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Abstract  
 
We examined the geographic smoothing of solar photovoltaic generation from 15 utility-scale 
plants in California, Nevada, and Arizona and from 19 commercial building installations in 
California. This is the first comparison of geographic smoothing from utility-scale and building-
mounted PV, and the first examination of solar PV smoothing in this region. Our research 
questions were: (1) how does geographic smoothing of commercial building rooftop PV compare 
to that for utility scale PV?, (2) is the geographic smoothing found for utility-scale plants the 
same for the western US as in India? and (3) how does the geographic smoothing for PV 
compare to that of wind? By examining the power output of these generators in the frequency 
domain, we quantified the smoothing obtained by combining the output of geographically 
separated plants. We found that utility-scale and commercial rooftop plants exhibited similar 
geographic smoothing, with 10 combined plants reducing the amplitude of fluctuations at 1 hour 
to 18-28% of those seen for a single plant. We find that combining a few PV sites together 
reduces fluctuations, but that the point of quickly diminishing returns is reached after ~5 sites, 
and that for all locations and plant sizes considered, PV does not exhibit as much geographic 
smoothing as is seen for combining wind plants. We present preliminary theoretical arguments 
for why geographic smoothing of PV plants is less effective than for wind plants. The slope of 
the high-frequency part of the PV power spectrum can at best be geographically smoothed 
(steepen) to an asymptotic spectrum of 𝑓"#. This limit for PV has considerably less smoothing 
than for wind’s geographic smoothing, shown theoretically and from observed data to be	𝑓"#.&&. 
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I. Introduction 
  

Solar photovoltaic (PV) generation has rapidly increased over the years creating unique 
operating challenges as depicted by the California ISO’s (CAISO) “Duck Curve.” By the end of 
2016, the CAISO Balancing Authority had over 10,000 MW of utility installed solar and almost 
6,000 MW of behind-the-meter rooftop Solar PV.  Solar production provided 8.1% of 
California’s electricity generation in 20161 and is showing rapid market share growth elsewhere 
in the world. More PV capacity was installed in the USA in 2016 than any other generation 
technology. Solar power production has significant short-term variability caused by clouds, 
diurnal intermittency, and seasonal variability. It has long been recognized that a portion of the 
short-term variability in solar PV plant generation (and in wind generation) might be mitigated 
by summing the outputs from geographically dispersed plants, or “geographic smoothing”. Such 
reduction of PV’s fluctuations may reduce the need for compensation by other generators, 
storage, and demand response.2 Both theorists and practitioners have been interested in the 
effects of this variability and intermittency on power systems.3,4,5,6,7,8 The authors examined the 
smoothing from both utility-scale and commercial rooftop PV installations in the western USA, 
and compare them against results from earlier research in the Indian state of Gujarat and to 
wind’s smoothing. 
 
 Several researchers have used observed PV data to examine geographic smoothing of the 
output of solar PV plants output. Observations of output data from plants is preferred to work 
using measured or simulated solar irradiance, in part because real solar plants have power 
electronics that respond to changes differently than do irradiance monitors. For example, the 
inverters have a maximum power output that limits responses to cloud focusing; they also have 
finite response rates. Wiemken et al.9 examined the standard deviation and generation duration 
curves of the average daily power generation from 100 rooftop solar PV systems in Germany 
using 5 minute time resolution data. Murata, Yamaguchi, and Otani10 used a metric of the largest 
PV output fluctuation in a given time interval to examine geographic smoothing of PV 
generators in Japan, and found modest decreases in their output fluctuation coefficient as up to 
20 small (0.1-5.6 kW) generators were aggregated. Mills and coauthors11 used the ramp rate of 
utility-scale plants in Arizona, finding a reduction in the 1-min and 10-min extreme ramp rates 
when geographically separated plants are aggregated. Marcos et al.12 used data from 7 PV plants 
with a total installed capacity of 20 MW and separated by 6-360 km to examine the reduction in 
the largest observed power fluctuation by adding plants together at discrete periods of 1, 4, 20, 
60 and 600 seconds by adding plants together. They found that adding together the first few 
plants together quickly reduced fluctuations, but that adding additional plants showed limited 
value. Lave, Stein and Ellis13 examined the sum of residential rooftop PV in Ota City, Japan (2.1 
MW total) and a 19 MW plant in Colorado. The plants were similar in geographic extent (the 
utility-scale plant covered roughly twice the area as the rooftop installations). Using the 
maximum output change in 1 second over a single day at each site, they found that (1) the ramp 
rates were reduced by roughly an order of magnitude for the entire plant as compared to those at 
a single point, and (2) the relative variability decayed exponentially as additional houses, or (in 
the case of the utility-scale plant) inverters were added. They found that the smoothing decreased 
quickly as the first few houses or inverters are added, then decreased much more slowly as 
additional units were added. 
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 Methods that used the step change over a particular interval or the standard deviation of 
output fluctuations in a period of time gave information on fluctuations at selected time scales.  
However, there is a method that allows the determination of how much smoothing is obtained at 
any desired time scale. The power output of a PV plant contains fluctuations at many 
frequencies. Curtright and Apt14 obtained 10 seconds time resolution data over two years from a 
4.6 MW utility-scale array in Arizona, and used the Fourier Transform to decompose the time 
domain data into the frequency domain, and found that the power spectrum shows a falloff 
toward higher frequencies that goes roughly as frequency f -1.3 (in addition to the expected peak 
at a frequency corresponding to 24 hours and its harmonics).  
 

