states, leading to 3mL available vibrational states in the system. Next
we distribute N interacting bosons among the traps and their vibrational states and
assume that if a pair of particles is located within the same trap, they interact with
energy Uint. The number of Fock states in this system can be calculated as the number
of ordered 3mL-tuples of non-negative integers summing to N , and is equal to Q =



2.4 Particle separation 21

(
N+3mL−1

3mL−1

)
. We associate each state with a matrix {nji}, where nji is the number of

particles in the j-th energy level of the i-th trap

|{nji}〉 =

∣∣∣∣∣
n01 n02 n03

...
... nji ...

...
n(mL−1)1 n(mL−1)2 n(mL−1)3

〉
. (2.8)

The sum over all elements of the matrix gives the total number of particles
∑3

i=1

∑mL−1
j=0 nji =

N . To simplify the notation, I will denote the states with only the lowest vibrational
levels of the traps occupied as

|{n0i}〉 = |n01 n02 n03〉. (2.9)

The Q-level Bose–Hubbard Hamiltonian of this system can then be written as

ĤBH =

mL−1∑
j=0

(
j +

1

2

)
N̂ level
j +

3∑
i=1

ViN̂
trap
i

+
Uint

2

3∑
i=1

N̂ trap
i

(
N̂ trap
i − 1

)
+Htunnel. (2.10)

Here aij is the bosonic annihilation operator in the j-th level of trap number i, and
n̂ji = â†jiâji is the associated particle number operator. We can obtain the total number
of particles in the i-th trap as

N̂ trap
i =

mL−1∑
j=0

n̂ji, (2.11)

with corresponding eigenvalues N trap
i . The total number of particles in the j-th vibra-

tional state is

N̂ level
j =

3∑
i=1

n̂ji. (2.12)

with eigenvalues N level
j .

Eq. (2.10) has four terms. The first two term,
∑mL−1

j=0

(
j + 1

2

)
N̂ level
j +

∑3
i=1 ViN̂

trap
i ,

correspond to the single particle energies in each trap and vibrational state. The
third term, Uint

2

∑3
i=1 N̂

trap
i

(
N̂ trap
i − 1

)
, describes the interparticles interactions. The

last term Htunnel accounts for all tunneling events. Calculating the coupling strengths
between all possible states of the system is a computationally difficult task, so I use
an approximation where the tunneling events are expressed in terms of n-particle co-
tunneling terms, which are expressed in terms of two-particle tunneling. The details
of these calculations are presented in the methods section 5.2.

When the traps are widely separated such that no tunneling is occuring on the time
scales of interest, the last term of the Hamiltian ĤBH can be ignored. The first three
terms have the Fock states |{nji}〉 as their eigenstates. The corresponding eigenenergies
Etotal({nji}) then depend only on the interaction Uint and the shift of the potential
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energy Vi. If we consider the states with only the lowest vibrational states occupied
|n01 n02 n03〉, we can further simplify the expression for Etotal as

Etotal({n0i}) =
N

2
+

3∑
i=1

Vin0i +
Uint

2

3∑
i=1

n0i(n0i − 1). (2.13)

The resonance condition between two Fock states, |{nji}〉 and |{n′ji}〉, can be written
as

Etotal({nji}) = Etotal({n′ji}), (2.14)

and it can be used to find the necessary potential energy shifts to engineer the SAP
triplet of resonant states (|2 0 0〉, |1 1 0〉, and |1 0 1〉) for the particle separation
protocol

V1 = 0; Vlift = V2 = V3 = Uint. (2.15)

The predicted fidelities of the separation process using this discreet model can be
seen in Fig. 2.7(b) as dashed red line and are very similar to the ones obtained using
the full Hamiltonian. Both methods have high fidelity plateaus and drop to zero around
Uint = 0 and −1

2
. These drops can be explained by examining the spectrum of the two-

particle Fock states, shown in Fig. 2.7(a), of the BH model with only the lowest two
Bloch bands (mL = 2) considered. The red line shows the energy of the degenerate SAP
triplet and the black lines highlight energies of other relevant Fock states. The SAP
triplet band crosses other Fock states exactly at Uint = 0 and Uint = −1/2, explaining
the drops in fidelity around these values. For example, at Uint = −1/2, the SAP triplet
crosses the band containing states where one particle is in the ground state of the
middle or the right trap and the other is in the first excited state of the same trap.

Having demonstrated that the proposed BH-like model captures the main features
of the full model, I will use it in the following to simulate particle separation processes
for larger numbers of particles.

2.4.3 N-particle case

In this section I will show that it is possible to separate exactly M particles out of a
cloud of N particles trapped in the left trap. Although the preparation of a state of
exactly N particles in the ground state of a trap is a challenging problem, a recent
experiment has shown the possibilty of doing this for a wide range of particle num-
bers [109]. There are two ways of separating M particle out of N in a three traps
setting: to have exactly M particle remain in the left trap or to have excatly M par-
ticles transferred into the right trap. I will first consider the former case, followed by
the latter, and explain the differences between the two cases.

For the first case of M particles remaining in the left trap the initial and the target
states are given by

|ψi〉 = |N 0 0〉 → |ψt〉 = |M 0 (N −M)〉. (2.16)

The degeneracy conditions in Eqs.(2.13)–(2.14) give the formula for the trap lift

V1 = 0; Vlift = V2 = V3 = MUint. (2.17)
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Figure 2.9: (a) Energy spectrum of three-particle Fock states in the BH model for
mL = 2 for the target state |1 0 2〉 (and Vlift = Uint). The energy of the SAP triplet is
highlighted in red. (c) Corresponding particle separation fidelities. (b,d) are the same
as (a,c) but for |2 0 1〉 (and Vlift = 2Uint). The circles in the top row and vertical dashed
lines in the bottom row indicate the positions where level crossings between the SAP
triplet and other bands exist. The energies E and Uint are given in units of ~ω.
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(a) |ψt〉 = |1 0 3〉 (b) |ψt〉 = |3 0 1〉

Figure 2.10: Fock energies versus two-particle interaction energy for the separation
of one particle from a cloud of four. (a) Separation of one particle into the left trap
|ψt〉 = |1 0 3〉. (b) Separation of one particle into the right trap |ψt〉 = |3 0 1〉.

An important note is that the value of the lift does not depend on the initial number of
particles N . This means that it is not necessary to know the initial number of particles
in order to keep exactly M particles in the left trap after the separation process. This
fact makes it much easier to prepare the initial state in experiments.

To prove that the protocol results in a high-fidelity separation of the particles, let
us first consider the case of N = 3 for which we want to leave one particle in the
left trap. The target state is then |ψt〉 = |1 0 2〉, and only two vibrational states are
necessary to consider in the Fock state energy claculation in the Bose–Hubbard model
described before. The Fock state energies are shown in Fig. 2.9(a). It is apparent from
the figure that degeneracies appear at Uint = {−1

3
, 0, 1}, which lead to fidelity drops

around these interaction energy values, see Fig. 2.9(c). As we increase the number
of particles, the energy spectrum will contain more and more bands, leading to more
degeneracies (see Fig. 2.10). This leads to fragmentation of the region of high fidelity
separation for |N 0 0〉 → |1 0 (N − 1)〉.

Let us now consider a process where we separate M particles into the right trap

|ψi〉 = |N 0 0〉 → |ψt〉 = |(N −M) 0 M〉. (2.18)

From the Eqs.(2.13)–(2.14) we know that the traps have to be lifted according to

V1 = 0; Vlift = V2 = V3 = (N −M)Uint. (2.19)

The number of separated particles N − M matters in this case, meaning that we
have to know their initial number N as well as M . This additional requirement does
indeed make the protocol more demanding, but if we only want to separate one particle
(M = 1), the lift ensures that the SAP triplet is isolated from other Fock states for
any N in the repulsive regime. While for attractive interactions there are multiple
level crossings visible in Fig. 2.9(b), the energy of the SAP triplet is the lowest for any
repulsive value of Uint. This isolation of the SAP triplet results in a broad plateau of
high fidelity particle separation. If we increase the number of particles N further while
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keeping M = 1, the spectrum becomes denser (see Fig. 2.10(b)), but the SAP band
remains the lowest over the whole repulsive range.

During the SAP process the traps have to be brought close to each other, and thus
the tunneling term cannot be ignored anymore. The changes in coupling strength be-
tween the traps in the SAP process lead to non-zero band widths, which will result
in additional level crossings and shrinking of the high fidelity plateau around the de-
generacies. In principle, the bands can be kept arbitrarily narrow by controlling the
minimum approach distance between the traps, but the total time of the process will
have to increase to allow for co-tunneling to happen.

Above I have shown that it is possible to separate an exact number of particles
from a cloud of ultracold interacting bosons by ensuring the degeneracy of the initial
|N 0 0〉, the intermediate |(N − M) M 0〉 and the target |(N − M) 0 M〉 states.
These three states form a SAP triplet, and there are regions of interaction strengths
where the dark-like state connects the intitial and the target states without aditional
level crossings. In such a region the SAP triplet remains isolated from the rest of the
spectrum, allowing the dark state to be followed and resulting in high fidelity splitting
of the cloud. However, the number of level crossings depends on N −M , leading to
rapid fragmentation of the high fidelity regions. Since the speed of the process and its
tolerance to imperfections in execution depends on the number of particles and their
interaction strengths, it is important to study the process in an experimentally realistic
system.

2.5 Radio frequency traps

While harmonic potential are very easy to work with in theoretical setting, in an
experimental setting with multiple traps the harmonic approximation usually breaks
down due to overlap between two individual traps. Below I will therefore examine the
theory of the realistic radio-frequency (RF) trapping, propose the particle separation
protocol using three RF traps and analyse its fidelity. The reason why I chose RF
traps lies in their flexibility and the narrowness of the RF resonances, making it easy
to have multiple traps which can be moved independently of each other [110–112]. The
principle of RF trapping lies in engineering of a spatially-dependent separation of the
magnetic sublevels of an atom using inhomogeneous magnetic field, and then creating
the effective potential extrema at desired coordinates using RF pulses of appropriate
frequency.

Let us consider an atom with two hyperfine sublevels (mF = ±1
2
) in an inhomo-

geneous magnetic field, B(x) = bx and a linearly polarized RF field, ~Brf cos(ωt). The
atom will experience an external potential with a minimum at position x0 correspond-
ing to the resonance condition µgFmF bx0 = ~ω [113], where µ ≈ 9.27 × 10−24 A/m2

is the Bohr magneton and gF is the atomic g-factor. We can create multi-trap poten-
tials using multiple RFs[113] and a triple-well setup can be realised using six different
frequencies [111] (see Fig. 2.11). The resulting potential then is essentially given by a
piece-wise function contributing the effects of each radio frequency within its vicinity.
The external potential experienced by the atom is then described by [111, 113]
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Figure 2.11: Triple-well RF potential generated using six different frequencies and
the parameters given in the text. The position of the left trap is fixed at x1 = 20 x̃
and the corresponding RF is ω0

2 = µgF bx1/~ ≈ 596 kHz. The maximum distance
between the middle and the left or the right trap is d = 9 x̃ and the corresponding
minimum distance is dmin = 6 x̃. The difference between frequencies at time t = 0
is ∆ω = µgF bd/(2~) ≈ 134 kHz and the frequency for the left trap edge is ω0

1 =
ω0

2 − 2∆ω ≈ 328 kHz. All the other frequencies are ω0
i = ω0

2 + (i− 2)∆ω, i = 3, . . . , 6.

V+(x) = (−1)n(x)

[
E+(x)− ~ωn(x)

2

]
−

n(x)−1∑
k=1

(−1)k~ωk, (2.20)

where

E+(x) =
1

2

√
~2Ω2 + (µgF bx− ~ωn(x) + 2Ln(x)(x))2, (2.21)

and

Ln(x) =
∑
j 6=n

~2Ω2

4[µgF bx− ~ωj]
(2.22)

is the combined Stark shift of all frequencies. The number of the frequency n(x) is
chosen such that µgF bx−~ωn(x) is minimized for all x, i.e., n(x) is the label of the most
relevant (closest) frequency at each point. The distance between the traps as well as
their ground state energies (which depend linearly on the trap lift) can be controlled
by changing the ωi, which can be done with great precision [114].

In our simulations we use experimentally realistic parameters as follows: the mag-
netic field gradient is b = −213 G/cm, the atomic g-factor is gF = −1

2
, the Rabi

frequency is Ω = 2π × 0.5 kHz and the mass of a 87Rb atom is mRb = 1.44× 10−25kg.
For convenience I scale all lengths by x̃ = (4~2/µgF bmRb)

1
3 ≈ 3.18 × 10−7 m, time by

t̃ = (16~mRb/(µgF b)
2)

1
3 ≈ 1.34×10−4 s, and energy by ũ = mRbx̃

2/t̃2 ≈ 7.85×10−31 J.
In these units, the Tonks–Girardeau regime is achieved at UTG

int ≈ 1.64ũ (calculated
numerically).
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Figure 2.12: Fidelity of the particle separation protocol in the RF traps with perfect
and perturbed maximum lift values. The fidelity results for very strong interactions
up to the Tonks–Girardeau regime UTG

int ≈ 1.64ũ suffer from numerical instabilities and
are not shown on the plot.

2.5.1 Particle separation

To implement the particle separation protocol in the RF traps, I use the following
time-dependencies of the RFs

ω1(t) = ω0
1 −

Vlift

~
(2.23a)

ω2(t) = ω0
2 (2.23b)

ω3(t) = ω0
3 +

1

2
f1(t) +

Vlift

~
(2.23c)

ω4(t) = ω0
4 + f1(t) (2.23d)

ω5(t) = ω0
5 +

1

2
(f1(t) + f2(t)) (2.23e)

ω6(t) = ω0
6 + f2(t), (2.23f)

where Vlift is the maximum lift value and

f1(t) = −µ gF b dmin

~
f(t, 0), (2.24a)

f2(t) = −µ gF b dmin

~
[f(t, 0) + f(t, δt)] , (2.24b)

f(t, δ) =

{
sin2(2π(t−δ)

T
) 0 ≤ t− δ < T

2
,

0 otherwise.
(2.24c)

Here δt is the trap movement delay, dmin is the minimum distance between the middle
and the left or the right traps and T is the total time of the process.

Unlike in the previous section where the middle and the right traps were lifted to
ensure the resonance condition was met, in the RF case I lower the leftmost trap by
Vlift, which is equivalent. Only radio frequencies ω1 and ω3 are affected by the shift in
this case (see Eq. (2.23)).
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The separation process starts with two atoms prepared in the ground state of the
left trap with total energy Eg. The energy shift value is Vlift = Uint = Eg − E0, where
E0 is the ground state energy of two non-interacting atoms in the left trap. Both
Eg and E0 are calculated numerically by direct diagonalization of the Hamiltonian.
The solid black line in Fig. 2.12 shows the resulting fidelities of the particle separation
process, and indicates that high fidelity can be achieved for the whole range of repulsive
interactions in this setting once Uint is large enough. Unfortunately, for very large
interaction strength g the numerical simulations suffer from numerical errors, and is
not shown in the Fig. 2.12.

In order to verify the robustness of the protocol we need to account for possible
experimental uncertainties in the interaction energy measurement. In Fig. 2.12 we
present the particle separation fidelities obtained for a protocol with small errors in
the energy shift. Both negative and positive perturbations δVlift are considered, and
the effective energy shift value used in the simulation is calculated as Veff = Vlift +δVlift.
It is apparent that the proposed RF implementation of the separation protocol is
robust against small errors in the interaction energy measurements as well as against an
imperfect execution of the lowering of the left trap. This, together with the knowledge
that the original SAP protocol is robust against potential shaking and tilt[89], makes
process discussed here experimentally viable.

It is important to note that the model we use to describe the RF traps is valid only
when the traps are sufficiently far away from each other [113], otherwise the potential
in the model loses continuity and no longer describes the physical reality. I have taken
this limitation into account in the simulations by ensuring that the closest approach
of two frequencies leads to a discontinuity smaller than 0.01 ũ, which has a negligible
effect on the dynamics. Furthermore, althought the lowering of the left trap also affects
the middle trap, this effect is very small (on the order of 0.002 ũ) and therefore does
not significantly affect the process fidelity.

2.5.2 Scaling with the number of particles

Finally, let us discuss the limitations and scaling of the particle separation protocol.
If the initial number of particles N is increased, the energy spectrum becomes more
fragmented, making it harder to follow the SAP triplet.

To quantify this observation I define the size of the maximum energy gap, ∆E,
between the SAP triplet and the neighboring bands as a function of the initial and
final number of particles in the left trap over the whole range of repulsive interactions.
I also determine the value of the interaction strength corresponding to this maximal
energy gap, Uopt

int , and the distance between the two points at which the SAP triplet
crosses other bands, ∆Uint. This value can be interpreted as a tolerance value for
hitting the right interaction energy Uopt

int for the best separation fidelity. These values
are schematically shown in Fig. 2.13.

Since at the point Uopt
int the process works best, it gives a good insight into its

limitations: 1) ∆E quantifies how hard it is to follow the SAP state and 2) ∆Uint

indicates how fragmented the region, in which a high fidelity process can be expected,
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Figure 2.13: Schematic indicating the definitions of ∆E, ∆Uint, and Uopt
int in the Fock

space energy spectrum. The dotted red line corresponds to the energy of the SAP
triplet, and the black and gray lines show the energies of the other Fock states in the
system. The blue circles indicate the points of intersection of the SAP triplet energy
band with the closest, neighbouring energy bands.

has become

∆E = max
Uint>0

min
f∈F

∣∣∣Ef∗(Uint)− Ef (Uint)
∣∣∣, (2.25a)

Uopt
int = arg max

Uint>0
min
f∈F

∣∣∣Ef∗(Uint)− Ef (Uint)
∣∣∣, (2.25b)

∆Uint = max
j∈P

(U j+1
int − U j

int), (2.25c)

where F contains all relevant Fock states, Ef∗(Uint) is the energy of the SAP triplet
and P is the set of all indices of the ordered points of intersection {U j

int}. These values
are also schematically illustrated in Fig. 2.13.

