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1 Introduction

We have considered at length in the past Hermitian random matrices in the presence of an

external matrix source [1, 2]. In fact we have limited ourselves to Gaussian models because

a specific duality of these models, to be recalled below, made it possible to use the matrix

source in order to tune non-trivial models such as Kontsevich’s Airy matrix model [3] and

generalizations [4]. Such models have led to easy calculations of intersection numbers for

the moduli space of curves with marked points and boundaries [1, 2, 5].

The triangulation of surfaces through supermatrices should be useful to characterize

super-Riemann surfaces (SRS) or super-Teichmuller space [7, 8]. As a first step to investi-

gate the moduli space for SRS through supermatrices with an external source, we compute

explicitly the expectation values of the supervertices.

We consider here a Gaussian ensemble of supermatrices, a generalized GUE, in the

presence of an external matrix source. It presents a number of similarities with the usual

case: (1) the k-point function < stret1M · · · stretkM > are explicitly calculable for random

matrices M invariant under the super-unitary group U(n|m) or UOSp(n|m), (2) there is

again a dual representation of <
∏k

1 sdet−1(xi −M) > valid for arbitrary (n,m) in terms

of integrals over matrices of size k × k.

2 One point function

The “probability” distribution for super-Hermitian matrices is

PA(M) =
1

ZA
e

i
2
strM2+istrMA (2.1)
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in which the matrix

M =

(
a α

ᾱ b

)
(2.2)

We have to deal with a complex weight to make meaning of the integrals since

strM2 = tr(a2)− tr(b2) + 2tr(αα) (2.3)

The n× n matrix a is Hermitian, and the m×m matrix b is also Hermitian; the matrices

α and ᾱ are rectangular, respectively n ×m and m × n and consist of Grassmanian (i.e.

anticommuting) variables. We use the convention αβ = βα. We denote the eigenvalues of

the source super-matrix A by (ri, ρj) which we can take as a diagonal matrix.

We would like to compute the one-point function < str eitM >, expectation value

with respect to the weight (2.1). If we assume that M may be diagonalized through a

super-unitary transformation U(n|m), i.e. M = U†DU with

D =

(
l 0

0 µ

)
(2.4)

we can replace the integral over M by an integral over its eigenvalues l′s and µ′s plus an

integral over the super-unitary group. (For instance if the matrix M is just two by two,

l = a+ αᾱ
a−b and µ = b+ αᾱ

a−b).

The usual Vandermonde Jacobian associated with this diagonalization is replaced by

the Berezinian [6]

J(l, µ) =

(
∆(l)∆(µ)

∆(l|µ)

)2

(2.5)

with

∆(l|µ) =
n∏
a=1

m∏
b=1

(la − µb) (2.6)

Since the observable streitM is unitary invariant, the integral over the unitary group involves

only the Itzykson-Zuber like integral

I =

∫
dUeistrU

†DUA (2.7)

This integral has been computed by Alfaro and co-workers [9] who found

I =
det eilirj det e−iµiρj∆(l|µ)∆(r|ρ)

∆(l)∆(µ)∆(r)∆(ρ)
(2.8)

up to a normalization which will be fixed later; the ∆′s are Vandermonde factors as usual.

Inserted into the expression for U(t) the n! terms of the expansion of det eilirj and

the m! terms of det e−iµiρj are all equal thanks of the antisymmetry of ∆(l) and ∆(µ).

Therefore combining the Berezinian and the IZ integral we obtain

U(t) =
∆(r|ρ)

ZA∆(r)∆(ρ)

∫
dlidµj

∆(l)∆(µ)

∆(l|µ)
e

i
2(
∑
l2i−
∑
µ2j)+i

∑
liri−i

∑
µjρj∑

a

eitla −
∑
j

eitµj

 (2.9)
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We now use an identity, similar to the one which we have used in the past for the usual

GUE, namely ∫
dlidµj

∆(l)∆(µ)

∆(l|µ)
e

i
2(
∑
l2i−
∑
µ2j)+i

∑
lara−i

∑
µjρj

= e−
i
2(
∑
r2i−

∑
ρ2j) ∆(r)∆(ρ)

∆(r|ρ)
(2.10)

which follows trivially from the fact that the partition function ZA in (2.1) is simply equal to

e−
i
2
strA2

. The identity (2.10) follows from a calculation of ZA based on the diagonalization

of M and of the susy IZ formula (2.8).

In order to complete the calculation we note that each of the (n+m) terms generated

from the second line of (2.9) involves a simple modification of the source matrix A. For

instance the first one involves the replacement ri → ri+ tδi1 and since we know the integral

for arbitrary r′is from (2.10) we can perform all the integrals over the eigenvalues and end

up with a sum of (n + m) terms. It turns out that, as in the simple GUE case, the sum

of the n terms as well as the sum over the m terms may be replaced by one single contour

integral encircling respectively the poles at z = r′s and at z = ρ′s. We end up with

U(t) = UI(t) + UII(t) (2.11)

UI(t) =
e−it

2/2

t

∮
dz

2iπ
e−itz

∏n
i=1

(
1 + t

z−ri

)
∏m
j=1

(
1 + t

z−ρj

) (2.12)

UII(t) =
eit

2/2

t

∮
dz

2iπ
e−itz

∏m
j=1

(
1− t

z−ρj

)
∏n
i=1

(
1− t

z−ri

) (2.13)

In the first integral the contour encircles the poles z = ri’s and not z = ρj . Each pole

provides one of the first n terms of (2.9). Similarly the second contour encircles the poles

at z = ρj and provides the remaining m terms. In the course of the calculation we have

dropped a number of constants since they cancelled with the normalization ZA. One can

check that the final normalization is right since it verifies

U(0) =< str1 >= n−m (2.14)

Remarkably enough if we shift z to z − t/2 in the first integral and z to z + t/2 in the

second, one finds that UI(t) and UII(t) recombine into the single integral

U(t) =
1

t

∮
dz

2iπ
e−itz

n∏
i=1

z − ri + t/2

z − ri − t/2

m∏
j=1

z − ρj − t/2
z − ρj + t/2

(2.15)

in which the contour circle over all the poles at z = ri + t/2 and z = ρj − t/2.