Klima and Apt15 used information from the frequency domain to examine geographic 
smoothing of 20 utility-scale (3-221 MW) plants in the Indian state of Gujarat at 1-2 minute time 
resolution. They found that “Interconnecting approximately 20 plants yields a 25%-45% 
reduction in variability depending on [the] frequency examined.” This technique allowed the 
decrease in variability by adding plants together to be examined at any desired time scale. 
Similar to wind16, there is more smoothing at time scales of 10 minutes than at time scales of 6 
hours. Also similar to wind, there is considerably more amplitude in the variations at long time 
scales. In agreement with Marcos et al. and with Lave, Stein and Ellis found quickly diminishing 
returns as more plants were added. However, the Gujarat data showed quite modest geographic 
smoothing for these plants even over 400 km. At time scales of one hour, for example, the 
Gujarat data showed that only half the amplitude of the variability at this time scale was 
eliminated; for wind plants with a similar geographic spread 95% of the variability was 
eliminated.  

 
 In this paper, the authors used both utility-scale and rooftop PV data from locations in the 
US states of California, Nevada and Arizona to study smoothing by using the frequency domain 
method. As far as we are aware, this is the first examination of the geographic smoothing of PV 
in the important PV region of the western USA. We believe it is also it is the first comparison of 
geographic smoothing from utility-scale and building-mounted PV. 
 

Our research questions were: (1) how does geographic smoothing of commercial building 
rooftop PV compare to that for utility scale PV?; and (2) is the geographic smoothing found for 
utility-scale plants the same for the western US as in India? The analysis showed that geographic 
separation provides a similar degree of smoothing for rooftop PV and for larger PV plants. In 
both cases, solar PV benefits from considerably less geographic smoothing than wind. We found 
that geographic smoothing observed for PV in the western US is more substantial than that seen 
in Gujarat. 
 

II. Data 
 
For the US utility-scale PV plants, we used proprietary data provided by the California 

Independent Systems Operator (CAISO) for one year at 1-minute resolution for 15 plants in 
California, Nevada, and Arizona. Plant sizes were 125-315 MW. Southern California Edison 
(SCE) and SoCore Energy, LLC provided one year of proprietary 15-minute resolution data for 
19 rooftop PV arrays of 80-520 kW placed on commercial buildings such as drugstores. Plant 
locations for the CAISO and SCE data are shown in Figure 1.  
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Figure 1. Locations of solar PV systems. The green dots represent sites with data that were used. 
The CAISO data covered ~300 x 800 km, and the Southern California Edison (SCE) data ~175 x 
900 km. The CAISO data are utility-scale PV arrays, while the SCE data are rooftop arrays on 
commercial buildings. 
 
 Sample generation characteristics for the CAISO data and SCE rooftop data are shown in 
Figure 2. Many of the SCE commercial rooftop inverters were sized so that the output reached 
the rated capacity on sunny days, and thus has a characteristic flat profile near local noon on  
clear days during the spring, summer, and fall months (or a “saturated profile”). Comparing 
geographic smoothing between the CAISO and SCE data only for January 2016 avoided any 
distortions that may arise from the saturated output. 
 

 
Figure 2. Generation data for one representative CAISO large plant (a) and for an SCE 
commercial building rooftop plant (b) for one year beginning July 1, 2015, one week, a partly 
cloudy day, and a clear day. The power electronics for both are sized so that the maximum 
output saturates on sunny summer days. 
 