The results of my calculations show that the value of ∆E does not depend on the
initial number of particles N , but only on the numbers of particles that are to be moved
out of the trap, N −M . This can be intuitively explained by considering the structure
of the energy spectrum (see Fig. 2.9). The energy of each Fock state depends linearly
on the interaction energy, intersecting Uint = 0 at points that corresponds to different
combinations of excited states. The slope then depends on the number of particles in
the right and the middle traps and it is easy to see that the N −M = 1 energy band
has the smallest slope, the N−M = 2 has the second smallest slope, etc. If we increase
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Figure 2.14: (a) Optimal interaction energy value Uopt
int with its margin ∆Uint as an

error bar and (b) energy gap ∆E. The Fock energy calculation are performed for RF
traps using the Bose–Hubbard model for the three lowest energy bands.

N −M , we also need to include more excited states in the model to account for all
intersections, but the overall structure does not depend on N . Unfortunately, ∆Uint

rapidly decreases with increasing N − M and in Fig. 2.14 I show this dependency.
Only a few particles can be realistically separated in this manner, but this number is,
in principle, independent of the initial number of particles. Thus, for any N , by using,
for example, Feshbach resonances [115–117], one can tune the interaction energy to the
optimal value Uopt

int within the tolerance ∆Uint to separate small number of particles
from the cloud of size N . In real experiment, however, the number N will be limited
by the trap depth and heating of the cloud.

2.6 Entropy during the particle separation process

Many non-classical properties of many-body quantum systems are due to correlations
between the particles [118]. In particular, in quantum computing entangled many-
particle states are essential for the quantum speed-up promised by the theory [119],
but preparation of such entangled states remains hard [120, 121]. The SAP processes
decribed above are quantum engineering tools which allow us to prepare many-body
entangled states deterministically with high fidelity assuming we can obtain a clean
ground state of the leftmost trap, which became more realisitic in recent years [122–
125]. It is therefore interesting to study how does the entanglement evolve in time
within these protocols.
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In the following section I will study the dynamics of the two-particle entanglement
in the three SAP processes outlined in this chapter: two-particle transport, noon-state
preparation and particle separation [95]. As all these protocols are based on controlled
transitions between three degenerate states, the entropy is not conserved, and therefore
entanglement can be created in a controlled fashion. I will show that the entanglement
in these SAP processes can be explained by contributions from two different origins,
the interaction and the distribution of the particles between the traps.

2.6.1 von Neumann entropy as a measurement of entanglement

The von Neumann entropy of a quantum system is defined as

S(ρ) ≡ −tr(ρ log2 ρ), (2.26)

where ρ is the density matrix of the state. If density matrix ρ has eigenvalues λx, then
the von Neumann entropy can be rewritten as

S(ρ) ≡
∑
x

λx log2 λx. (2.27)

This formulation of the entropy can be interpreted as a measure of the state’s impurity
(how mixed it is). Thus, for pure states the von Neumann entropy is zero.

With a small modification the von Neumann entropy can be used as a measure of
entanglement in a bipartite system

S(ρrspdm) ≡ −tr(ρrspdm log2 ρrspdm), (2.28)

where ρrspdm is the reduced single particle density matrix (RSPDM) defined as

ρrspdm(x, x′, t) =

∞∫
−∞

Ψ∗(x, x2, t)Ψ(x′, x2, t)dx2, (2.29)

and where Ψ(x1, x2, t) is the two-particle wavefunction. Since all SAP processes we
consider start from a well-defined pure state and the time evolution is unitary, the
total two-particle state remains pure at all times t, and all entropy of the RSPDM
has to come from the entanglement between the particles. This fact makes the von
Neumann entropy of the RSPDM a good measure of two-particle entanglement[126–
130] for pure states even in the case of indistinguishable particles[131]. Mixed states,
however, require different approaches for entanglement measures[132–135].

2.6.2 Transport

The first case I study is SAP transport for a pair of particles, discussed in section 2.3,
and below I will recap the main points of this process.

Starting from the state with both particles in the left trap, I numerically simulate
the SAP sequence of the trap movements. I then calculate the fidelity of the process
with the occupation of the desired state |0 0 2〉. These fidelities are shown in Fig.
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Figure 2.15: (a) Sketch of the SAP transport process. (b) Sketch of the noon state
generation process. (c-d) Fidelity of the transport/noon generation as a function of
the interaction energy Eg. (e-f) von Neumann entropy at the start (blue) and end
(orange) of the transport/noon generation process as a function of Eg. Thicker data
points represent parameter values where the fidelity is above 98%. (g-h) Time evolution
of the von Neumann entropy during transport/noon generation for Eg = 1.2 (blue)
and Eg = 1.4 (orange).
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2.15(c) as a function of the interaction energy. The dark state only exists if the SAP
triplet is sufficiently isolated from the rest of the spectrum [1], which leads to lower
fidelities of the transport process for the interaction energies outside of the range 1.1 ≤
Eg ≤ 1.5. The non-interacting case and the Tonks–Girardeau limit are the exceptions.
In the non-interacting case the transport of the two atoms becomes independent, and
in the Tonks–Girardeau limit, due to Bose-Fermi mapping theorem, the SAP process
can be decomposed into two independent single particle processes, one for each of the
particles.

The values of the von Neumann entropy of the initial and final states over the
full range of interaction energy are shown in Fig. 2.15(e). Since we are interested in
entropy (and hence entanglement) gains of the successfull process, we will only consider
the range of interaction energies which results in high fidelity SAP processes. These
values of the entropy for interaction energies in this range are shown in Fig. 2.15 (e) as
a thicker curve. Unsurprisingly, the entropy of initial state increases with interaction
strength [129], and in case of high-fidelity transport, the entropy is the same for the
initial and the final states. This fact is easily understood considering that the two
states |2 0 0〉 and |0 0 2〉 are mirror images of each other.

Now let us look at the dynamics of the entropy during the SAP transport process
(see Fig. 2.15(g)). We can see an increase and decrease of entropy around the time
when all traps are strongly coupled, and the systems is in the superposition of the two
degenerate states |2 0 0〉 and |0 0 2〉.

The maximal increase is exactly ln 2 corresponding to a fully antisymmetric super-
position with the mixing angle π/4, an instantaneous noon state. If the subsequent
separation of the traps proceeds in a fully symmetric fashion, the noon state would
persist until the end of the process. This is the next case we study.

2.6.3 noon state preparation

The fidelity of the process of creation of a noon state is shown in Fig. 2.15(d) for
the whole range of repulsive interactions. As follows from Figs. 2.15(c) and (d), the
noon state process results in high fidelity in the similar range of interactons which
leave the SAP triplet isolated [1], but not in either the non-interacting case or the
Tonks–Girardeau limit. The reason for this is that no entanglement between the two
particles can be generated due to their dynamics being fully independent.

Unlike transport, the final state is now a superposition between the states |2 0 0〉
and |0 0 2〉, and the final entropy increases in comparison to the entropy of the initial
state (see Fig. 2.15(f) and (h)), resulting in entanglement gain. This increase does
not depend on the interaction strength, and only depends on the distribution of the
particles between the different traps. The density matrix of the final state corresponds
to the antisymmetric superposition of the states |2 0 0〉 and |0 0 2〉, and the entropy of
the distribution among the traps thus can be calculated as Sdist = −2

(
1
2

ln 1
2

)
' 0.69 .

2.6.4 Particle separation

Finally, I will study the particle separation SAP process discussed in section 2.4 [103].
As shown in section 2.4 and Fig. 2.16(b), the SAP triplet of the three Fock states
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Figure 2.16: (a) Sketch of the particle separation process. (b) Fidelity of the scheme
as a function of the interaction energy Eg. (c) Time evolution of the von Neumann en-
tropy during the particle separation process for Eg = 1.4 (blue) and Eg = 1.6 (orange).
(d) von Neumann entropy at the start (blue) and end (orange) of the separation process
as a function of Eg. Thicker data points represent those values where the fidelity is
above 98%. Small oscillation of the entropy outside of the high-fidelity region are due
to the final state being very sensitive to the total time of the process.

|2 0 0〉, |1 1 0〉 and |1 0 1〉 remains isolated for almost the whole range of repulsive
interaction, resulting in a high separation fidelity.

The entropy dynamics during this process for Eg = 1.4 and Eg = 1.6 are shown
in Fig. 2.16(c). As the system follows the dark state, the entropy increases from its
initial value until it reaches S(|1 0 1〉) ≈ 0.69, which corresponds to the entanglement
purely due to the distribution of two indistinguishable particles between the wells. The
contribution of the interaction to the entanglement has vanished as the two particles
are now separated into different wells [130]. In Fig. 2.16 (d) one can see that the final
entropy of the |1 0 1〉 state is indeed independent of the interaction strength. Note
that the final value of the entropy is the same as the entropy increase in the case of the
noon state preparation described above. The von Neumann entropy associated with
a state where atoms are in different traps can be calculated by writing the state in the
atomic basis as |101〉 = 1√

2
(|L〉1|R〉2 + |R〉1|L〉2), which results in a reduced density

matrix for each atom ρ1 = 1
2
(|L〉〈L| + |R〉〈R|). As ρ1 is a diagonal matrix, the von

Neumann entropy is given by S = −1
2

ln 1
2
− 1

2
ln 1

2
= ln 2.

Analogously, the noon state |noon〉 = 1√
2
(|L〉1|L〉2−|R〉1|R〉2), results in the same

reduced density matrix, and thus also has a von Neumann entropy of ln 2.
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2.7 Conclusion
In this chapter I have reviewed the concept of spatial adiabatic passage and proposed
a protocol that allows to divide a sample of interacting particles in a controlled way.
The technique is based on engineering a quasi-three level system by raising or lowering
the energies of some of the traps and allowing for an adiabatic transition between
initial and target states. I have explicitly examined the cases |2 0 0〉 → |1 0 1〉 for a
two-particle system and |3 0 0〉 → |2 0 1〉 and |3 0 0〉 → |1 0 2〉 for a three-particle
system and shown that the SAP protocol results in high-fidelities over large ranges of
interaction energies. The regions where the protocol fails correspond to level crossings
present in the spectrum of the Bose–Hubbard model.

I have also shown that this protocol is realistic and robust against experimen-
tal uncertainties by examining a setting where two 87Rb atoms were trapped in a
radio-frequency trap setup. Using experimentally realistic parameters, the same high
fidelities were obtained as for the idealised system, showing that quantum engineering
techniques based on spatial adiabatic passage are also useful for interacting particle
systems. The protocol we proposed is independent of the number of initial particles
and can therefore be used in systems with large initial particle numbers.

I have also investigated the entropy dynamics of the SAP protocols and shown that
the total entropy in the SAP processes can be attributed to contributions from two
sources: one due the interaction between the atoms and one due to the distribution of
the atoms between the traps. States with both atoms in the same trap, i.e., |2 0 0〉,
have a von Neumann entropy which increases with the interaction Sint(Eg), ranging
from zero in the non-interacting case (where the wavefunction is separable), to ln 2 in
the Tonks–Girardeau limit.

On the other hand, states such as |101〉 are unaffected by the interaction, but have
a constant von Neumann entropy of Sdist = ln 2, which comes from the distribution
of the particles between the traps. The noon states have both contributions, as the
atoms occupy states where they interact, while they are in a superposition occupying
different sites, Snoon = Sint(Eg) + Sdist.

A summary of the entanglement of the SAP processes I have studied is shown in
Fig. 2.17. All processes start in state |2 0 0〉, and thus with an entropy Sint(Eg).

Even though the fundamental processes identified above can be extended to systems
with multiple particles, their study is problematic due to numerical intractability. For
a separation process with an initial cloud of N particles in the left trap |N 0 0〉 as
described in Sec. 2.4.3, a maximum value of the entropy ln 2 is achieved when the
cloud is evenly split, |N/2 0 N/2〉, for N even, or split into |N+1

2
0 N−1

2
〉 for N odd.

A noon state (|N 0 0〉 − |0 0 N〉)/
√

2, will also have an entropy of ln 2. If processes
are designed that lead to a distribution of the atoms over more than two traps, for
example, by sequential separation of one particle into each trap, such as |1 1 1 1 . . .〉, or
by sequentially following the noon state preparation protocol, such as (|N 0 0 0 . . .〉+
|0 N 0 0 . . .〉+ |0 0 N 0 . . .〉+ . . .)/

√
N , the entropy would be lnN , plus in the second

case also the interaction entropy.
These results have been published in Physical Review A [103] and Few-Body Sys-

tems [95].
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Figure 2.17: Von Neumann entropy of states |200〉 (green), |101〉 (orange), and
|noon〉 (blue) as a function of the interaction energy Eg. The arrows represent the
changes in entropy during the spatial adiabatic passage processes.



Chapter 3

The coordinate Bethe ansatz

In the previous chapter I proposed a theoretical tool for controlling the state of a few-
body system for which the knowledge of the energy spectrum and the eigenstates is
essential. More complicated systems such as systems with larger number of particles
are in general too big for numeric simulations, but important insight in their behaviour
can be gained from analytical treatment.

In this chapter I will introduce the coordinate Bethe ansatz as a mathematical
tool for exact analysis of some one-dimensional systems. I will discuss its uses and
limitations, and apply it to solve an example problem of a 1D Bose gas in a box.
This simple yet relevant example is going to form the basis for my analysis of more
complicated systems such as a system with point-like barriers of arbitrary heights and
positions inside a box (AFKP). I will discuss the breakdown of integrability in the case
of multiple interacting particles, and derive a general form of the solution for the single
particle case with an arbitrary number of barriers with positions and heights as the
parameters of the systems.

I will also consider a modification of the system to include two distinguishable
particles with detuned effective barriers.

3.1 Introduction to the coordinate Bethe ansatz

The coordinate Bethe ansatz is one of the essential tools of mathematical physics
and has been extensively used in exact studies of one-dimensional systems. It was
first introduced by Hans Bethe in 1931 to find exact solution to the one-dimensional
antiferromagnetic Heisenberg model[136]. Since then it was used to obtain solutions
of various one-dimensional models. Lieb and Liniger found the solution for the many-
body system of bosons in a ring[46, 137], with Sutherland[138, 139] and Flicker[140]
later extending it to multicomponent systems. The interacting Bose gas in a box
was first analyzed by Gaudin[141], and later reexamined by Oelkers et al.[142, 143].
More recently, the Bethe ansatz was used to study the behaviour of impurities and
thermodynamics in the multicomponent Lieb–Liniger model[144, 145].

The coordinate Bethe ansatz was also successful in tackling more complicated
boundary conditions, such as Bose gas on a half-line[146, 147] and in a box with a
finite delta barrier in the middle[148]. In more general terms, classes of boundary con-
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ditions which preserve integrability for the Bethe ansatz were intensively discussed by
the community, see for example [149, 150].

The Bethe ansatz technique relies on the fact that the system has only point-
like interactions, and that far away from each other the particles behave as if they
were free. One can then represent the total N -body wave function as a superposition
of plane waves with momenta which are ordered according to different permutations
P = (p1, p2, . . . , pN) in each region of the wave function with the particles ordered
according to Q = (q1, q2, . . . , qN) as xq1 ≤ xq2 ≤ · · · ≤ xqN [28, 151]

Ψ(x1, . . . , xN) =
∑

P=(p1,...,pN )

∑
Q=(q1,...,qN )

AP,Q e
i
N∑
j=1

kpjxqj
Θ(TQ), (3.1)

where Θ(TQ) =
N∏
j=1

θ(xqj − xqj−1
) with θ(x) being the Heaviside Theta function.

Another necessary condition for the solution to exist is the non-diffractiveness of
the system[28]. This means that all three-body scattering events can be decomposed
into a sequence of two-body scattering events, and that their order does not matter.
In mathematical terms this condition takes form of the Yang–Baxter relations[152].
The two-body scattering events can then only result in particles completely passing
through each other, thus exchanging their coordinates, or bouncing off each other, thus
exchanging their momenta. Both these outcomes correspond to particles acquiring a
phase. In terms of the ansatz, this reasoning translates into expressions for various
ratios between the coefficients AP,Q, for example,

AP̃ ,Q
AP,Q

= eiθ(kp1 ,...,kpN ) (3.2)

with P̃ = (p1, . . . , pj, pj−1, . . . , pN) in case of a momentum exchange.
These expressions for the ratios combined with the boundary conditions generate

a system of N transcendental equations for the unknown quasi-momenta k1, . . . , kN
called the Bethe equations. In general, due to their transcendental nature, the Bethe
equations have to be solved numerically.

The set of the expressions for the ratios between the coefficients can also be trans-
formed into recursive expressions for all coefficients AP,Q in terms of one of them, which
can be fixed with the normalization condition. This allows for the determination of
the full many-body wave function.

In next section I will review the use of the Bethe ansatz to solve the model of a
Bose gas confined in a box as a basic model for a finite many-body system.