III. Methods 
 

As described fully in Refs. 15 and 16, the generation data in the frequency domain can be 
used to determine the geographic smoothing at any desired frequency.  To briefly summarize the 
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method described earlier, we used Fourier Transform to decompose and examine the generation 
data in the frequency domain, where the power spectral density (PSD) at a particular frequency 
indicated the relative amount of variability at the corresponding time interval. To handle the 
observed uneven time steps in the data, we used the Lomb periodogram17 as coded in Press et 
al.18.  Although we find no difference between the Lomb periodogram procedure and a standard 
Fourier Transform procedure, we also used the Lomb periodogram for all data sets to ensure our 
procedure was similar between datasets, 

 
As for the India utility-scale PV data15, we conducted analysis to understand the potential 

for smoothing variability in plants. First, we created groups of all possible combinations of plants 
(regardless of size or geographic distance).  For each group, we summed the generation of the 
plants in the time domain. Then, we calculated the PSD for each group of plants.  Figure 3 shows 
representative PSDs for CAISO and SCE, and allows the reader to visually compare the slopes. 
The slopes for the CAISO dataset ranged from f -1.59 to f -1.64, and the SCE dataset are from f -1.78 
to f -1.91. 

 
 

Figure 3. Power spectral densities for a representative plant in CAISO and SCE (red), the sum 
of 4 plants (green), 10 plants (blue), and all plants (purple). The largest peak is at the frequency 
corresponding to 24 hours (1.2 x 10-5 Hz), the second-largest to 12 hours, and the remaining 
peaks are higher harmonics. The SCE data are snapshots taken at 15-minute intervals, so the 
Nyquist frequency corresponds to 30 minutes. The PSDs for the 1-minute CAISO data have been 
truncated at the same frequency. 32-segment averaging has been used. 
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We investigated how interconnecting combinations of plants in each data set can 
potentially provide smoothing (Figure 4). The procedure  (as in Ref. 15 and 16) was to compare 
the line of best fit for the two PSDs at particular frequencies by taking the ratio of the single 
plant value to that of the interconnected plants value.  If no smoothing occurs when solar plants 
are interconnected, the result should be close to one at all frequencies. If there is a reduction in 
variability then there will be frequencies for which the fraction is less than one. This procedure 
allowed the determination of the fraction of the amplitude fluctuations that are smoothed by 
adding a given number of plants at any given frequency (for example, the frequency 
corresponding to 6 hours or to 1 hour, Figure 5). 

 
As for utility-scale PV generation examined in earlier research (Ref. 14 and 15), the 

spectra were relatively flat at frequencies lower than ~10-5 Hz, and fell off at higher frequencies.  
 

 
Figure 4. Power spectral density (PSD) plots for one CAISO utility-scale PV plant (a) and one 
SCE commercial rooftop plant (b).As for Figure 3, the largest peak is at the frequency 
corresponding to 24 hours (1.2 x 10-5 Hz), the second-largest to 12 hours, and the remaining 
peaks are higher harmonics. Colored lines are the fits of the form A/(1+Bf α) to the PSDs for one 
plant (red), 4 plants (green), 10 plants (blue), and 15 plants for CAISO or 19 plants for SCE 
(purple).PSDs for the combination of plants are not shown for clarity. 
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IV. Results 
We compared the smoothing observed for the utility-scale CAISO plants in California, 

Nevada, and Arizona (~300 x 800 km) to that for SCE rooftop PV in California (~175 x 900 km) 
and to the observed smoothing for wind plants over a similar geographic extent in Texas. Utility-
scale and commercial rooftop PV plants exhibited similar geographic smoothing, but it was 
considerably less than what was observed for wind.16 
 

 
Figure 5. Comparison of smoothing at 6 hours in black and 1 hour in red among the 120-315 
MW utility-scale plants in CAISO (solid lines) with the 5-400 kW SCE commercial rooftop plants 
in California (dashed lines) and with the smoothing found by adding geographically separated 
ERCOT wind plants over 500 km16 (dotted lines with open circles). The CAISO data covered 
~300 x 800 km, and the Southern California Edison (SCE) data ~175 x 900 km. The ERCOT 
wind data covered ~200 x 500 km. A full year of data is used for all PV plants shown here, 
beginning July 1, 2015; the wind data of Ref. 16 shown here was for the full year 2008.  
 