3.2 The Lieb–Liniger model in a box
ConsiderN distinguishable particles trapped in a one-dimensional infinite well of length
L. If the particles have point-like interactions of strength c, then the Hamiltonian of
this system reads

Ĥ = − ~2

2m

N∑
j=1

∂2

∂x2
j

+ c

N∑
j>l

δ(xj − xl). (3.3)
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The wavefunction also has to go to zero at the edges of the infinite well, which translates
into the boundary conditions

Ψ

(
xj = ±L

2

)
= 0, j = 1, . . . , N. (3.4)

Due to finiteness of the system, we have to take into account reflection events. To
do that we will introduce additional summation parameters ~ε = (ε1, ε2, . . . , εN) with
εj = {±1} for all j = 1, . . . , N , which allows to explicitly include plane waves with
inverted momenta. The modified Bethe ansatz wave function then becomes

Ψ(x1, . . . , xN) =
∑
Q

∑
P

∑
~ε

AQ~εP e
i
N∑
j=1

εjkpjxqj
Θ(TQ). (3.5)

Here the sums over P = (p1, p2, . . . , pN) and Q = (q1, q2, . . . , qN) are over all permu-
tations of the momenta and coordinates indices, respectively, and AQ~εP ∈ C are the
corresponding coefficients.

As the interaction terms in the Hamiltonian (3.3) are point-like, they can be re-
placed by the boundary condition for the wavefunction of the form

Ψ
∣∣∣xqj−xqj−1=0+ = Ψ

∣∣∣xqj−xqj−1=0− , (3.6)

and similar for the derivative of the wavefunction(
∂

∂xqj
− ∂

∂xqj−1

)
Ψ
∣∣∣xqj−xqj−1=0+−

(
∂

∂xqj
− ∂

∂xqj−1

)
Ψ
∣∣∣xqj−xqj−1=0− =

2mc

~2
Ψ
∣∣∣xqj=xqj−1

, ∀Q.
(3.7)

Below I will consider the two-particle case for clarity. The ansatz wavefunction can
then be written as

Ψ(x, y) =
∑
P

∑
~ε

(A~εP θ(x < y) + B~εP θ(y ≤ x)) ei(εxkp1x+εykp2y), (3.8)

where the two particles have coordinates x and y, and ~ε = (εx, εy). The boundary
conditions from the walls of the box become

Ψ

(
x = ±L

2
, y

)
= Ψ

(
x, y = ±L

2

)
= 0, (3.9)

and the interaction term can be replaced by the wavefunction continuity condition

Ψ|x−y=0+ = Ψ|x−y=0− , (3.10)

and the scattering condition(
∂

∂x
− ∂

∂y

)
Ψ|x−y=0+ −

(
∂

∂x
− ∂

∂y

)
Ψ|x−y=0− =

2mc

~2
Ψ|x=y . (3.11)
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After applying the left hard wall condition to the ansatz wavefunction, we get∑
P

∑
~ε

(A~εP θ(x < y) + B~εP θ(y ≤ x)) ei(εxkp1(−L2 )+εykp2y) = 0, (3.12)∑
P

∑
~ε

(A~εP θ(x < y) + B~εP θ(y ≤ x)) ei(εxkp1x+εykp2(−L2 )) = 0. (3.13)

Considering that the particles at x and y can only reflect from the left barriers if x < y
or y < x, we can simplify the previous equations to∑

P

∑
~ε

A~εP eiεxkp1(−L2 ) = 0, (3.14)∑
P

∑
~ε

B~εP eiεykp2(−L2 ) = 0. (3.15)

Furthermore, all terms for different values of P have to go to zero independently, giving

Aεxkp1 ,εykp2 e−iεxkp1
L
2 +A−εxkp1 ,εykp2 eiεxkp1

L
2 = 0, (3.16)

Bεxkp1 ,εykp2 e−iεykp2
L
2 + Bεxkp1 ,−εykp2 eiεykp2

L
2 = 0, (3.17)

and the conditions on the coefficients for the reflection against the left wall then become

←−RxA
~εP =

A−εxkp1 ,εykp2
Aεxkp1 ,εykp2

= −e−iεxkp1L, (3.18)

←−RyB
~εP =

Bεxkp1 ,−εykp2
Bεxkp1 ,εykp2

= −e−iεykp2L, (3.19)

and analogously, the reflection against the right wall gives

−→RxB
~εP =

B−εxkp1 ,εykp2
Bεxkp1 ,εykp2

= −eiεxkp1L, (3.20)

−→RyA
~εP =

Aεxkp1 ,−εykp2
Aεxkp1 ,εykp2

= −eiεykp2L. (3.21)

Let us now substitute the ansatz in Eq. (3.8) into the continuity condition in Eq. (3.10).
This gives ∑

~ε

∑
P

B~εP eix(εxkp1+εykp2 ) =
∑
~ε

∑
P

A~εP eix(εxkp1+εykp2 ). (3.22)

The arguments of the exponents are the same if the momenta of the particles are ex-
changed and are independent in any other arrangement, which gives a relation between
the four coefficients of the form

B~εP + B←→
~εP

= A~εP +A←→
~εP
. (3.23)

Here ~εP = (εxkp1 , εykp2) and
←→
~εP = (εykp2 , εxkp1). We can derive the scattering condi-

tions on the coefficients after substituting the ansatz (3.8) into the scattering condition
(3.11) and taking the terms to be independent

i(εxkp1 − εykp2)
(
B~εP − B←→~εP −A~εP +A←→

~εP

)
=

2mc

~2

(
A~εP +A←→

~εP

)
. (3.24)
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After substituting the expression for B←→
~εP

from Eq. (3.23) into the previous equation,
we get

i(εxkp1 − εykp2) (B~εP −A~εP ) =
mc

~2

(
A~εP +A←→

~εP

)
. (3.25)

The scattering relations for the two scattering outcomes, the particles exchanging their
positions or momenta, are defined as

Sxy~εP =
B~εP
A~εP

, (3.26)

SA~εP =
A←→
~εP

A~εP
, (3.27)

and can be used to rewrite Eq. (3.25) as

i(εxkp1 − εykp2) (Sxy~εP − 1) =
mc

~2

(
1 + SA~εP

)
. (3.28)

Finally, we can derive the relation between the two scattering outcomes as

Sxy~εP = 1− i
mc

~2(εxkp1 − εykp2)

(
1 + SA~εP

)
, ∀~εP. (3.29)

This relation has to hold for all ~εP , including

Sxy−εxkp1 ,εykp2 = 1 + i
mc

~2(εxkp1 + εykp2)

(
1 + SA−εxkp1 ,εykp2

)
. (3.30)

By remembering that

SA−εxkp1 ,εykp2 =
Aεykp2 ,−εxkp1
A−εxkp1 ,εykp2

, (3.31)

and taking into account equations (3.21) and (3.18), we get

Sxy−εxkp1 ,εykp2 = 1 + i
mc

~2(εxkp1 + εykp2)

1 +

−→RyA
←→
~εP←−RxA
~εP

SA~εP

 (3.32)

On the other hand, from Eq. (3.18) and Eq. (3.20) we get

Sxy−εxkp1 ,εykp2 =
B−εxkp1 ,εykp2
A−εxkp1 ,εykp2

=

−→RxB
~εP←−RxA
~εP

× B~εPA~εP
=

−→RxB
~εP←−RxA
~εP

× Sxy~εP . (3.33)

These two forms of Sxy−εxkp1 ,εykp2 have to be equivalent, giving an expression for SA~εP of
the form

SA~εP =

−→RxB
~εP

(
−i ~2

mc
(k2
p1
− k2

p2
)− (εxkp1 + εykp2)

)
−←−RxA

~εP

(
−i ~2

mc
(k2
p1
− k2

p2
) + (εxkp1 − εykp2)

)
−→RyA
←→
~εP

(εxkp1 − εykp2) +
−→RxB

~εP (εxkp1 + εykp2)
, ∀~εP.

(3.34)
Now we have all ingredients to construct the Bethe equations for this system. In order
to do that, we need to consider all possible ways of inverting a particle’s momentum.
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Consider a particle being on the right hand side of the other particle. Then its momen-
tum can be inverted by reflecting from the right wall, or by scattering with the other
particle and then scattering back after reflecting from the left wall. These two ways of
inverting the momentum have to be equivalent, giving the first Bethe equation

−→RyA
~εP =

Sxy~εP
Sxyεxkp1 ,−εykp2

←−RyB
~εP . (3.35)

Another Bethe equation can be obtained by considering another outcome of the scat-
tering between two particles: they exchange momentum, then the second particle gets
reflected from the right wall, and lastly, it exchanges the inverted momentum again
with the first particle. This gives

−→RyA
~εP =

SA~εP
SAεxkp1 ,−εykp2

←−RxA←→
~εP
. (3.36)

The analogous equations for the second particle x are satisfied trivially, so we end up
with two Bethe equations for two quasi-momenta of the particles. The energies of the
corresponding eigenstates are then given by

E(k1, k2) =
~2

2m
(k2

1 + k2
2). (3.37)

An example of the solutions of the Bethe equations is shown in Fig. 3.1. The allowed
quasi-momenta are given by the intersections of the two curves. The lines k1 = 0,
k2 = 0, k1 = k2 and k1 = −k2 do not correspond to physical solutions. The k1 = 0 and
k2 = 0 cases violate the Heisenberg uncertainty principle, while k1 = k2 and k1 = −k2

describe bound pairs which can never scatter and are not captured correctly by the
ansatz if c 6= 0.

It is easy to see that if k1 and k2 are the solutions of the Bethe equations, then ε1k1

and ε2k2 are also the solutions with the same energy for any signs (ε1, ε2). This fact
leads to a four-fold degeneracy of the eigenstates, as shown in Fig. 3.1.

From the continuity equations (3.23) and (3.27) and by defining

SB~εP =
B←→
~εP

B~εP
, (3.38)

we get another relation

B~εP
(
1 + SB~εP

)
= A~εP

(
1 + SA~εP

)
. (3.39)

This equation, together with Eq. (3.26), gives the expression for SB~εP

SB~εP =
SA~εP

(
εxkp1 − εykp2 + imc~2

)
+ imc~2(

εxkp1 − εykp2 − imc~2

)
− imc~2 SA~εP

, ∀~εP. (3.40)
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Figure 3.1: Plot of the curves given by the Bethe equations (3.35) and (3.36). The
allowed values of quasi-momenta k1 and k2 are given by the intersection of the blue
and the orange curves. It is easy to see a 4-fold degeneracy of the resulting eigenstates.
The lines k1 = 0, k2 = 0, k1 = k2 and k1 = −k2 do not represent a physical solution.
Here I use natural units ~ = m = 1, the size of the box is L = 10 and c = 1.

Now we have all relations between the coefficients and we can finally express them as

A−k1,k2 =
←−RxA

k1,k2
A0, (3.41)

Ak1,−k2 =
−→RyA

k1,k2
A0, (3.42)

A−k1,−k2 =
←−RxA

k1,−k2

−→RyA
k1,k2
A0, (3.43)

Ak2,k1 = SAk1,k2
A0, (3.44)

A−k2,k1 = SAk1,−k2

−→RyA
k1,k2
A0, (3.45)

Ak2,−k1 = SA−k1,k2

←−RxA
k1,k2
A0, (3.46)

A−k2,−k1 = SA−k1,−k2

−→RyA
−k1,k2

←−RxA
k1,k2
A0, (3.47)

and

Bk1,k2 = Sxyk1,k2
A0, (3.48)

B−k1,k2 =
−→RxB

k1,k2
Sxyk1,k2

A0, (3.49)

Bk1,−k2 =
←−RyB

k1,k2
Sxyk1,k2

A0, (3.50)

B−k1,−k2 =
−→RxB

k1,−k2

←−RyB
k1,k2
Sxyk1,k2

A0, (3.51)

Bk2,k1 = SBk1,k2
Sxyk1,k2

A0, (3.52)

B−k2,k1 = SBk1,−k2

←−RyB
k1,k2
Sxyk1,k2

A0, (3.53)

Bk2,−k1 = SB−k1,k2

−→RxB
k1,k2
Sxyk1,k2

A0, (3.54)

B−k2,−k1 = SB−k1,−k2

←−RyB
−k1,k2

−→RxB
k1,k2
Sxyk1,k2

A0. (3.55)
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Figure 3.2: Schematic of the Bose gas in a box with three barriers. The two point-like
barriers can be arbitrarily positioned and have arbitrary heights.
I only consider the ordering of the N particles where x1 < x2 < · · · < xN . All other
permutations of particles can be obtained through the symmetry considerations due to
statistics of the particles.

The remaining coefficient A0 can be fixed using the normalization condition

L
2∫∫
−L

2

Ψ(x, y)dxdy = 1. (3.56)

With all these coefficients determined, the full wave function can therefore be straight-
forwardly reconstructed.

In conclusion, in this section I reviewed how the coordinate Bethe ansatz can be
used to obtain the equations which define the allowed quasi-momenta as well as the
expression for the eigenstates of a model Hamiltonian with two distinguishable particles
in a box. In the next section I will discuss the use of the Bethe ansatz in order to obtain
the solution of a modified system with one or more point-like barriers of arbitrary
heights positioned within the box.

3.3 Multiple indistinguishable particles in a box with
two barriers

To establish the underlying ideas and concepts of the AFKP model, I will first discuss
the solution of the Bose gas trapped in an infinite square well with two arbitrarily
positioned barriers of arbitrary heights (see Fig. 3.2). I will derive the Yang–Baxter
relations for this model and prove that it is in general not solvable by the Bethe ansatz.
I will also review the partially solvable special case studied by Liu and Zhang in [148].
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The total Hamiltonian for the system with N particles is

Ĥ =
N∑
j=1

(
− ~2

2m

∂2

∂x2
j

+ αδ(xj − xα) + βδ(xj − xβ)

)
+ c

N∑
i<j=1

δ(xj − xi). (3.57)

Here the left (right) barrier is of height α (β) and has the position xα (xβ), and the
particle interaction has strength c. The two barriers in this system form three traps,
and the wavefunction must go to zero at the walls of the box. As discussed in sec. 3.2,
due to zero-range nature of the interaction and the potential barriers, the problem can
be reduced to the free space Lieb–Liniger model

− ~2

2m

N∑
j=1

∂2Ψ (x1, ..., xN)

∂x2
j

= EΨ (x1, ..., xN) (3.58)

with boundary conditions which account for the scattering between the particles and
between the particles and the barriers.

The scattering condition between particles in the same trap is given by [151](
∂

∂xj+1

− ∂

∂xj
− mc

~2

)
Ψ (x1, ..., xN) = 0, (3.59)

and the scattering of the particles with the α-barriers is captured by(
∂

∂xj

∣∣∣∣xj=xα+0 −
∂

∂xj

∣∣∣∣xj=xα−0 −
2mα

~2

∣∣∣∣xj=xα)Ψ (x1, ..., xN) = 0, (3.60)

with the α-continuity condition

Ψ (x1, ..., xN)
∣∣
xj=xα−0 = Ψ (x1, ..., xN)

∣∣
xj=xα+0 . (3.61)

Analagous conditions hold for the β-barrier,(
∂

∂xj

∣∣∣∣xj=xβ+0 −
∂

∂xj

∣∣∣∣xj=xβ−0 −
2mβ

~2

∣∣∣∣xj=xβ)Ψ (x1, ..., xN) = 0 (3.62)

and
Ψ (x1, ..., xN)

∣∣
xj=xβ−0 = Ψ (x1, ..., xN)

∣∣
xj=xβ+0 . (3.63)

The left and right infinite wall conditions are

Ψ (x1, ..., xN)
∣∣∣xj=−L2 = 0 , (3.64)

and
Ψ (x1, ..., xN)

∣∣∣xj=L
2

= 0 , (3.65)

and I will only consider the regions of space where the particles are ordered as

T : x1 ≤ x2 ≤ . . . ≤ xN . (3.66)

All other regions can be obtained using bosonic symmetry.
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Let us now denote the number of particles in the left, middle and right traps as nL,
nM and nR. Before we construct the ansatz wave function, it is natural to subdivide the
space of the problem further into regions with different arrangements of the number of
atoms between the traps nL, nM = N − nL − nR and nR (see Fig. 3.2)

TnL,nR
: x1 ≤ x2 ≤ . . . ≤ xnL

≤ xα ≤ xnL+1 ≤ . . . ≤ xN−nR
≤ xβ ≤ xN−nR+1 ≤ . . . ≤ xN .

(3.67)
The ansatz wave function is then a piecewise function consisting of the pieces defined
on these regions

X (x1, .., xN) =
N∑

nL=0

N−nL∑
nR=0

XnL,nR
(x1, ..., xN) Θ (TnL,nR

) , (3.68)

whereXnL,nR
(x1, ..., xN) are defined on TnL,nR

, and the Heaviside theta function Θ (TnL,nR
)

is non-zero only in region TnL,nR
. Analogously to section 3.2, the ansatz wavefunction

in each region TnL,nR
is a superposition of plane waves

XnL,nR
(x1, ..., xN) =

∑
~ε

∑
~P

AnL,nR

(
~ε ~P
)
× exp

[
i
N∑
l=1

εplkplxl

]
. (3.69)

All permuation notation is the same as in section 3.2.
The reflection against the walls of the box is only relevant to the leftmost particle in

the left well and the rightmost particle in the right well, translating into the expressions
for the left and right reflection matrices for the leftmost and the rightmost particle
respectively

←−R1
nL,nR

(~ε ~P ) =
AnL,nR

(−εp1kp1 , εp2kp2 , . . .)

AnL,nR
(εp1kp1 , εp2kp2 , . . .)

= −e−iεp1kp1L, nL > 0 (3.70)

−→RN
nL,nR

(~ε ~P ) =
AnL,nR

(
. . . , εpN−1

kpN−1
,−εpNkpN

)
AnL,nR

(
. . . , εpN−1

kpN−1
, εpNkpN

) = −eiεpN kpNL, nR > 0.(3.71)

From Eq. (3.59) we can obtain the relation for the scattering of two adjacent particles
in the same well as

Sj−1,j
nL,nR

(
~ε ~P
)

=
AnL,nR

(
εp1p1, ..., εpjpj, εpj−1

pj−1, .., εpNpN
)

AnL,nR

(
εp1p1, ..., εpj−1

pj−1, εpjpj, .., εpNpN
) =

kpj − kpj−1
+ icm

~2

kpj − kpj−1
− icm

~2

,

j = 1, .., nL ∪ nL+1, .., N − nR ∪N − nR + 1, .., N,

(3.72)

and any particle in the left well can then be scattered all the way towards the left wall

S1,j
nL,nR

(
~ε ~P
)

=
AnL,nR

(
εpjkpj , εp1kp1 , .., εpnL

kpnL
, .., εpNkpN

)
AnL,nR

(
εp1kp1 , .., εpjkpj , .., εpnL

kpnL
, .., εpNkpN

)
=

j−1∏
k=1

εpjkpj − εpkkpk + icm
~2

εpjkpj − εpkkpk − icm
~2

j = 1, .., nL.

(3.73)
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The same reasoning can be applied to the particles in the right trap, so we can scatter
the j ≥ N − nR + 1-th particles in the right trap all the way to the right wall as

Sj,NnL,nR

(
~ε ~P
)

=
AnL,nR

(
εp1kp1 , .., εpN−nR+1

kpN−nR+1
, .., εpNkpN , εpjkpj

)
AnL,nR

(
εp1kp1 , .., εpN−nR+1kpN−nR+1, .., εpjkpj , .., εpNkpN

)
=

N∏
l=j+1

εplkpl − εpjkpj + icm
~2

εplkpl − εpjkpj − icm
~2

,

j = N − nR + 1, .., N

(3.74)

Analogous expression will be valid for particles scattering in the middle well.
In order to find expression for the reflection matrix for any particle in the left trap,

we need to first scatter that particle with all the particles on the left, reflect it off the
left wall and then scatter back until it returns to its original position. We can account
for this by substituting Eq. (3.73) into Eq. (3.70)

←−Rj
nL,nR

(
~ε ~P
)

=
AnL,nR

(
εp1kp1 , ..,−εpjkpj , .., εpnL

kpnL
, .., εpNkpN

)
AnL,nR

(
εp1kp1 , .., εpjkpj , .., εpnL

kpnL
, .., εpNkpN

)
Eq. (3.73)

=

j−1∏
k=1

−εpj kpj−εpkkpk−
icm
~2

−εpj kpj−εpkkpk+ icm
~2

j−1∏
k=1

εpj kpj−εpkkpk−
icm
~2

εpj kpj−εpkkpk+ icm
~2

×
AnL,nR

(
−εpjkpj , εp1kp1 , .., εpnL

kpnL
, .., εpNkpN

)
AnL,nR

(
εpjkpj , εp1kp1 , .., εpnL

kpnL
, .., εpNkpN

)
Eq. (3.70)

=

j−1∏
k=1

(
εpjkpj − εpkkpk + icm

~2

)(
εpjkpj − εpkkpk − icm

~2

) (εpjkpj + εpkkpk + icm
~2

)(
εpjkpj + εpkkpk − icm

~2

) × (−e−iεpj kpjL
)

=

j−1∏
k=1

k2
pj
− k2

pk
+ 2icm

~2 εpjkpj −
(
cm
~2

)2

k2
pj
− k2

pk
− 2icm

~2 εpjkpj −
(
cm
~2

)2 ×
(
−e−iεpj kpjL

)
,

j = 1, . . . , nL,∀nL > 0, nR ≤ N − nL.

(3.75)

Note that for j = nL this expression does not depend on the signs of all other mo-
menta in the left trap or the order of the corresponding particles, but depends on the
distribution of the particles between the traps.

Analogously to the left trap case, using Eq. (3.71) and Eq. (3.74) we obtain the
right reflection matrix expression for all particles in the right trap, which reads

−→Rj
nL,nR

(
~ε ~P
)

=
N∏

l=j+1

k2
pj
− k2

pk
− 2icm

~2 εpjkpj −
(
cm
~2

)2

k2
pj
− k2

pk
+ 2icm

~2 εpjkpj −
(
cm
~2

)2 ×
(
−eiεpj kpjL

)
,

j = N − nR + 1, .., N, ∀nL > 0, nR ≤ N − nL.

(3.76)

Eq. (3.60) describes the scattering with the α-barrier. After substituting Eq. (3.68)
into Eq. (3.60) and assuming independence of the regions, we obtain the equation for
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each region as

∂

∂xn

(
Xn−1,nR

(x1, ..., xN) Θ(Tn−1,nR
)

)∣∣∣∣xn=xα+0

− ∂

∂xn

(
Xn,nR

(x1, ..., xN) Θ(Tn,nR
)

)∣∣∣∣xn=xα−0

− 2αm

~2
[Xn−1,nR

(x1, ..., xN) Θ(Tn−1,nR
) +Xn,nR

(x1, ..., xN) Θ(Tn,nR
)]|xn=xα = 0,

∀n > 0, nR ≤ N − n.
(3.77)

The partial derivative then gives(
∂

∂xn
Xn−1,nR

(x1, ..., xN) Θ(Tn−1,nR
)

)∣∣∣∣xn=xα+0 + (Xn−1,nR
(x1, ..., xN) δ(xn − xα))|xn=xα+0

−
(

∂

∂xn
Xn,nR

(x1, ..., xN) Θ(Tn,nR
)

)∣∣∣∣xn=xα−0 − (Xn,nR
(x1, ..., xN) δ(xn − xα))|xn=xα−0

− 2αm

~2
(Xn−1,nR

(x1, ..., xN) Θ(Tn−1,nR
))|xn=xα −

2αm

~2
(Xn,nR

(x1, ..., xN) Θ(Tn,nR
))|xn=xα = 0,

∀n > 0, nR ≤ N − n.
(3.78)

Since, by definition, we have

Θ(Tn−1,nR
)|xn=xα+0 = Θ(Tn,nR

)|xn=xα−0 = 1, (3.79)
δ(xn − xα)|xn=xα+0 = δ(xn − xα)|xn=xα−0 = 0 , (3.80)

we get [
∂

∂xn
Xn−1,nR

(x1, ..., xN)− 2αm

~2
Xn−1,nR

(x1, ..., xN)

]∣∣∣∣xn=xα

−
[
∂

∂xn
Xn,nR

(x1, ..., xN) +
2αm

~2
Xn,nR

(x1, ..., xN)

]∣∣∣∣xn=xα = 0,

∀n > 0, nR ≤ N − n.

(3.81)

After substituting Eq. (3.69) into Eq. (3.81), we get∑
~ε ′

∑
~P

[
An−1,nR

(
~ε ′ ~P , εpn = +1

)
eikpnxα

(
ikpn −

2αm

~2

)

+ An−1,nR

(
~ε ′ ~P , εpn = −1

)
e−ikpnxα

(
−ikpn −

2αm

~2

)]
× exp

[
i
N∑
l 6=n

εplkplxl

]

−
∑
~ε ′

∑
~P

[
An,nR

(
~ε ′ ~P , εpn = +1

)
eikpnxα

(
ikpn +

2αm

~2

)

+ An,nR

(
~ε ′ ~P , εpn = −1

)
e−ikpnxα

(
−ikpn +

2αm

~2

)]
× exp

[
i
N∑
l 6=n

εplkplxl

]
= 0,

(3.82)
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and taking into account the linear independence of the expressions under the sums, we
can simplify this equation to

An−1,nR

(
~ε ′ ~P , εpn = +1

)[
ikpn −

2αm

~2

]
+An−1,nR

(
~ε ′ ~P , εpn = −1

)
e−2ikpnxα

[
−ikpn −

2αm

~2

]
−An,nR

(
~ε ′ ~P , εpn = +1

)[
ikpn +

2αm

~2

]
−An,nR

(
~ε ′ ~P , εpn = −1

)
e−2ikpnxα

[
−ikpn +

2αm

~2

]
= 0.

(3.83)

We can use the left reflection matrix in Eq. (3.75) to express An,nR

(
~ε ′ ~P , εpn = −1

)
and obtain

An−1,nR

(
~ε ′ ~P , εpn = +1

)[
ikpn −

2αm

~2

]
+An−1,nR

(
~ε ′ ~P , εpn = −1

)
e−2ikpnxα

[
−ikpn −

2αm

~2

]
−An,nR

(
~ε ′ ~P , εpn = +1

){[
ikpn +

2αm

~2

]
+e−2ikpnxα

[
−ikpn +

2αm

~2

]←−Rn
n,nR

(
~ε ~P

)}
= 0.

(3.84)

Another condition on the wave function is the continuity condition from Eq. (3.61).
By substituting Eq. (3.69) into Eq. (3.61) and assuming independence of the regions
and different permutations of momenta, we obtain the relation

An,nR

(
~ε ′ ~P , εpn = +1

)
eikpnxα +An,nR

(
~ε ′ ~P , εpn = −1

)
e−ikpnxα =

An−1,nR

(
~ε ′ ~P , εpn = +1

)
eikpnxα +An−1,nR

(
~ε ′ ~P , εpn = −1

)
e−ikpnxα .

(3.85)

By substituting An,nR

(
~ε ′ ~P , εpn = −1

)
with an expression from Eq. (3.75) and multi-

plying by e−ikPnxα , we get

An,nR

(
~ε ′ ~P , εpn = +1

) [
1 + e−i2kPnxαRn,nR

(
pn, P̃

′
)]
−

−An−1,nR

(
~ε ′ ~P , εpn = +1

)
−An−1,nR

(
~ε ′ ~P , εpn = −1

)
e−i2kpnxα = 0.

(3.86)

Now we can write the expressions for An,nR

(
~ε ′ ~P , εpn = +1

)

An,nR

(
~ε ′ ~P , εpn = +1

)
=
An−1,nR

(
~ε ′ ~P , εpn = +1

)
+An−1,nR

(
~ε ′ ~P , εpn = −1

)
e−i2kpnxα[

1 + e−i2kpnxα
←−Rn

n,nR

(
~ε ~P
)] ,

(3.87)
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and by substituting it into Eq. (3.84), we obtain

←−Rn
n−1,nR

(
~ε ~P
)

=
An−1,nR

(
~ε ′ ~P , εpn = −1

)
An−1,nR

(
~ε ′ ~P , εpn = +1

)

=

[
ikpn − 2αm

~2

]
− [ikpn+ 2αm

~2 ]+e−2ikpnxα [−ikpn+ 2αm
~2 ]
←−Rnn,nR

(~ε ~P)
1+e−i2kpnxα

←−Rnn,nR
(~ε ~P)

−
[
−ikpn − 2αm

~2

]
+

[ikpn+ 2αm
~2 ]+e−2ikpnxα [−ikpn+ 2αm

~2 ]
←−Rnn,nR

(~ε ~P)
1+e−i2kpnxα

←−Rnn,nR
(~ε ~P)

× e2ikpnxα

=
−2αm

~2 + e−2ikpnxα
[
ikpn − 2αm

~2

]←−Rn
n,nR

(
~ε ~P
)

[
ikpn + 2αm

~2

]
+ 2αm

~2 e−2ikpnxα
←−Rn

n,nR

(
~ε ~P
) × e2ikpnxα .

(3.88)

Note, that if there is no α barrier, then
←−Rn

n−1,nR

(
~ε ~P
)∣∣∣α=0 =

←−Rn
n,nR

(
~ε ~P
)
, as expected.

If the reflecting particle is not the leftmost in the middle well, then we first have to
scatter it with all the particles on its left (Eq. (3.73)) until it is the leftmost particle,
then reflect it as in Eq. (3.88) and then scatter back with its neighbours until the
particle is back at its position. The expression for the reflection matrix then reads

←−Rn+j
n,nR

(
~ε ~P
)

=
An,nR

(
~ε ′ ~P , εpn+j

= −1
)

An,nR

(
~ε ′ ~P , εpn+j

= +1
) =

j−1∏
l=1

k2
pn+j
− k2

pn+l
+ 2icm

~2 εpn+j
kpn+j

−
(
cm
~2

)2

k2
pn+j
− k2

pn+l
− 2icm

~2 εpn+j
kpn+j

−
(
cm
~2

)2 ×
←−Rn

n,nR

(
. . . , εpnpn, εpn+j

pn+j, εpn+1pn+1, . . .
)

0 < j ≤ N − nR − n.
(3.89)

We can also obtain an expression for An−1,nR

(
~ε ′ ~P , εpn = −1

)
from Eq. (3.86)

An−1,nR

(
~ε ′ ~P , εpn = −1

)
=

e2ikpnxα
(
An,nR

(
~ε ′ ~P , εpn = +1

) [
1 + e−i2kpnxα

←−Rn
n,nR

(
~ε ~P
)]
−An−1,nR

(
~ε ′ ~P , εpn = +1

))
.

(3.90)

This allows to reconstruct the scattering matrix for the n-th particle against the α-
barrier from the block (n− 1, nR) to the block (n, nR) by substituting this expression
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into Eq. (3.84)

Sα,nn,nR

(
~ε ~P
)

=
An,nR

(
~ε ~P
)

An−1,nR

(
~ε ~P
) =

[
ikpn − 2αm

~2

]
+
[
ikpn + 2αm

~2

][
ikpn + 2αm

~2

] (
1 + e−i2kpnxα

←−Rn
n,nR

(
~ε ~P
))

+
[
ikpn + 2αm

~2

]
+e−2ikpnxα

[
−ikpn + 2αm

~2

]←−Rn
n,nR

(
~ε ~P
) =

ikpn[
ikpn + 2αm

~2

]
+ 2αm

~2 e−i2kpnxα
←−Rn

n,nR

(
~ε ~P
) .

(3.91)

Note, that in the absence of the α-barrier Sα,nn,nR

(
~ε ~P
)∣∣∣α=0 = 1 as expected.

Analogously to the left barrier, we can obtain the expression for the reflection matrix
of an n-th particle in the block (nL, N −n) (the rightmost particle in the middle trap)

−→Rn
nL,N−n

(
~ε ~P
)

=
AnL,N−n

(
~ε ′ ~P , εpn = −1

)
AnL,N−n

(
~ε ′ ~P , εpn = +1

)
=
−2βm

~2 − e−i2kpnxβ
[
ikpn + 2βm

~2

]−→Rn
nL,N−n+1

(
~ε ~P
)

[
−ikpn + 2βm

~2

]
+ 2βm

~2 e−i2kpnxβ
−→Rn

nL,N−n+1

(
~ε ~P
) × ei2kpnxβ .

(3.92)

Again, if there is no β-barrier, then
−→Rn

nL,N−n

(
~ε ~P
)∣∣∣β=0 =

−→Rn
nL,N−n+1

(
~ε ~P
)
, as ex-

pected. We can also obtain the scattering matrix for the n-th particle against β-barrier
from the block (nL, N − n) to the block (nL, N − n+ 1)

Sβ,nnL,N−n+1

(
~ε ~P
)

=
AnL,N−n+1

(
~ε ~P
)

AnL,N−n
(
~ε ~P
)

=
ikpn[

ikpn − 2βm
~2

]
− 2βm

~2 e−i2kpnxβ
−→Rn

nL,N−n+1

(
~ε ~P
) . (3.93)

If there is no β-barrier, Sβ,nnL,N−n+1

(
~ε ~P
)∣∣∣β=0 = 1, as expected.

3.3.1 The Yang–Baxter equations

In order for the Bethe ansatz solution to be correct, the Yang–Baxter (YB) equations,
which ensure that all three-body scattering events are equal, have to be satisfied. In the
system there are two types of three-body scattering events: the simultaneous scattering
of two particles and a barrier and the scattering of three particles in the same well.
The latter is trivially satisfied, however I will show below that the particle-barrier
scattering does not satisfy the Yang–Baxter relations. Earlier we have denoted the
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scattering matrix of a particle against the α-barrier as Sα,jnL,nR

(
~ε ~P
)

and with the β-

barrier as Sβ,jnL,nR

(
~ε ~P
)
. This notation means that the particle pj scatters from the

α-barrier to the left (β-barrier to the right), connecting the blocks (nL − 1, nR) (or
(nL, nR − 1)) with the block (nL, nR). The scattering between two particles in the
same well is denoted as Sj,j+1

nL,nR
(~ε ~P ), and is the same for all blocks as long as the two

scattering particles pj and pj+1 are in the same well.
The Yang–Baxter equations postulate that it should not matter if two particles first

scatter with each other and then one-by-one with the barrier, or first scatter with the
barrier and then scatter with each other in the new block

Sα,nn,nR
(~ε ~P )Sα,n+1

n+1,nR
(~ε ~P )Sn,n+1

n+1,nR
(~ε ~P )

Y B
=

Sn,n+1
n−1,nR

(~ε ~P )Sα,nn,nR
(. . . , εpn+1kpn+1 , εpnkpn)Sα,n+1

n+1,nR
(. . . , εpn+1kpn+1 , εpnkpn).

(3.94)

Since the two scattering matrices Sn,n+1
n−1,nR

(~ε ~P ) and Sn,n+1
n+1,nR

(~ε ~P ) are equal, the relation
can be written as

Sα,nn,nR
(~ε ~P )Sα,n+1

n+1,nR
(~ε ~P ) = Sα,nn,nR

(. . . , εpn+1kpn+1 , εpnkpn)Sα,n+1
n+1,nR

(. . . , εpn+1kpn+1 , εpnkpn),

∀~P , 0 ≥ nR ≤ N − n− 1,

(3.95)

and a similar relation can be constructed for the β-barrier

Sβ,n+1
nL,N−n+2(~ε ~P )Sβ,nnL,N−n+1(~ε ~P ) = Sβ,n+1

nL,N−n+2(. . . , εpn+1kpn+1 , εpnkpn)Sβ,nnL,N−n+1(. . . , εpn+1kpn+1 , εpnkpn),

∀~P , 0 ≥ nL ≤ n− 2.