 

When geographically separated PV plants are aggregated together, the slope of the summed 
power spectrum steepens, meaning that the summed power has less variability at shorter time 
scales.  Nearly identical steepening were observed when rooftop plants are summed the same as 
utility-scale plants (Figure 4). 
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No significant difference in geographic smoothing were observed between physically 
large utility-scale PV arrays and small commercial rooftop arrays.  This suggests, for at least the 
two sets of capacity ranges examined, that geographic smoothing is more likely to be a function 
of the number of plants as opposed to the geographic size of the arrays. Unfortunately the 
geographic areas of the arrays were not available for this study, so we were unable to test 
hypotheses on smoothing as a function of geographic size of the plant (e.g., Marcos et al., 
201119). If a future study were able to obtain these data, it could examine policy implications for 
capacity or geographic array area ranges over which power could be smoothed. 

 
Using identical techniques to examine the geographic smoothing of utility-scale PV 

plants in the Indian state of Gujarat16, the geographic smoothing observed for solar PV in both 
CAISO and SCE is more substantial than that that seen in Gujarat. One hypothesis to explain the 
difference is that if the weather in the Gujarat desert region is consistently clear that there may be 
fewer fluctuations to smooth than in the southwest USA. We explored this hypothesis by noting 
that the 10-year average monthly cloud fraction in Gujarat is indeed considerably lower than for 
the regions in the USA we examined, but only in eight months of the year. In June and 
September, the two areas have similar cloud fractions, and in July and August Gujarat is 
cloudier. When we performed our analysis by dividing the data into one set comprised of June 
through September and another with the remaining months, we saw no significant difference in 
the geographic smoothing. Thus we are forced to reject this hypothesis and simply note that there 
is considerably less geographic smoothing for utility-scale plants in Gujarat than for the plants in 
the USA. 
 

V. Discussion: Towards a Theory of PV Geographic Smoothing 
 

Solar PV plants experience less geographic smoothing than do wind plants (Figure 5). 
Wind and solar photovoltaic power fluctuations arise from quite different physical 
considerations. Wind speed varies around a usually non-zero mean value, which in turn causes 
wind power to fluctuate through the dimensional relation 𝑃 ≤ (*+

#,
)(*
#
)𝜌𝐴𝑣&, where (*+

#,
) is the 

theoretical maximum energy fraction extractable from wind, 𝜌 is the air density, A is the turbine 
rotor swept area, and v is the wind speed. Whereas the wind power fluctuations are amplifed 
due to the cubic dependence on wind speed, they still fluctuate about a mean (or steady) power. 
The largest length scales of atmospheric flows spanning hundreds of kilometers and representing 
the lowest frequencies (inverse daylight time ~ 1.2 x 10-5 Hz) influence all smaller length scales, 
hence higher wind speed fluctuation frequencies.20 Consequently, the largest atmospheric flow 
scales of hundreds of kilometers represent the correlation length for wind power fluctuations, and 
therefore control the extent to which the geographic smoothing occurs in combined aggregate 
power of wind plants situated large distances from each other. 
 
 Solar PV plants on the other hand are globally correlated by their common energy source, 
the sun. The solar radiation amplitude exhibits continuous spatial (latitude dependent) variation 
as one moves from the equator towards the poles due to change in the angle at which solar 
radiation is incident upon the earth's surface. The temporal variation in this amplitude occurs 
over long, seasonal time scales due to the tilt in earth's axis as it revolves around the sun; these 
long time scales are of little interest to the energy community. However, at a chosen latitude, all 
PV plants situated along the circle of latitude –  the abstract east-west circle connecting all 
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locations around the earth (ignoring elevation) at a given latitude –  become correlated through 
time lags determined by the earth's diurnal rotation about its axis over the 24 hour time scale and 
the longitudinal distance between plants. PV plants located on the earth’s surface facing the sun 
are positively correlated with concomitant time lags whereas plants on the night side exhibit 
negative correlation, which nonetheless is still a correlation in the power output. Circles of 
latitude are always parallel to each other unlike circles of longitude, which are always great 
circles with the center of the earth in the middle; circles of latitude therefore get smaller as the 
distance from equator increases. Therefore the time lags are controlled not only by longitudinal 
distance between PV plants, but also by the latitudinal location. Whereas the seasonal and 
diurnal variations in PV output occur over timescales too long relative to the electrical grid 
response timescale or the ISO's dynamic load balancing timescales, the important point to bear in 
mind here is the global correlation length spanning the circle of latitude, unlike wind power 
where it extends to ~100s of kilometers. As a result, the baseline solar PV spectrum is 
determined by the seasonal and diurnal low frequency behavior controlled by latitudinal and 
longitudinal positioning of a PV plant. 
 