(3.96)

In the non-interacting case and the Tonks–Girardeau limit of infinitely repulsive inter-
actions the YB equations are trivially satisfied. However, if both barriers have finite
height and the interaction between the particles is finite, then the Yang–Baxter equa-
tions have consistent solutions only at non-physical values of quasi-momenta k1,2 = 0
and ±k1 = ±k2. An example of the curves given by the real and imaginary parts of
the Yang–Baxter equations with both barriers having non-zero heights are shown as
colored curves in Fig. 3.3. It is easy to see that even the curves which correspond to the
real and imaginary parts of the same equation have very few intersection points. The
only lines where all four parts coincide are the non-physical k1,2 = 0 and ±k1 = ±k2

lines. This pattern continues beyond the quaasi-momentum values shown in Fig. 3.3.
In the special case of one barrier having a zero height and another one positioned

in the center of the trap, there is only one non-trivial YB relation. The remaining
YB equation together with the Bethe equations form a system of three equation for
two variables. Despite the system being overdetermined, there are non-trivial solutions
for the quasi-momenta. One of such states is the odd-parity |b〉 = (|LL〉 − |RR〉)/

√
2

(noon) state, where particles are in superposition of both being on in the left and
in the right wells. Liu and Zhang [148] obtained these solutions using the approach
outlined above, and analytically investigated the tunneling dynamics of the odd-parity
state |b〉 with arbitrary interaction strength. They have concluded that the occupation
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Figure 3.3: An example of the curves given by the Yang–Baxter equations in eqs.
(3.95) and (3.96). The four curves correspond to the real and imaginary parts of the
eqs. (3.95) and (3.96) with L = 10, xα = −2, xβ = 1, α = 2, β = 1, c = 1. The allowed
values of quasi-momenta k1 and k2 are given by the intersection of all four curves.
Only the non-physical values k1,2 = 0 and ±k1 = ±k2 of quasi-momenta satisfy all four
equations and all four curves coincide. Here I use natural units ~ = m = 1.



54 The coordinate Bethe ansatz

Figure 3.4: Schematic of the finite arbitrary KP model with two distinguishable
particles. The two particles see the barriers at slightly shifted positions. This is
equivalent to saying that the first particle sees the barrier j at the position zj with
the height hj 6= 0, while the second particle sees it having zero height tj = 0. This is
reversed for the barrier j + 1, for which the apparent height is hj+1 = 0 for the first
particle.

probablities had strong dependence on the interaction which could not be explained
by the two-mode model used in the experiment by the Heidelberg group [123].

In this section I have shown that the many-body system with two barriers of finite
height is not generally solvable if the interactions between the particles are finite due
to the breakdown of the YB relations. Below I will consider two modifications of
this model - a model with two distinguishable particles with slightly shifted effective
external potential, and a single-particle system with arbitrary number of barriers of
arbitrary heights positioned arbitrarily in the box (the arbitrary finite Kronig–Penney
model).

3.4 Two distinguishable particles in the finite arbi-
trary Kronig–Penney model

As we have shown in 3.3, the infinite square well model with two barrier (and con-
sequently, the full AFKP model) is not solvable for more than one particle due to
violation of the Yang–Baxter relations. In an attempt to rectify this, I proposed a
modification of the AFKP model with two particles where true 3-body interactions
are not possible. For this let us consider two interacting distinguishable particles in a
square well. In addition to the square well the particles experience an external potential
which consists of point-like barriers, but the positions of these barriers are relatively
shifted for the two particles (see Fig. 3.4). The Hamiltonian is then

Ĥ = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ Vx(x) + Vy(y) + cδ(x− y), (3.97)

where

Vx(x) =
M∑
j=1

hjδ(x− zj), (3.98)

Vy(y) =
M∑
j=1

hjδ(y − zj − α). (3.99)
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Another way to write the external potentials is to consider 2M barriers, where even
barriers are shifted by α with respect to odd ones (z2j−z2j−1 = α), and set the heights
of the odd barriers for particle y (t2l−1) and even barriers for particle x (h2l) to be zero.
Then the external potential reads

V (x, y) =
2M∑
j=1

(hjδ(x− zj) + tjδ(y − zj)) , (3.100)

where

h2l = t2l−1 = 0,

h2l−1 = t2l,

z2l = z2l−1 + α, l = 1, . . . ,M.

(3.101)

Similarly to sections 3.2 and 3.5, the problem can be simplified to the free-particle
problem with the boundary conditions on the wavefunction given by

Ψ
(
x = ±L

2

)
= 0, (3.102)

Ψ
(
y = ±L

2

)
= 0, (3.103)(

∂
∂x

∣∣
x=zn+0 − ∂

∂x

∣∣
x=zn−0 − 2mhn

~2

∣∣
x=zn

)
Ψ(x, y) = 0 , n = 1, ..., 2M,(3.104)(

∂
∂y

∣∣∣y=zn+0 − ∂
∂y

∣∣∣y=zn−0 − 2mtn
~2

∣∣∣y=zn

)
Ψ(x, y) = 0 , n = 1, ..., 2M,(3.105)

Ψ|x=zn−0 = Ψ|x=zn+0, n = 1, ..., 2M. , (3.106)
Ψ|y=zn−0 = Ψ|y=zn+0, n = 1, ..., 2M. , (3.107)(

∂
∂x
− ∂

∂y

)
Ψ|x−y=0+ −

(
∂
∂x
− ∂

∂y

)
Ψ|x−y=0− = 2mc

~2 Ψ|x=y , (3.108)

Ψ|x−y=0+ = Ψ|x−y=0− . (3.109)

The wavefunction ansatz can then be written as

Ψ(x, y) = φ(x, y)θ(x < y) + ψ(x, y)θ(y ≤ x), (3.110)

where

φ(x, y) =
2M+1∑
l=1

l∑
j=1

∑
P

∑
~ε

A~εPj,l ei(εxkp1x+εykp2y)Θ(Dxj )Θ(Dyl ), (3.111)

ψ(x, y) =
2M+1∑
j=1

j∑
l=1

∑
P

∑
~ε

B~εPj,l ei(εxkp1x+εykp2y)Θ(Dxj )Θ(Dyl ), (3.112)

and where Dxl and Dyl denote particles being in l-th well

Dβl : zl−1 ≤ β < zl, β = {x, y}

z0 = −L
2
,

z2M+1 =
L

2
.

(3.113)
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Let us first consider the boundary conditions at the walls given by Eq. (3.102) and
(3.103). Similarly to the procedure in Eq. (3.12) in section 3.2, we get the reflection
conditions for the first and the last wells for each particle

←−RxA1,l

~εP =
A−εxkp1 ,εykp21,l

Aεxkp1 ,εykp21,l

= −e−iεxkp1L, l = 1, . . . , 2M + 1, (3.114)

−→RxB2M+1,l

~εP =
B−εxkp1 ,εykp22M+1,l

Bεxkp1 ,εykp22M+1,l

= −eiεxkp1L, l = 1, . . . , 2M + 1, (3.115)

←−RyBj,1
~εP =

Bεxkp1 ,−εykp2j,1

Bεxkp1 ,εykp2j,1

= −e−iεykp2L, j = 1, . . . , 2M + 1, (3.116)

−→RyAj,2M+1

~εP =
Aεxkp1 ,−εykp2j,2M+1

Aεxkp1 ,εykp2j,2M+1

= −eiεykp2L, j = 1, . . . , 2M + 1. (3.117)

Now let us consider the boundary conditions which connect two adjacent wells for
particle x in case where x < y, namely Eq. (3.104) and (3.106). From the continuity
condition Eq. (3.106) we get∑

~εP

(
A~εPn,leiεxkp1zn −A~εPn+1,le

iεxkp1zn
)

= 0, l = n+ 1, . . . , 2M + 1, (3.118)

which gives

Aεxkp1 ,εykp2n,l −Aεxkp1 ,εykp2n+1,l +e−2iεxkp1zn
(
A−εxkp1 ,εykp2n,l −A−εxkp1 ,εykp2n+1,l

)
= 0, l = n+1, . . . , 2M+1.

(3.119)
On the other hand, the condition for the derivative in Eq. (3.104) gives∑
~εP

(
iεxkp1(Aεxkp1 ,εykp2n+1,l eiεxkp1zn −Aεxkp1 ,εykp2n,l eiεxkp1zn)− 2mhn

~2
Aεxkp1 ,εykp2n+1,l eiεxkp1zn

)
= 0,

(3.120)
which simplifies to

iεxkp1

(
−Aεxkp1 ,εykp2n,l +A−εxkp1 ,εykp2n,l e−2iεxkp1zn

)
+

(
iεxkp1 −

2mhn
~2

)
Aεxkp1 ,εykp2n+1,l

−
(

iεxkp1 +
2mhn
~2

)
A−εxkp1 ,εykp2n+1,l e−2iεxkp1zn = 0.

(3.121)

After substituting the expression for A−εxkp1 ,εykp2n+1,l from Eq. (3.119) into Eq. (3.121), we
obtain

−
(

iεxkp1 +
2mhn
~2

)
Aεxkp1 ,εykp2n,l − mhn

~2
e−2iεxkp1znA−εxkp1 ,εykp2n,l + iεxkp1A

εxkp1 ,εykp2
n+1,l = 0.

(3.122)
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Let us define the reflection matrix for the particle x in the x < y region as

←−RxAn+1,l

~εP =
A−εxkp1 ,εykp2n+1,l

Aεxkp1 ,εykp2n+1,l

, (3.123)

and use this expression in Eq. (3.119) to obtain

Aεxkp1 ,εykp2n+1,l

(
1 + e−2iεxkp1zn

←−RxAn+1,l

~εP

)
= Aεxkp1 ,εykp2n,l + e−2iεxkp1znA−εxkp1 ,εykp2n,l . (3.124)

Eq. (3.122), one the other hand, gives

iεxkp1A
εxkp1 ,εykp2
n+1,l =

(
iεxkp1 +

2mhn
~2

)
Aεxkp1 ,εykp2n,l +

mhn
~2

e−2iεxkp1znA−εxkp1 ,εykp2n,l .

(3.125)
If we devide these two expression, we obtain

1 + e−2iεxkp1zn
←−RxAn+1,l

~εP =
iεxkp1

(
Aεxkp1 ,εykp2n,l + e−2iεxkp1znA−εxkp1 ,εykp2n,l

)
(
iεxkp1 + 2mhn

~2

)
Aεxkp1 ,εykp2n,l + mhn

~2 e−2iεxkp1znA−εxkp1 ,εykp2n,l

.

(3.126)
By dividing both numerator and denominator of the right hand side by Aεxkp1 ,εykp2n,l

and performing straightforward simplifications, we get the recursive expression for the
reflection matrix of particle x in the region x < y as

←−RxAn,l
~εP =

−mhn−1

~2 ei2zn−1εxkp1 + [iεxkp1 − mhn−1

~2 ]
←−RxAn−1,l

~εP

[iεxkp1 + mhn−1

~2 ] + mhn−1

~2 e−i2zn−1εxkp1
←−RxAn−1,l

~εP

,

n = 2, . . . , 2M + 1, l = n, . . . , 2M + 1.

(3.127)

Using similar derivations, we also obtain the remaining reflection matrix elements

−→RxBn,l
~εP =

B−εxkp1 ,εykp2n,l

Bεxkp1 ,εykp2n,l

=
mhn
~2 ei2znεxkp1 + [iεxkp1 + mhn

~2 ]
−→RxBn+1,l

~εP

[iεxkp1 − mhn
~2 ]− mhn

~2 e−i2znεxkp1
−→RxBn+1,l

~εP

,

n = 1, . . . , 2M, l = 1, . . . , n,

(3.128)

−→RyAj,n
~εP =

Aεxkp1 ,−εykp2j,n

Aεxkp1 ,εykp2j,n

=
mtn
~2 ei2znεykp2 + [iεykp2 + mtn

~2 ]
−→RyAj,n+1

~εP

[iεykp2 − mtn
~2 ]− mtn

~2 e−i2znεykp2
−→RyAj,n+1

~εP

,

n = 1, . . . , 2M, j = 1, . . . , n,

(3.129)

←−RyBj,n
~εP =

Bεxkp1 ,−εykp2j,n

Bεxkp1 ,εykp2j,n

=
−mtn−1

~2 ei2zn−1εykp2 + [iεykp2 − mtn−1

~2 ]
←−RyBj,n−1

~εP

[iεykp2 + mtn−1

~2 ] + mtn−1

~2 e−i2zn−1εykp2
←−RyBj,n−1

~εP

,

n = 2, . . . , 2M + 1, j = n, . . . , 2M + 1.

(3.130)

Now let us consider the scattering between the particles described be the boundary
conditions in Eq. (3.108) and Eq. (3.109). Taking into account the ansatz in Eq. (3.110),
the boundary conditions become(

∂
∂x
− ∂

∂y

)
ψ|x=y −

(
∂
∂x
− ∂

∂y

)
φ|x=y = 2mc

~2 ψ|x=y , (3.131)

ψ|x=y = φ|x=y . (3.132)
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Since the two particles can only scatter if they are in the same well, these give
2M+1∑
n=1

∑
~εP

[(
i(εxkp1 − εykp2)− 2mc

~2

)
B~εPn,n − i(εxkp1 − εykp2)A~εPn,n

]
ei(εxkp1+εykp2 )x = 0,(3.133)

2M+1∑
n=1

∑
~εP

(
A~εPn,n − B~εPn,n

)
= 0. (3.134)

The exponential term ei(εxkp1+εykp2 )x is equivalent for momenta and sign permutations
~εP = (εxkp1 , εykp2) and

←→
~εP = (εykp2 , εxkp1), which gives

i(εxkp1 − εykp2)
(
B~εPn,n −A~εPn,n − B

←→
~εP
n,n +A

←→
~εP
n,n

)
=

2mc

~2

(
B~εPn,n + B

←→
~εP
n,n

)
, (3.135)

and
B~εPn,n + B

←→
~εP
n,n = A~εPn,n +A

←→
~εP
n,n. (3.136)

After substitution of the expression for B
←→
~εP
n,n from Eq. (3.136) into Eq. (3.135), we

obtain
i(εxkp1 − εykp2)

(
B~εPn,n −A~εPn,n

)
=
mc

~2

(
A~εPn,n +A

←→
~εP
n,n

)
. (3.137)

Let us denote the two different particle scattering matrices

Sxyn,~εP =
B~εPn,n
A~εPn,n

, (3.138)

which corresponds to the particles exchanging positions upon scattering (going through
each other), and

SAn~εP =
A
←→
~εP
n,n

A~εPn,n
, (3.139)

which corresponds to the particles exchanging momenta (bouncing off each other).
Together with Eq. (3.137) these give the relation between the two scattering matrices
as

Sxyn,~εP = −i
mc

~2(εxkp1 − εykp2)

(
1 + SAn~εP

)
+ 1, ∀~εP, n = 1, . . . , 2M + 1. (3.140)

The matrix SAn~εP is still unknown, however, and we will derive an expression for it below.
For this let us consider

Sxyn,(−εxkp1 ,εykp2 ) =
B−εxkp1 ,εykp2n,n

A−εxkp1 ,εykp2n,n

=i
mc

~2(εxkp1 + εykp2)

(
1 +
Aεykp2 ,−εxkp1n,n

A−εxkp1 ,εykp2n,n

)
+ 1

= i
mc

~2(εxkp1 + εykp2)

1 +

−→RyAn,n←→
~εP←−RxAn,n
~εP

SAn~εP

+ 1,

(3.141)

and note that

Sxyn,(−εxkp1 ,εykp2 ) =
B−εxkp1 ,εykp2n,n

A−εxkp1 ,εykp2n,n

=

−→RxBn,n
~εP←−RxAn,n
~εP

Sxyn,~εP =

−→RxBn,n
~εP←−RxAn,n
~εP

(
−i

mc

~2(εxkp1 − εykp2)

(
1 + SAn~εP

)
+1

)
.

(3.142)
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From these two equations we can derive the expression for SAn~εP as

SAn~εP =(
−i ~2

mc
(k2
p1
− k2

p2
)− (εxkp1 + εykp2)

)−→RxBn,n
~εP +

(
i ~2

mc
(k2
p1
− k2

p2
)− (εxkp1 − εykp2)

)←−RxAn,n
~εP

(εxkp1 − εykp2)
−→RyAn,n←→

~εP
+ (εxkp1 + εykp2)

−→RxBn,n
~εP

,

∀~εP, n = 1, . . . , 2M + 1.

(3.143)

Similarly to the reasoning in Section 3.2, the two Bethe equations follow as

−→RyAn,n
~εP =

Sxyn,~εP
Sxyn,(εxkp1 ,−εykp2 )

←−RyBn,n
~εP , (3.144)

−→RyAn,n
~εP =

SAn~εP

SAnεxkp1 ,−εykp2

←−RxAn,n←→
~εP

. (3.145)

We can also obtain an expression for the barrier scattering matrix by dividing Eq. (3.122)
by Aεxkp1 ,εykp2n,l to give

←−S xAn,l
~εP =

A~εPn+1,l

A~εPn,l
= 1− i

mhn
εxkp1~2

(
1 + e−2iεxkp1zn

←−RxAn,l
~εP

)
,

n = 1, . . . , 2M, l = n+ 1, . . . , 2M + 1.

(3.146)

Analogously, we obtain all remaining barrier scattering matrices as

←−S yBj,n
~εP =

B~εPj,n+1

B~εPj,n
= 1− i

mtn
εykp2~2

(
1 + e−2iεykp2zn

←−RyBj,n
~εP

)
,

n = 1, . . . , 2M, j = n+ 1, . . . , 2M + 1,

(3.147)

−→S xBn,l
~εP =

B~εPn+1,l

B~εPn,l
=

εxkp1

εxkp1 + i mhn
εxkp1~2

(
1 + e−2iεxkp1zn

−→RxBn+1,l

~εP

) ,
n = 1, . . . , 2M, l = 1, . . . , n,

(3.148)

−→S yAj,n
~εP =

A~εPj,n+1

A~εPj,n
=

εykp2

εykp2 + i mtn
εykp2~2

(
1 + e−2iεykp2zn

−→RyAj,n+1

~εP

) ,
n = 1, . . . , 2M, j = 1, . . . , n.

(3.149)

Let us now write out the necessary condition of integrability of this model: the Yang–
Baxter relations. There are two ways of decomposing the three-body scattering event
of the particles and one barrier as a sequence of two-body scattering events. In the
first case, the particles first scatter with each other, and then one by one scatter with
their barrier

A~εPn+1,n+1

B~εPn,n
=
B~εPn+1,n

B~εPn,n
× B

~εP
n+1,n+1

B~εPn+1,n

× A
~εP
n+1,n+1

B~εPn+1,n+1

. (3.150)
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Figure 3.5: Plot of the curves given by the imaginary and real parts of the Yang–
Baxter equation for the first barrier in Eq. (3.152). The barrier height is set to h = 1.
The colored curves intersect only when one of the quasi-momenta is zero. Here I use
natural units ~ = m = 1, the size of the box is L = 10 and c = 1.

In the second case, the particles first scatter with their barrier, and then scatter with
each other

A~εPn+1,n+1

B~εPn,n
=
A~εPn,n
B~εPn,n

× A
~εP
n,n+1

A~εPn,n
× A

~εP
n+1,n+1

A~εPn,n+1

. (3.151)

Both this cases have to be equal for the model to be solvable, which gives us the
condition(
Sxyn,~εP

)−1−→S yAn,n
~εP

←−S xAn,n+1

~εP =
−→S xBn,n

~εP

←−S yBn+1,n

~εP

(
Sxyn+1,~εP

)−1

, n = 1, . . . ,M. (3.152)

Although the system does not have true three-body interactions, mathematically when
two particles scatter with a barrier at the same time, one of them scatters with the
barrier of finite height, and the other with the barrier of zero height. Unfortunately,
the Yang–Baxter equations are not generally satisfied in this system if the interaction
between the particle is finite (for example, see Fig. 3.5). This means that the system
is also not solvable for finite interactions even when the particles see different effective
potential due to the fact that three-body scattering events cannot be decomposed into
series of two-body scattering events (the system is diffractive).

In the next section I will consider a single-particle system with multiple barriers
where three-body scattering events are fully absent.

3.5 Derivations of a single particle AFKP
In previous sections I have shown that many-body systems with two or more barriers
are not solvable in the Bethe ansatz sense due to the presence of diffractive three-body
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scattering. Instead of considering relatively few barriers and many particles, in this
section I will analyse a finite system with single particle but many point-like barriers -
the arbitrary finite Kronig–Penney model (AFKP). All barriers in this system can have
arbitrary positions and heights, and their number is also specified as a parameter. The
finite version of the well-known Kronig–Penney model is a special case of this model
with the barriers positioned equidistantly and having equal heights. A more general
framework of solving models with fixed point-like scatterers using the Green’s functions
was presented by Sroczyńska et al. [153], and below I will analyze the AFKP model
using the Bethe ansatz approach.

Let us consider a single particle in an infinite box potential of size L with M δ-
barriers of arbitrary heights ~h = (h1, .., hM) and arbitrary positions ~y : y1 < ... < yM
within the box x ∈ [−L

2
, L

2
] (see Fig. 3.6). The Hamiltonian of the problem reads

Ĥ = − ~2

2m

d2

dx2
+

M∑
n=1

hnδ(x− yn), (3.153)

and the corresponding Schrödinger equation becomes

− ~2

2m

d2Ψ(x)

dx2
+

M∑
n=1

hnδ(x− yn)Ψ(x) = EΨ(x). (3.154)

The procedure below is identical to Sections 3.3 3.4, but is worth going over again
due to changes in notation.

Due to point-like nature of the barriers, we can rewrite Eq. (3.154) as a free particle
equation

− ~2

2m

d2Ψ(x)

dx2
= EΨ(x), (3.155)

with the appropriate boundary conditions at the edges of the box and at the positions
of the δ-barriers. At the edges of the box the wave function must go to zero

Ψ(x = ±L
2

) = 0, (3.156)

and at the positions of the δ-potentials the derivative of the wave function must have
a discontinuity(

d

dx

∣∣∣∣x=yn+0 −
d

dx

∣∣∣∣x=yn−0 −
2mhn
~2

∣∣∣∣x=yn

)
Ψ(x) = 0, n = 1, ...,M, (3.157)

while the wave function itself still has to be continuous

Ψ(x)|x=yn−0 = Ψ|x=yn+0, n = 1, ...,M. (3.158)

The solutions of the time-independent Schrödinger equation can be represented as
superposition of plane waves in each segment Dj : x ∈ [yj−1, yj]

Ψ(x) =
M+1∑
j=1

χj(x)Θ(Dj) =
M+1∑
j=1

(
Akj eikx +A−kj e−ikx

)
Θ(Dj), (3.159)
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Figure 3.6: Schematic of the finite arbitrary KP model

where Θ(Dj) = θ(x− yj−1)θ(yj − x), θ(x) is the Heaviside theta function and y0 = −L
2

and yM+1 = L
2
. Each of the expressions under the sum is the piece of the wave function

corresponding to the situation where the particle is in the j-th well (yj−1 ≤ x < yj).
As shown in section 3.2, the Bethe ansatz approach consists of finding expressions

for the coefficients Akj and A−kj , and constructing the Bethe equation for the quasi-
momenta k. The energy is then simply

E =
~2k2

2m
. (3.160)

Let us first consider the infinite wall boundary conditions. After substituting the ansatz
in Eq. (3.159) into Eq. (3.156), we get an expression for the first and the last elements
of the reflection matrix as

←−R1 =
A−k1

Ak1
= −e−ikL, (3.161)

−→RM+1 =
A−kM+1

AkM+1

= −eikL. (3.162)

The scattering condition in Eq. (3.157) at the n-th barrier gives(
dχn(x)

dx

∣∣∣∣x=yn −
mhn
~2

χn(yn)

)
−
(

dχn−1(x)

dx

∣∣∣∣x=yn −
mhn
~2

χn−1(yn)

)
= 0, (3.163)

which becomes

Akn+1

(
ik − mhn

~2

)
−A−kn+1e

−i2ynk
(
ik +

mhn
~2

)
−Akn

(
ik +

mhn
~2

)
−A−kn e−i2ynk

(
−ik +

mhn
~2

)
= 0.

(3.164)

On the other hand, the continuity condition in Eq. (3.158) gives the relation

Akn+1 +A−kn+1e
−i2ynk −Akn −A−kn e−i2ynk = 0. (3.165)

After substituting the expressions for A−kn+1 and Akn+1 obtained from Eq. (3.165), we
arrive at a recursive expression for the n+ 1 element of the reflection matrix

←−Rn+1 =
A−kn+1

Akn+1

=
−mhn

~2 e
i2ynk + [ik − mhn

~2 ]
←−Rn

[ik + mhn
~2 ] + mhn

~2 e−i2ynk
←−Rn

, (3.166)
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where
←−Rn = A−kn

Akn .

On the other hand, the expression for A
−k
n+1

Akn+1
can be written as

−→Rn =
mhn
~2 e

i2ynk + [ik + mhn
~2 ]
−→Rn+1

[ik − mhn
~2 ]− mhn

~2 e−i2ynk
−→Rn+1

. (3.167)

The two equations (3.166) and (3.167) correspond to the two ways of inverting the
sign of quasi-momentum k: by reflecting the particle against the left and the right
walls. Thus, the n-th element of the reflection matrix has two forms, which have to be
equivalent, leading to

−mhn−1

~2 ei2yn−1k + [ik − mhn−1

~2 ]
←−Rn−1

[ik + mhn−1

~2 ] + mhn−1

~2 e−i2yn−1k
←−Rn−1

=
mhn
~2 e

i2ynk + [ik + mhn
~2 ]
−→Rn+1

[ik − mhn
~2 ]− mhn

~2 e−i2ynk
−→Rn+1

, n = 2, ...,M

(3.168)
The M − 1 equations of the form Eq. (3.168) are the Bethe equations which define the
allowed quasi-momenta k and thus, the energy spectrum of the problem. First, let us
prove that all these Bethe equations are equivalent.

We can represent the process of reflecting a particle as a sequence of scattering
events at the barriers Sj[±k] =

A±kj
A±kj−1

and a reflection against the left
←−R1 or right

−→RM+1 wall. Let us consider the particle being reflected from the rightmost well. Then
the Bethe equation can be written as

M∏
j=1

Sj[−k]−1 ×←−R1 ×
2∏

j=M+1

Sj[k] =
−→RM+1. (3.169)

It is easy to see that by multiplying the right hand side of this equation by inverse
scattering matrices in an appropriate sequence one can reconstruct similar equations
for the situations where the particle is in all other wells.

Consequently, we need only one Bethe equation for a single variable k, for example

−mhM
~2 ei2yMk + [ik − mhM

~2 ]
←−RM

[ik + mhM
~2 ] + mhM

~2 e−i2yMk
←−RM

= −eikL. (3.170)

By unwrapping the recursive expression Eq. (3.166), we can therefore construct the
Bethe equations for any value of the parameters m,L, ~y and ~h.

From eqs. (3.164) and (3.165) we can also obtain recursive expression for the
elements of the scattering matrix as

Sn+1[k] =
Akn+1

Akn
= 1 +

i

k

mhn
~2

(
1 + e−i2ynk

←−Rn

)
, n = 1, ...,M (3.171)

We now have everything to express all coefficients of the ansatz wave function in terms
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of normalization constant Ak1 as

A−kn =
←−Rn ×Akn, (3.172)

Akn =
n−1∏
j=1

Sj[k]×Ak1, (3.173)

n = 1, ...,M + 1. (3.174)

Eq. (3.168) gives us an expression for the Bethe equation for the quasi-momentum k

depending on parameters m,L, ~y and ~h. After algebraic simplification this equation
takes the very simple form

0 =
N∑
n=0

ξnk
N−n, (3.175)

where

ξn =
∑

(p1,..,pn),1≤pi≤M

(
n∏
j=1

hpj

)(
n+1∏
j=1

sin
[
k(ypj − ypj−1

)
])

, (3.176)

with yp0 = −L
2
and ypn+1 = L

2
. Here (p1, .., pn), 1 ≤ pi ≤M is a set of all possible ways

to pick n barrier numbers out of M . The coefficients of the ansatz in Eq. (3.159) then
become

Akn = eik
L
2

(
1 +

n−1∑
j=1

(
2m

k~2

)j
Ξn
j (k)

)
Ak1, (3.177)

A−kn = −
(
Akn
)∗
, (3.178)

where

Ξn
j =

(
2m

k~2

)j
×

∑
(p1,..,pj),1≤pi≤n−1

e−ik(ypj+L
2

)

j∏
k=1

hpk sin [k(ypk − ypk−1
)], (3.179)

with yp0 = −L
2
. If we fix Ak1 = 1, then the normalization constant becomes

N =

[
M+1∑
n=1

(
2|Akn|2(yn − yn−1)

− sin 2kyn − sin 2kyn−1

2k
(<
(
Akn
)2 −=

(
Akn
)2

)

− cos 2kyn − cos 2kyn−1

k
<Akn=Akn

)]− 1
2

,

where =Akn and <Akn are imaginary and real parts of Akn.
In this chapter I have shown that a many-body system with multiple point-like

barriers in general cannot be solved if the particle interactions are finite. Instead I
have derived a Bethe ansatz solution of a single particle in a box with an arbitrary
number of barriers which can be placed at arbitrary positions within the box and have
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arbitrary heights (AFKP model). I have also presented a compact general form for
the Bethe equation and the wavefunction with the heights and positions of the barriers
as external parameters. This solution is extremely flexible and ready to be used in
analytical studies of various one-dimensional systems. However, the combinatorial
nature of the expressions of the solution makes it not practicle for large numbers of
barriers. This is especially relevant for the reconstruction of the wavefunctions.

In the next chapter I will apply the obtained solution of the AFKP model in order
to study the appearance of topologically non-trivial states.





Chapter 4

Topological properties of
low-dimensional systems

In the previous chapter I have obtained an analytical expression for the eigenstates of
the arbitrary finite Kronig–Penney model, as well as the transcendental relation which
gives the allowed quasi-momenta. In this model an arbitrary number of barriers (M)
can be placed at arbitrary positions inside the box and have arbitrary heights. This
gives 2M external parameters which can be freely tuned, allowing me to consider a wide
range of interesting systems. In this chapter I will take advantage of this flexibility in
order to study the appearance of topologically non-trivial states in the AFKP.

4.1 Introduction to topological states

In 1980 von Klitzing and his collaborators were conducting an experiment with an ultra-
cold two-dimensional electron gas in the presence of a strong magnetic field. While
measuring the Hall condutivity of the system across the sample, they discovered that
it had unexplained plateaus at σH = n e

2

h
, where e is the charge of the electron, h is the

Planck constant and n is an integer number [154]. Additionally, the conductivity was
significant only in one direction while being neglible in the other. Later the same quan-
tized Hall conductivity phenomenon was discovered in other two-dimensional systems
with various material properties and degrees of impurity [155, 156]. This effect is now
widely known as the quantum Hall effect (QHE), and it arises in two-dimensional elec-
tron gas systems with an external magnetic field due to the quantization of the energy
levels of the electrons, called Landau levels [154, 157–159]. However, the robustness of
the QHE originates from the topological properties of the system [157, 159–162], where
the gauge invariance of the magnetic vector potential ensures that the quantization of
the Hall conductivity does not depend on the details of the underying material. All cur-
rent in such a system is carried by the highly ordered and topologically protected edge
states, while the disorder in the bulk system leads to localization of the electrons, pre-
venting the conduction. Later, the fractional quantum Hall effect was discovered, and
the additional fractional plateaus were explained by taking the interactions between
the electrons into account [163, 164].

Another remarkable phenomenon arises in a bulk 2D lattice system if the magnetic

67
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Figure 4.1: The band structure of an ideal finite topological insulator. The insulating
gap between the valence and the conducting bands is breached by the conducting
surface states.

flux through the unit cell is adiabatically changed. In this case the energy spectrum
exhibits a fractal-like splitting for rational values of magnetic flux per unit cell values,
forming the famous Hofstadter butterfly [165].

4.2 Edge states
The edge states in a finite system which give rise to the QHE are themselves a man-
ifestation of the topological properties of the bulk system. They are one of the most
characteristic features of topological insulators, which are materials with non-trivial
topological order that are insulators within the bulk but have stable conducting states
on the surface.

A typical band structure of a topological insulator is shown Fig. 4.1. The con-
duction and the valence bands are separated by an insulating gap, but there are two
edge states with opposite velocities which cross the gap and connect the two bands. If
the edge states with opposite velocities have a non-zero coupling, the crossing becomes
avoided, forming a mobility gap.

In order to characterize and quantify these unusual insulators, the fundamental
mathematical concept of topological invariants is used, such as the first Chern number.
It is related to the Berry phase and defined as

c =
1

2π

∫
k

dk
∫
δ

dδ (∂kAδ − ∂δAk) , (4.1)

where k is the quasi-momentum in x direction and δ is the lattice shift. Ak1 =
i〈φ(k1, k2)|∂k1φ(k1, k2)〉 and Ak2 = i〈φ(k1, k2)|∂k2φ(k1, k2)〉 are the Berry connections
with φ(k1, k2) being the occupied Bloch state [166, 167].
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The relation of the first Chern number and the quantization of the Hall conductance
was first proven by Thouless et al. [160], and Hatsugai has further connected it to the
phase obtained by an edge state while crossing the gap [168].

Edge states appear in finite systems, where in the corresponding periodic system
the excitation bands in the first Brillouin zone have different topology (and thus differ-
ent Chern numbers). Even though topological effects are generally observed in higher
dimensional systems, it has been shown that in some one-dimensional systems addi-
tional parameters of the system can be used as a virtual second dimension - a super-
space [169]. In two dimensions a nontrivial topology is marked by a nonzero first Chern
number [166, 167], and this quantity can also be used to characterize the topology of a
1D system with a superspace [20, 21]. A discrete model with an on-site energy which
is periodically modulated [20], or a system with a trigonometric external potential [21]
are examples of nontrivial topologies studied in one dimension with a superspace, and
they observe the formation of the edge states which arise from a nontrivial topology
proven by a non-zero Chern invariant.