 The disruption of this baseline spectrum at the high-frequency end due to solar occlusion 
by low altitude cloud passage is of particular interest to the solar PV community. Cloud passage 
disrupts the global correlation by causing a negative square wave dip in local PV power output. 
In sharp contrast with wind, solar PV fluctuations are strongly asymmetric about the (mean) 
clear sky index. Decreases in power output due to cloud passage contribute large magnitude 
fluctuations below the clear sky index (leading order effect), while cloud focusing contributes 
very small magnitude fluctuations above the clear sky index (higher order effect), in addition to 
background diffuse radiation which provides a rather constant DC offset (also higher order 
effect). Although, further theoretical work is required to fully understand the difference between 
PV and wind geographic smoothing, some quick estimates may be made. 
 
 Consider a PV plant of linear dimension 𝑙23 over which a cloud passes at mean speed �̅� 
and casts a shadow of linear dimension 𝑙5 . Assuming the cloud completely occludes sunlight, i.e. 
a simple ON-OFF state, one observes a negative ramp in PV plant output as the cloud’s shadow 
traverses to overlap the area occupied by PV panels and the PV output remains at at lower 
magnitude until the cloud shadow exits PV plant area when the power ramps up again (see fig. 6 
for a schematic representation). We now define two length scales 𝑙6789  and 𝑙:;7<, where 𝑙6789 
represents the shortest of length scales between 𝑙5  and 𝑙23, and 𝑙:;7< is the longest of length 
scales between 𝑙5  and 𝑙23 . This provides two corresponding timescales 𝜏6789 = 	 𝑙6789/�̅� and 
𝜏:;7< = (𝑙:;7< − 2𝑙6789)/�̅�. 
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Figure 6. Schematic representation of the effect of a cloud passing over a photovoltaic 
generator. 
 
 From the schematic in fig. 6, we see the primary contribution to PV spectrum from cloud 
passage at the high frequency end comes from 𝜏6789. In other words, all frequencies 𝑓 ≥
1/𝜏6789 contribute to the high-frequency portion of the power spectrum. This tells us that there 
exists a critical frequency 𝑓D ≡ 1/𝜏6789 at which the PV spectrum changes slope. All 
frequencies 𝑓 < 𝑓D  exhibit a shallower slope determined by seasonal and diurnal oscillations. All 
frequencies 𝑓 > 𝑓D  are determined by local cloud passage above the PV plant. Although the PV 
plant’s linear dimension 𝑙23 remains fixed, the size of the clouds can vary above and below 𝑙23, 
hence the citical frequency 𝑓D  is unfortunately not a constant. But for large utility scale PV plants 
at locations that experience small cloud sizes 𝑙5 < 𝑙23, 𝑓D  can become a constant and scales as 
𝑓D = 1/𝜏6789 = 	 �̅�/𝑙23. Since the area of the PV plant is 𝐴23 = 𝑙#23, we see 𝑓D~1/I𝐴23 as 
reported for PV plants in Spain.21 In the opposite limit of small-scale rooftop PV generators, we 
can be confident that 𝑙23 < 𝑙5 , in which case 𝑓D  becomes a stochastic variable dependent on the 
size of the shadowing cloud. 
 
 So far, we have considered the effect of a single cloud on the PV power spectrum. 
Extending the simple ideas above to a train of clouds moving past a PV plant is not 
straightforward for two primary reasons. First, clouds come in a range of linear dimensions 𝑙 that 
follow a power-law distribution of the form Π(𝑙)	~	𝑙"K where Wood et al.22 reported the 
exponent 𝛼 = 1.66	 ± 0.04 from satellite, aircraft, and modeling data over a range of 𝑙 = 0.1 −
1500 km. (The cloud shadow length 𝑙5  and cloud length 𝑙 are related via the simple relation 𝑙5 =
𝛾𝑙,where	𝛾	is	a	constant	that	depends	on	the	altitude	of	the	cloud. ) Through the simple 
linear transformation 𝜏5 = 𝑙5/�̅�, we see that the distribution of cloud traversal time past a fixed 
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spatial location would also follow a power-law distribution Π(𝜏5)	~	(�̅�	𝜏5)"K. Here �̅� may well 
be taken to be a constant from a long-time average, but becomes location dependent due to local 
geophysical flow conditions. A point to be borne in mind here is that although Woods et al. took 
all clouds into account in determining the cloud size distribution, for solar PV we are interested 
in only low altitude clouds that are capable of casting a shadow on the PV array. This fact may 
well change the slope of the distribution from 𝛼 = 1.66	 ± 0.04 and needs to be determined in 
future work. This information would be readily available from the negative square wave dips 
measured for a long time series of power output from a PV plant, since the plant would 
experience dips from shadows cast by only low altitude clouds. 
 