4.3 Topological states in the AFKP model
In this section I will demonstrate how the arbitrary finite Kronig–Penney model can
support the existence of topologically non-trivial states. As discussed in Sec. 3.5, the
AFKP model is a single-particle system consisting of an infinite square well and an
arbitrary number of point-like scatterers of arbitrary positions and heights within the
box. The Hamiltonian of the system reads

Ĥ = − ~2

2m

d2

dx2
+

M∑
n=1

hnδ(x− yn). (4.2)

The allowed quasi-momenta of the particle are then given by the Bethe equation
(3.175), and the wavefunction has a form described in equations (3.159) and (3.177).
The AFKP model allows for a great flexibility as the external potential has 2M free
parameters

V (x|~y,~h) =
M∑
n=1

hnδ(x− yn), (4.3)

namely the positions (~y) and the heights (~h) of the barriers. In fact, some of these
parameters can be used as extra adiabatic dimensions - the superspaces - to allow
higher-dimensional physics to manifest itself in the model. A few examples of such
superspaces, i.e. the ones we are going to consider in this work, are described below.

• After fixing the barriers at equal distance from each other, one can use the total
shift of the lattice with respect to the walls of the box as a second adiabatic
dimension. This case is discussed in more detail in 4.3.1.

• It is also possible to arrange all barriers symmetrically around the center of the
box and then use the distance between the barriers as a superspace (this case is
discussed in 4.3.2).
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• One can modulate the heights of equidistant barriers with a periodic function,
using the period of this function as a superspace. I discuss this case in 4.3.3.

4.3.1 Edge states in shifted lattice

I first consider M equidistant barriers in a box of size L. Denoting the shift of this
lattice with respect to the walls of the box as ∆, the positions of the barriers are

yn = −L
2

+

(
n+

∆− 1

2

)
L

M
, n = 1, . . . ,M. (4.4)

The values of the shift ∆ = −1 and ∆ = 1 correspond to the leftmost and the rightmost
barriers coinciding with the left or the right wall. For now we will consider all barriers
to be of the same height. If we calculate the quasi-momenta as functions of ∆ ∈ [0, 1],
we observe the appearance of in-gap states within the bandgaps in the spectrum (see
Fig. 4.2(a)). The corresponding energy spectrum can be trivially calculated as k2/2
and is not shown here. The probability density of the lowest two edge states is shown
in Fig. 4.2 (b) and (c) as a function of ∆. One can see that the wavefunction of
the first edge state is localized strongest for the values of the shift where the quasi-
momentum lies in the middle of the band gap (∆ = ±1

2
), showing that the in-gap

states mostly populate the edges, and becomes delocalized for the shift values where
the quasi-momentum of the edge states merge with the bands, e.g. for ∆ → 0,±1.
The slope of the quasi-momentum of the edge states as a function of the shift ∆
correspond to their velocities: positive slope results in a positive velocity, and negative
slope implies negative velocity. From Fig. 4.2 (b) and (c) one can see that the edge
states which are traveling in opposite directions appear on the opposite sides of the
box, indicating that these boundary states are chiral, which suggests the presence of
nontrivial topology. In order to prove that the edge state in the system are indeed
nontrivial, I numerically calculate the Chern numbers of the first two energy bands
(corresponding to the first two quasi-momentum bands in Fig. 4.2 (a)) in the system
with periodic boundary conditions using the method described in [170]. More details
on this are given in Section 5.3. The results of my numerical calculation of the Chern
numbers are shown in Fig. 4.2 for the first two energy bands. In the first gap we have
two edge modes, with positive and negative velocities, located on the opposite sides of
the box and corresponding to c1 = 1. The number of edge states in the gap is related
to the sum of the Chern numbers of the bands up to the given gap. In the second gap
the number of edge modes becomes two for both sides, reflecting a total Chern number
c2 = 2, and so on. These results agree with the recent study in a continuous cosine
lattice [21].

The existence of the edge states in the single-particle AFKP model also manifests
itself in the asymmetry of the probability density of a spin-polarized ideal Fermi gas
and, consequently, Tonks–Girardeau gas (see Fig. 4.3). It is easy to see that the single
particle probability density for a gas with Fermi energy just below the edge state (8
particles) has lower density at the edges of the box than compared to a gas with Fermi
energy which is equal to the edge state energy(9 particles).

As a more complicated case I will now consider a AFKP model with equidistant
barriers of two alternating heights (see Fig. 4.4) and shift ∆ as in previous case. As
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(a) spectrum
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(b) second edge state (green)

(c) first edge state (black)

Figure 4.2: (a) Momentum spectrum as a function of the shift ∆ for a system of 11
equidistant barriers of height h = 0.4 in a box of size L = 11. The green and black lines
indicate the first two edge states with quantum numbers 22 and 11, whose densities
are shown in (b) and (c), respectively. The dashed white lines indicate the positions
of the scatterers. Here natural units are used (~ = m = 1). The numbers c1 = 1 and
c2 = 2 in the gaps are the calculated total Chern numbers of the corresponding energy
bands below the gap.
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(a) Without the first edge state (b) With the first edge state

Figure 4.3: The single particle probability density of the ideal TG gas for the energy
below (8 particles) (a) and equal to (9 particles) (b) the first edge state energy. The
number of barriers is M = 9 and the box size L = 10.

expected, additional gaps open in the quasimomentum spectrum, but the edge states
are still present, hinting that their existence is robust against variations in the barriers’
heights. Indeed, even if the barriers are set to be of random heights, the edge states
still survive. An example of the quasimomentum spectrum and two lowest-lying edge
states in a model with random barrier heights is shown in Fig. 4.5.

4.3.2 Edge states in spreading lattice

Next I will use the AFKP model with the lattice constant as a superspace instead of
the shift. After fixing the barriers to be of equal height and centered in the box, I use
the distance γ between the barriers as a second dimension (see Fig. 4.6). The positions
of the barriers then become

yn = −L
2

+
L

2
(1− γ) +

L

M − 1
γ(n− 1), n = 1, . . . ,M. (4.5)

By solving the Bethe equation for γ ∈ [M−1
M+1

, 1] we obtain an asymmetric quasimomen-
tum spectrum with double gap states appearing in the band gaps (see Fig. 4.7 (a)).
After looking closer at these gap states and plotting their density (Fig. 4.7 (b)), it
becomes easy to see that these are fully symmetric edge states. The two edge states
become almost degenerate in the middle of the gap and separate when approaching the
bands. If we break the symmetry of the system by taking random heights of the bar-
riers, the symmetric edge states in the gap split further and are no longer symmetric,
bunching either at the left or the right edge of the box (Fig. 4.8).



4.3 Topological states in the AFKP model 73

(a) spectrum (b) second edge state (green)

(c) first edge state (black)

Figure 4.4: Same as Fig. 4.2, but for a system of 11 equidistant barriers of alternating
heights h = {0.4, 1.4}.
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(a) spectrum (b) second edge state (green)

(c) first edge state (black)

Figure 4.5: Same as Fig. 4.2, but for an example of a system of 11 equidistant
barriers of random heights varying from hmin = 0.1 to hmax = 1.4.

Figure 4.6: Schematic of the AFKP model with the lattice constant as the superspace.
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(a) spectrum

k

γ

(b) the green gap state

(c) the black gap state

Figure 4.7: Symmetric edge states appear in the AFKP model withM = 7 barriers of
equal heights and the lattice constant as the superspace. (a) The momentum spectrum
as a function of γ. The edge states crossing the gap appear to split into two states
when approaching the bands, with densities shown in (b) and (c).



76 Topological properties of low-dimensional systems

(a) spectrum

k

γ

(c) the green gap state

(c) the black gap state

Figure 4.8: Two asymmetric edge states appear in the AFKP model with the lattice
constant as the superspace and M = 7 barriers of random heights 0 ≤ hi ≤ 3. (a) The
momentum spectrum as a function of γ. The edge states crossing the gap split into
two asymmetric states whose densities are shown in (b) and (c).
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4.3.3 Hofstadter butterfly and cocoon

The Hofstadter butterfly energy spectrum appears in an infinite two-dimensional lattice
in the presense of magnetic fields [165]. Its definiting feature is its fractal-like structure
of the bands and the gaps which resembles a symmetric butterfly. In a finite system
edge modes appear in the band gap, but the overall shape of the spectrum is preserved
even for small system sizes [171]. Even though the presence of edge states in the
band gaps of finite Hofstadter systems can be explained as the effect of the boundary
conditions, the Hofstadter spectrum can also be explained as a limit of the finite system
as its size goes to infinity using molecular orbital method [172]. The effects of disorder
on the Hofstadter butterfly spectrum in finite systems was investigated in [173], and
the differences between system with even and odd number of sites were studied in [174].
The effect of the number of nearest neighbours on the energy spectrum was investigated
in [175] on the example of square versus triangular lattice.

Below I will discuss how the Hofstadter butterfly-like quasimomentum spectrum
emerges in the AFKP model.

For this I consider equidistant barriers at positions yn = −L/2 + anL, with a =
1/(M + 1), with the heights periodically modulated by the function

hn = hmin + (hmax − hmin) cos2

(
2πφ

(
an+

1

2

))
. (4.6)

The external potential is periodic in φ (with period φ0 ≡ (M + 1)/2), similar to the
flux from the original Hofstadter study. However, unlike the original Hofstadter study,
which considered the tight-binding approximation, the AFKP model is continuous.

The first case I will consider is the case of all barriers having positive heights between
hmin = 0.1 and hmin = 1.5. The quasimomentum spectrum for φ ∈ [0, φ0] is shown in
Fig. 4.9(a) for M = 17 scatterers. One can see that the spectrum is symmetric around
k = 0 and splits into bands, whose widths depend on the minimum barrier height hmin.
The bands have a shape that looks like a Hofstadter butterfly, losing its definition
in higher bands due to the finite barrier heights. The butterfly-like shape gradually
emerges as the number of barriers increases, which can be seen in Fig. 4.10. The
highest state in each band is a flat delocalized state with klflat = π(M + 1)l/L, where
l = ±1,±2, ... is the band index. The nodes of these states exactly coincide with the
barriers, and therefore the states themselves are not affected by them.

Another case worthy of investigation also includes negative values for the barrier
strengths. I only use weak negative heights to avoid formation of the bound states.

The quasimomentum spectrum for M = 17 barriers with minimum and maximum
strengths hmin = −0.5 and hmax = 0.5 is shown in Fig. 4.9(b). The spectra in Fig. 4.9(a)
and (b) are very similar, especially for k values close to the edge of the bands. This
fact emphasises that the behaviour of the system depends mostly on the positions of
the barriers rather than variations in their heights. This weakly-scattering, finite-sized
system does not yet look like a fully developed butterfly, however, a prominent cocoon-
shaped feature appears around k = 0 if the barriers are allowed to have both negative
and positive heights.

In this chapter I applied the analytical solution obtained in 3.5 to the AFKP with
equidistant barriers of equal, alternating, random and periodically modulated heights.
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(a) (b)

Figure 4.9: (a) Hofstadter butterfly-like momentum spectrum in a system where all
barrier heights are positive. The modulation period is given by φ0 = (M + 1)/2, and
the seventeen scatterer heights in this example vary between hmin = 0.1 and hmax = 1.5.
(b) Same as above, but for a system with scatterer heights varying between hmin = −0.5
and hmax = 0.5. The large circular feature in the center (a cocoon) is not present in
the positive scatterers-only system, while the iconic wings are just developing.

I have shown that in the presence of a virtual dimension (lattice shift relative to the
box walls or the period of the heights’ modulation) the bulk system has non-trivial
topology which manifests itself as topologically protected edge states in this finite
system. I have proven non-triviality of the edge states by numerically calculating the
correponding Chern numbers. I have also demonstrated that these edge states leave
their mark in the many-body probability density in case of ideal Fermi or Tonks–
Girardeau gas. In the case of periodically modulated barrier heights I have recovered
the Hofstadter butterfly-like features of the momenta spectrum, even though unlike
original study, the AFKP model is continuous and finite.

Part of these results were accepted to publication in the New Journal of Physics [176].
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(a) M = 5

(c) M = 11

(b) M = 7

(d) M = 13

Figure 4.10: Quasimomentum spectra for systems with an increasing number of
scatterers, whose heights are modulated according to eq. (4.6). In all cases, hmin = 0.1
and hmax = 2.1.





Chapter 5

Methods

In this chapter I will describe the numerical and analytical techniques used in my work
in more detail.

5.1 Finite differences method
The time-dependent one-dimensional many-body Schrödinger equation can be written

i~
∂Ψ(x1, ..., xN , t)

∂t
= Ĥ

(
∂2

∂x2
1

, . . . ,
∂2

∂x2
N

, x1, . . . , xN , t

)
Ψ(x1, ..., xN , t), (5.1)

where N is the number of particles. The spatial x1, ..., xN and temporal t variables in
this equation are continuous and, in order to represent them in finite computer memory,
one needs to use a discretisation technique. To discretise the time variable t, I specify
the time step ∆t, and a set of time points {tk = t0 + k∆t}, k ∈ N. To discretise the
spatial variable x, I specify the number of points, M . If L is the length of the interval
of interest, then the resolution is ∆x = L

M
, and {x(n) = x(0) +n∆x}, n = 1, ...,M is the

mesh which represents the variable x.
Let us consider the time-independent Schrödinger equation

Ĥ

(
∂2

∂x2
1

, . . . ,
∂2

∂x2
N

, x1, . . . , xN

)
Ψ(x1, ..., xN) = EΨ(x1, ..., xN). (5.2)

In order to diagonalise the Hamiltonian Ĥ numerically, we need to approximate the
partial derivatives using discretised variables x1, ..., xN . The approximation which I
use in my work is the finite differences method.

As the space is now discretised, the wave function Ψ(x1, ..., xN) can only be evalu-
ated on the N ×M points of the mesh x(n)

i , i = 1, ..., N, n = 1, ...,M . Let us denote
these values Ψ(x

(n1)
1 , ..., x

(nN
N )) = Ψ~n, ni = 1, ...,M . From now on for simplicity let us

assume N to be 1. Then Ψ(x(n)) = Ψn.
We can approximate the second partial derivative as(

∂2Ψ(x)

∂x2

)
n

≈ Ψn+1 − 2Ψn + Ψn−1

∆x2
. (5.3)

Direct diagonalisation of the approximated Hamiltonian is then used to obtain the
eigenstates and the energy spectrum.

81
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5.1.1 Split-step method

The time evolution of a system in the initial state |Ψ(x, 0)〉 with the Hamiltonian Ĥ,
which does not contain an explicit dependency on time, can be expressed as

|Ψ(x, t)〉 = e−
iĤt
~ |Ψ(x, 0)〉. (5.4)

In the case of a time-dependent Hamiltonian for which Ĥ(t1) = Ĥ(t2),∀t1, t2 ≥ t0, the
time evolution of the initial state takes form of

|Ψ(x, t)〉 = e
− i

~

t∫
t0

Ĥ(t̃)dt̃

|Ψ(x, 0)〉. (5.5)

In case where Ĥ(t1) 6= Ĥ(t2), the time evolution looks more complicated [177]

|Ψ(x, t)〉 = Û(t0, t)|Ψ(x, 0)〉, (5.6)

where

Û(t0, t) = 1 +
∞∑
n=1

(−i
~

)n t∫
t0

dt1

t1∫
t0

dt2...

tn−1∫
t0

dtnĤ(t1)Ĥ(t2)...Ĥ(tn). (5.7)

The SAP protocol, which I describe in chapter 2, has a time-dependent external poten-
tial, so the expression (5.7) has to applied for the time-evolution operator. However,
for a small time step ∆t this expression can be approximated by the exponent in the
equation (5.4), and we can obtain an iterative relation

|Ψ(x, tn)〉 = e−
iĤ(tn)∆t

~ |Ψ(x, tn−1)〉. (5.8)

The time-dependent Hamiltonian of the two-particle SAP protocol is

Ĥ(tn) =
2∑
i=1

(
− ~2

2m

∂2

∂x2
i

+ Ve(xi, tn)

)
+ gδ(x1 − x2) = K̂ + V̂ (tn), (5.9)

where V̂e(x, tn) is the triple harmonic external potential at time tn, gδ(x1 − x2) is the
interaction term, V̂ (tn) = V̂ (x1, x2, tn) = V̂e(x1, tn) + V̂e(x2, tn) + gδ(x1 − x2) and K̂ is
the kinetic energy. For a small time step ∆t the time evolution of the system, which
is approximated by the two-particle version of eq. (5.8), can be further approximated
by the Strang splitting [178] as

|Ψ(x1, x2, tn)〉 ≈ e−
iV̂ (tn)∆t

2~ e−
iK̂∆t

~ e−
iV̂ (tn)∆t

2~ |Ψ(x1, x2, tn−1)〉. (5.10)

The kinetic energy operator K̂ has a very simple form in momentum space, so in order
to make the computations more efficient I apply a sequence of Fourier transforms and
inverse Fourier transforms

|Ψ(x1, x2, tn)〉 ≈ e−
iV̂ (tn)∆t

2~ F−1
(
e−

iK̂∆t
~ F

(
e−

iV̂ (tn)∆t
2~ |Ψ(x1, x2, tn−1)〉

))
. (5.11)
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5.2 Derivation of the tunneling strengths
The tunneling term in the BH Hamiltonian (2.10) is defined as

Htunnel =
2∑
i=1

N∑
Ntrap
i =1

N−Ntrap
i∑

Ntrap
i+1 =0

Ntrap
i∑
p=1

∑
~M∈P(Ntrap

i −p)
~p∈P(p)

∑
~K∈P(Ntrap

i+1 )

~q∈P(p)(
Ω~p~q
i ( ~M, ~K)

mL−1∏
j=0

â
†qj
i+1 j â

pj
i j + h.c.

)
, (5.12)

and it includes all tunnelling events of p particles between the traps i and i + 1. The
set P(n) contains all possible ways to distribute n particles into mL energy levels of
one trap, and

mL−1∑
j=0

pj =

mL−1∑
j=0

qj = p. (5.13)

The corresponding coupling coefficients Ω~p~q
i ( ~M, ~K) denote the tunnelling frequencies

of p atoms between the level occupation configurations ~p = (p0, . . . , pmL−1) and ~q =
(q0, . . . , qmL−1) of traps i and i+ 1 respectively.

In what follows I derive the tunneling coupling amplitudes between two general
Fock states

|ψi〉~p~qi =

∣∣∣∣∣ M0i+p0 K0(i+1)

M1i+p1 K1(i+1)
... ...

M(mL−1)i+pmL−1 K(mL−1)(i+1)

〉
, (5.14)

and

|ψt〉~p~qi =

∣∣∣∣∣ M0i K0(i+1)+q0
M1i K1(i+1)+q1
... ...

M(mL−1)i K(mL−1)(i+1)+qmL−1

〉
, (5.15)

which contain occupation numbers for traps i and i+ 1. The coupling coefficient
between these two states is defined from the general Hamiltonian (2.4) as

Ω~p~q
i ( ~M, ~K) = 〈ψt| Ĥ |ψi〉~p~qi . (5.16)

If Ω~p~q
i ( ~M, ~K) 6= 0, then the corresponding relevant term that will appear in the BH

Hamiltonian is proportional to
mL−1∏
j=0

â
†qj
i+1 j â

pj
i j, thus

Ω~p~q
i ( ~M, ~K) = Ω̃~p~q

i 〈ψt|
mL−1∏
j=0

â
†qj
i+1 j â

pj
i j |ψi〉~p~qi

=

mL−1∏
j=0

√
(Mj + pj)!

Mj!

(Kj + qj)!

Kj!
Ω̃~p~q
i .

(5.17)

If ~M = ~0 and ~K = ~0, then

Ω~p~q
i (~0,~0) =

mL−1∏
j=0

√
pj!qj!Ω̃

~p~q
i , (5.18)
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where Ω̃~p~q
i is the tunnelling frequency of all p atoms between level occupation configu-

rations ~p of the trap i and ~q of the empty trap i+ 1.
Since only the order of magnitude is important to show the shape of the regions of

high-fidelity particle separation, we assume Ω~p~q
i (~0,~0) ≈ Ω̃p

i . Here Ω̃p
i is the tunnelling

frequency of p atoms between the ground states of traps i and i + 1 in the absence of
other atoms. In the three particle calculations we assumed Ω̃3

i ∝ Ω̃2
i , while Ω̃2

i and Ω̃1
i

were calculated numerically. Eq. (5.16) can thus be written as

Ω~p~q
i ( ~M, ~K) ≈

mL−1∏
j=0

√
(Mj + pj)!

Mj!

(Kj + qj)!

Kj!

1

pj!qj!
Ω̃p
i . (5.19)

5.3 Calculation of the Chern numbers
In this section I will describe in more detail the method which was used to calculate
the Chern numbers in Section 4.3.1.

The Chern number of a band is a topological constant which characterizes the class
of the topological insulator and is defined as the integral over the Brillouin zone of the
difference between the derivatives of two Berry connections in different directions of
the Brillouin zone. In the periodic arbitrary Kronig–Penney model, the first dimension
is the momentum k, while the second dimension is the superspace ∆ which is the shift
of the whole lattice.

Due to explicit L-periodicity of the potential in x, we can apply the Bloch theorem,
and get

ψ(x,∆) = e−ikx/Lφ(x,∆). (5.20)

The Bloch theorem can be similarly applied in the trivially periodic pseudo-dimension
∆. The Chern number can then be written as

c =
1

2π

∫
k

dk
∫
∆

d∆ (∂kA∆ − ∂∆Ak) , (5.21)

where k is the quasi-momentum in x direction and ∆ is the lattice shift. Ak1 =
i〈φ(k1, k2)|∂k1φ(k1, k2)〉 and Ak2 = i〈φ(k1, k2)|∂k2φ(k1, k2)〉 are the Berry connections
with φ(k1, k2) being the occupied Bloch state in Eq. (5.20) [166, 167].

In order to calculate the Chern number defined in Eq. (5.21) on a discretized Bril-
louin zone, I use the method derived in [170]. Following [170], the Chern number of a
discretized Brillouin zone can be calculated as the sum of the lattice field strengths of
each local plaquette

cn =
1

2πi

∑
l,j

Fn,lj. (5.22)

The local lattice field strength for each plaquette is defined as

Fn,lj = ln
(
U
l(j+1)
lj (n)U

(l+1)(j+1)
l(j+1) (n)U

(l+1)j
(l+1)(j+1)(n)U lj

(l+1)j(n)
)
, (5.23)

where
U sm
lj (n) =

〈φn(kl,∆j)|φn(ks,∆m)〉
|〈φn(kl,∆j)|φn(ks,∆m)〉| (5.24)
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and φn(kl,∆j) is the n-th Bloch state wavefunction corresponding to the momentum
kl and shift ∆j taken from the discretized Brillouin zone. Below I will describe each
step of the algorithm.

Step 1: Prepare the discretized Brillouin zone

By substituting Eq. (5.20) into the discretized Hamiltonian described in Section 5.1,
the Bloch exponent can be absorbed into the Hamiltonian. Then, after discretizing the
momenta k ∈ [0, 2π] and ∆ ∈ [−1, 1], it is possible to diagonalize this Hamiltonian for
each (ki,∆j)

Ĥ(ki,∆j)φn(x,∆j|ki) = Eφn(x,∆j|ki). (5.25)

The eigenfunctions φ(x,∆j|ki) form the discretized Brillouin zone which is going to be
used for the Chern number calculations.

Step 2: Calculate local lattice field strengths

Let us assume that we are interested in the n-th conduction band. We then will use
the appropriate discretized Brillouin zone calculated in the previous step.

The local lattice field strength for the plaquette (l, j) is defined in Eq. (5.23). The
local link defined in Eq. (5.24) is a normalized overlap of the two wavefunctions. For
each (l, j) we calculate four such overlaps using the wavefunctions calculated in the
previous step and going around the plaquette counter-clockwise. One important note
is that on the limits of the array it is necessary to periodically stitch the discretized
Brillouin zone such that it forms a torus. Another important note is that φ(k0 +
2π,∆j) = φ(k0,∆j), and depending on the discretization of k we may end up including
φ(k0,∆j) twice. It is therefore necessary to make sure that φ(k0,∆j) is only included
once, otherwise the obtained Chern numbers will not be correct.

Step 3: Calculate the Chern number

The Chern numbers can now be calculated straightforwardly as a sum of all local lattice
field strengths according to Eq. (5.22).





Chapter 6

Conclusion

In this thesis I have presented the results of my work on the topic of quantum state
engineering. The main focus of my work lies in one-dimensional and single- and few
particle systems confined in an external potential with multiple traps. Using external
parameters of such systems, I have investigated the existence of highly entangled or
topologically nontrivial single- and many-body states, characterized their properties
and developed protocols of their control and generation.

In the first part of the thesis I have proposed a protocol (the deterministic boson
dispenser) based on the spatial adiabatic passage (SAP) [89], which allows to separate
an arbitrary number of particles from an ultra-cold gas of interacting bosons. The
technique is based on engineering a quasi-three level system by raising or lowering
the energies of some of the traps and allowing for an adiabatic transition between the
initial state |N 0 0〉 and the target state |(N −M) 0 M〉 through an intermediate state
|(N −M) M 0〉. These three states form a SAP triplet, and by raising or lowering
the middle and the right traps one can ensure that these states are degenerate in the
absence of tunneling. I have explicitly examined the case |2 0 0〉 → |1 0 1〉 for a
two-particle system and the case |3 0 0〉 → |2 0 1〉 for a three-particle system and
shown that the SAP protocol results in high-fidelities over large ranges of interaction
energies. In the range of interaction energies from −1/2 to 1, I have found the regions
where the dark-like state connects the initial and the target states without aditional
level crossings. In these regions the SAP triplet remains isolated from the rest of
the spectrum, and the dark state can be robustly followed, resulting in high fidelity
splitting of the cloud. I have further shown that the regions where the protocol fails
can be found from the level crossings present in the spectrum of the Bose–Hubbard
model.

An interesting question is if it is possible to reverse the particle separation protocol
to perform coherent particle addition. Is it possible to start from an arbitrary non-
coherent Fock state and, after performing some version of reversed particle separation
protocol, end up in a state where all particles are collected in one well? This possiblity
is enticing because it would give a robust tool for controlled cold atom collisions.

The particle separation protocol described above along with its NOON state gen-
erating version allow one to prepare two spatially separated entangled systems which
can be used in quantum computing applications [119]. One possible direction of future
reasearch would therefore be to develop robust quantum gates using the robustness of

87
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the SAP protocol.
Throughout my work on I was either assuming a point-like interactions or generic

short-range interactions in the Bose–Hubbard treatment. One interesting project would
be to generalize the SAP techniques to more realistic types of interactions, such as
dipole-dipole, Rydberg or Coulomb interactions. The generality of the SAP theory
suggests that it should be possible.

To show that this protocol is realistic and robust against experimental uncertainties
I have examined a setting where two 87Rb atoms were trapped in a radio-frequency
potential with realistic parameters.

One can also easily generalize this protocol to separate an impurity from the back-
ground gas (a quantum sieve) provided that the interspecies interaction is significantly
different from the intraspecies interaction. This difference in resonance energies can
then be used to only allow the impurity to tunnel out into different trap while leaving
the rest of the gas in the initial trap.

From experimental point of view, another important improvement is to extend the
proposed many-particle protocol to higher dimensions and study if it is possible to
isolate a SAP triplet in such highly degenerate setting.

I have also investigated the entropy dynamics of the SAP protocols and shown that
the total entropy in the SAP processes can be attributed to contribution from two
sources: one due the interaction between the atoms and one due to the distribution of
the atoms between the traps. States with both atoms in the same trap, e.g., |2 0 0〉,
have a von Neumann entropy which increases with the interaction Sint(Eg), with Eg
ranging from zero in the non-interacting case (where the wavefunction is separable), to
ln 2 in the Tonks–Girardeau limit.

On the other hand, states such as |101〉 are unaffected by the interaction, but have
a constant von Neumann entropy of Sdist = ln 2, which comes from the distribution
of the particles between the traps. The noon states have both contributions, as the
atoms occupy states where they interact, while they are in a superposition of occupying
different sites, Snoon = Sint(Eg)+Sdist. For a separation process with an initial cloud of
N particles in the left trap (|N 0 0〉), a maximum value of the entropy ln 2 is achieved
when the cloud is evenly split, |N/2 0 N/2〉, for N even, or split into |N+1

2
0 N−1

2
〉 for

N odd. A noon state (|N 0 0〉 − |0 0 N〉)/
√

2, will also have an entropy of ln 2. The
particle separation protocol can be straightforwardly modified to produce a distribution
of the atoms over more than three traps, for example, by sequential separation of one
N − 1 particle into another trap, such as |1 1 1 1 . . .〉. Analogously, by sequential and
symmetric execution of the noon protocol, states such as (|N 0 0 0 . . .〉+|0 N 0 0 . . .〉+
|0 0 N 0 . . .〉+ . . .)/

√
N can be produced. The entropy in both cases is lnN (plus the

interaction entropy in the noon case).
This work resulted in two peer-reviewed publications, "Robust boson dispenser:

Quantum state preparation in interacting many-particle systems", Phys. Rev. A 96
023606 (2017) [103] and "Entanglement in Spatial Adiabatic Processes for Interacting
Atoms", Few-Body Syst. 59 48 (2018) [95]

In the second part of this thesis, I have investigated three related models with
particles trapped in an infinite square well with point-like barriers inside. I have proven
that in the case of multiple interacting particles and two or more barriers such a



89

model cannot be solved due to the violation of the Yang–Baxter relations, which are
the necessary condition of integrability in the Bethe ansatz sense. This failure of
integrability can be explained intuitively if we consider the regions between the barriers
as traps which have different chemical potentials, depending on the particles which are
already inside. In the case of simultaneous scattering of two particles with the barrier
the order of the scattering process matters, because the second incoming particle will
see different chemical potential, leading to different outcome.

In an attempt to rectify this I have considered a model with two distinguishable
particles which see the barriers at slightly different positions. This scenario is real-
istic because the two particles can have a different internal state structure and thus
different resonance frequencies which can affect the effective external potential. Unfor-
tunately, the Yang–Baxter equations are not generally satisfied in this system either if
the interaction between the particle is finite, even though there are no true three-body
interactions. Mathematically, the simultaneous scattering of the two particles with
each other and one of them with a barrier can be thought of as if one of them scatters
with the barrier of finite height, and the other with the barrier of zero height. The
integrability fails due to the same reason as in the two indistinguishable particles case.

Since the interacting two-barrier case was proven to be not solvable, I have investi-
gated a model with a single particle trapped in an infinite square well with an arbitrary
number of point-like barriers of arbitrary heights positioned arbitrarily within the well
(arbitrary finite Kronig–Penney model or AFKP). I have derived an analytical solution
of this model using the Bethe ansatz technique, and presented a compact general form
for the Bethe equation and the wavefunction with the heights and positions of the
barriers as external parameters. This solution is extremely powerful and can be used
in analytical studies of various one-dimensional systems. However, the combinatorial
nature of the expressions of the solution makes it not practicle for large number of
barriers. This is especially true for the reconstruction of the wave functions.

I have then applied this solution to the finite Kronig–Penney model with uniform,
random and periodically modulated heights. I used the external parameters of the
system, such as the shift of the lattice relative to the walls of the box or the distance
between the barriers, as an extra virtual dimension in order to investigate the appear-
ance of topologically protected edge states. Chiral edge states then indeed appear even
in these relatively simple integrable systems. If the distance between the barriers is
used as an extra dimension, fully symmetric edge states appear in the system. I have
characterized the edge states which appear in the shifted Kronig–Penney model by
their Chern numbers and shown that they are indeed topologically non-trivial, and
their number corresponds to the difference between the Chern numbers of the two
bands they connect.

Using a more general solution framework described in [153], it would be interesting
to investigate the topological properties of models which are similar to AFKP but have
different external potentials, such as the harmonic potential.

Having explicit expressions for the eigenstates also allows for an exact study of
dynamics in the AFKP model. One can introduce a time-dependent Hamiltonian
with, for example, a slow change of the heights of the barriers or their positions, a
sudden quench or other perturbation, and study the evolution of the state through
wave function overlaps. The dynamical evolution of the topologically protected edge
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states is especially interesting. In a non-interacting many-body case investigating the
effect of the edge states on the orthogonality catastrophe and Anderson localization
could be very illuminating. Using this easy access to the dynamics of the system, one
could consider developing a quantum state engineering application of the AFKP, for
example, for particle transport, or using the edge states as topological protected qubits.
In this case development of the quantum gates for these edge-state qubits will be very
important, as well as error correcting techniques. All such gates will somehow involve
changing the barriers in the AFKP, which will eventually require development of gate
speed improving shortcuts.

A possible direction of future research is to apply the solution I have obtained to
study effects in non-interacting or infinitely repulsive quantum gases. I have already
touched upon it by showing how edge states manifest themselves in a Tonks–Girardeau
gas, and an interesting extension to it is to study entropy, momentum distribution and
non-classical correlations in this setting. Studying equilibriation in the AFKP is also
an interesting direction, especially considering that the integrability in this system can
be broken gradually, for example, by increasing interactions.

Another potential direction is to study the survival of the 1D physics in the cases
when the virtual dimension is replaced with a real dynamic dimension. It is especially
interecting to investigate how does the addition of the kinetic energy term in the extra
dimension affects the topological properties.

From experimental point of view, the AFKP model is directly applicable to optics,
being essentially a model for a 1D cavity with a striated medium inside. If implemented,
this will give access to cavity QED with modes other than usual sinusoidal modes.
Especially valuable is the existence of the edge states in a system with shifted barriers.
These highly localized topologically protected states can be used to construct setups
where strong coupling between the light and trapped atoms can potentially be achieved.

Finally, I have also investigated a model with periodically modulated delta barriers.
Here the modulation period is an extra dimension that plays a role similar to the flux in
the study by Hofstadter [165], which leads to the famous fractal-like shape of the energy
spectrum. Unlike the original Hofstadter study, which considered the tight-binding
approximation, the AFKP model is continuous. However, due to the finiteness of the
model the fractal nature is lost, but I have shown that the overall butterfly-like features
of the energy spectrum gradually emerge with increasing number of barriers. I have
also considered another conserved quantity of the system, the quasi-momentum, which
spectrum has similar shape as the energy spectrum. In the case of weak scattering the
butterfly shape does not yet fully develop in the quasi-momentum spectrum, instead
having a cocoon-shaped feature around k = 0 if the barriers can have both negative
and positive heights.

This work has been accepted for publication in New Journal of Physics as "Topo-
logical states in the Kronig-Penney model with arbitrary scattering potentials" [176].

To summarize the main results of my work, I have first shown that the well known
SAP protocol has application beyond the standard transport scenario, and can be used
to connect different Fock states through a dark state. High fidelities of the state transfer
demostrated that spatial adiabatic passage techniques for interacting particle systems
are experimentally realistic and can be used as a deterministic single- and few-particle
source. The protocol I proposed is independent of the number of initial particles and
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can therefore be used in systems with large initial particle numbers. Secondly, I have
found an analytical solution to an important generalisation of the Kronig–Penney model
where the barriers can have arbitrary positions and heights (AFKP). I then applied it
to the problem of finding topologically protected edge states in 1D quantum systems,
and recovered the Hofstadter butterfly-like shape of the energy spectrum for a setting
with periodically modulated heights of the barriers. I have also shown that these state
mamifest themselves in the Tonks–Girardeau gas.
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