 The second reason that complicates extension of the ideas developed for single cloud to a 
cloud train is the fact that clouds do not arrive at random intervals, but in clusters. Indeed, even 
the cloud arrival time statistics, commonly known as the waiting time distribution (to denote the 
waiting time between two successive cloud arrivals) is also known to be power-law distributed as 
measured directly from sensor and PV plant time series data in Hawaii and Germany by Tabar et 
al.23 Power-law distributions are notorious for their non-analyticity which precludes one from 
developing a predictive model for solar PV fluctuation statistics and hence their spectra, except 
for rare special cases. The difficulty is readily seen in a simple manner. For a given quantity 𝑥 
with a probability density function Π(𝑥), its 𝑛<f moment is defined as ∫ 𝑥hΠ(𝑥)	𝑑𝑥.j

k  In order 
for this integral to converge and the 𝑛<fmoment to be well defined, one requires that Π(𝑥) 
should decay faster than 𝑥h, else the integral will diverge. For power-law distributions, this 
requirement is tantamount to the statement that if Π(𝑥)	~	𝑥"(hl*), then only the first 𝑛 moments 
of the distribution can be well defined. If 𝛼 = 1.66	 ± 0.04 for Π(𝜏5), all the moments of the 
distribution are not well defined. In that case, it is meaningless to measure even the mean (first 
moment) duration of cloud traversal past a PV plant, its variance (second mement) and so on. 
 
 Although the situation portrayed above may seem hopeless at first sight, one can still 
deduce a limiting case. Consider a number of utility scale PV plant outputs feeding the electrical 
grid. Suppose that whereas each individual PV plant may experience power-law distributed 
cloud traversal times of power-law distributed cloud sizes, when their outputs are combined in 
the aggregate, these correlated negative square waves look like a random train of negative square 
waves. In such a limit, we know the Fourier transform of a square wave is mno	(:p)

:p
. For a random 

square wave train, the numerator averages to one because all phases of the sine waves are 
scrambled. Then the power spectral density is the absolute square of the Fourier transform which 
yields 𝑆(𝑓) = 1/𝑓#. Ergo, we see that the slope of the high-frequency part of the PV power 
spectrum that is influenced by clouds can at best be smoothed (steepen) due to geographic 
smoothing to an asymptotic limiting spectrum of 𝑓"#, which is steeper than the behavior of any 
single array. This asymptotic limit for PV is considerably shallower (less smoothing) than the 
asymptote for wind’s geographic smoothing shown theoretically and from observed data to be20 
𝑓",/&	or	𝑓"#.&&. 
 

VI. Conclusion 
We examined the geographic smoothing of solar photovoltaic generation from 15 utility-scale 
plants in California, Nevada, and Arizona and from 19 commercial building installations in 
California. We found that utility-scale and commercial rooftop plants exhibited similar 
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geographic smoothing, with 10 combined plants reducing the amplitude of fluctuations at 1 hour 
to 18-28% of those seen for a single plant. We find that combining a few PV sites together 
reduces fluctuations, but that the point of quickly diminishing returns is reached after ~5 sites, 
and that for all locations and plant sizes considered, PV does not exhibit as much geographic 
smoothing as is seen for combining wind plants. We present preliminary theoretical arguments 
for why geographic smoothing of PV plants is less effective than for wind plants. Specifically, 
we see that the slope of the high-frequency part of the PV power spectrum that is influenced by 
clouds can at best be smoothed (steepen) due to geographic smoothing to an asymptotic limiting 
spectrum of 𝑓"#. This asymptotic limit for PV is considerably shalower (less smoothing) than 
the asymptote for wind’s geographic smoothing shown theoretically and from observed data to 
be20 𝑓",/&	or	𝑓"#.&&. 
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