In the absence of any source, i.e. if all the r’s and ρ’s vanish, the result is

U(t) =
1

t

∮
dz

2iπ
e−itz

(
z + t/2

z − t/2

)n−m
(2.16)

i.e., a simple dimensional reduction n → n −m of the GUE result [1], but in general it is

indeed genuinely different.
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3 Two point correlation function

The same technique allows one to compute correlation functions such

U(t1, t2) =< streit1Mstreit2M > (3.1)

After integration over the unitary degrees of freedom one is left with

U(t1, t2) =
∆(r|ρ)

∆(r)∆(ρ)

∫
dlidµj

∆(l)∆(µ)

∆(l|µ)
e

i
2(
∑
l2i−
∑
µ2j)+i

∑
liri−i

∑
µjρj∑

a

eit1la −
∑
j

eit1µj

∑
a

eit2la −
∑
j

eit2µj

 (3.2)

i.e. (n+m)2 terms which can all be computed with the help of the identity (2.10) through

an appropriate shift of the eigenvalues of the source matrix such as

ra → ra + t1δai + t2δaj (3.3)

and similarly for the (r, ρ) and (ρ, ρ) terms. This leads to a sum of four terms

UI(t1, t2) =
e−it

2
1/2−it22/2

t1t2

∮
dz1

2iπ

∮
dz2

2iπ
e−it1z1−it2z2 (3.4)∏n

i=1

(
1 + t1

z1−ri

)(
1 + t2

z2−ri

)
∏m
j=1

(
1 + t1

z1−ρj

)(
1 + t2

z2−ρj

) [1 +
t1t2

(z1 − z2 + t1)(z1 − z2 − t2)

]
in which both contours encircle the poles ri. Similarly there are three more terms; the

plus-minus combination gives

UII(t1, t2) =
e−it

2
1/2+it22/2

t1t2

∮
dz1

2iπ

∮
dz2

2iπ
e−it1z1−it2z2 (3.5)∏n

i=1

(
1 + t1

z1−ri

)∏m
j=1

(
1− t2

z2−ρj

)
∏m
j=1

(
1 + t1

z1−ρj

)∏n
i=1

(
1− t2

z2−ri

) [1 +
t1t2

(z1 − z2)(z1 − z2 + t1 + t2)

]
in which the contour for z1 encircles the r-poles and z2 the ρ-poles;

UIII(t1, t2) =
eit

2
1/2−it22/2

t1t2

∮
dz1

2iπ

∮
dz2

2iπ
e−it1z1−it2z2 (3.6)∏n

i=1

(
1 + t2

z2−ri

)∏m
j=1

(
1− t1

z1−ρj

)
∏m
j=1

(
1 + t2

z2−ρj

)∏n
i=1

(
1− t1

z1−ri

) [1 +
t1t2

(z1 − z2)(z1 − z2 − t1 − t2)

]
z1 encircles the ρ-poles and z2 the r-poles,

UIV (t1, t2) =
eit

2
1/2+it22/2

t1t2

∮
dz1

2iπ
e−it1z1

∮
dz2

2iπ
e−it2z2 (3.7)∏m

j=1

(
1− t1

z1−ρj

)(
1− t2

z2−ρj

)
∏n
i=1

(
1− t1

z1−ri

)(
1− t2

z2−ri

) [1 +
t1t2

(z1 − z2 − t1)(z1 − z+ − t2)

]

– 4 –



J
H
E
P
0
8
(
2
0
1
8
)
0
8
6

z1 and z2 encircle the ρ-poles. Remarkably enough these four terms recombine nicely

into one single compact expression. First the ones which appear as first terms in the

brackets reconstruct simply the disconnected part U(t1)U(t2). Then after appropriate

shifs zi → zi ± ti/2 the four integrands become identical and their sum is simply obtained

by taking the residues at all the poles in the z1, z2 plane. The final expression for the

connected correlation function is then

Uc(t1, t2) =

∮
dz1

2iπ

dz2

2iπ
e−it1z1−it2z2

n∏
1

(z1 − ri + t1/2)(z2 − ri + t2/2)

(z1 − ri − t1/2)(z2 − ri − t2/2)

×
m∏
1

(z1 − ρj − t1/2)(z2 − ρi − t2/2)

(z1 − ρj + t1/2)(z2 − ρj + t2/2)

× 1

(z1 − z2 − t1/2− t2/2)(z1 − z2 + t1/2 + t2/2)
(3.8)

It is clear that this may be generalized to a k-point function as in the usual GUE case [1].

4 Duality

In the GUE case we have used at length a duality between the expectation value of a

product of k-characteristic polynomials with N × N random matrices in a source, which

is equal to the expectation values of the product of N characteristic polynomials averaged

with k × k random matrices [1, 2]. We now derive a similar duality for supermatrices.

Consider first the one point expectation value

F1(x) =<
1

sdet(x−M)
>=<

∫
dΦeiΦ̄(x−M)Φ > (4.1)

with the weight (2.1); the (n+m)-components vector Φ consists of (u1, · · · , un; θ1, · · · , θm)

with anticommuting θ’s: dΦ stands for
∏
i du

?
i dui

∏
j dθ̄jdθj . The integral over the matrix

M with source A is replaced by an integral with source

Ã = A+

(
uiu

?
j uiθ̄j

u?jθi θiθ̄j

)
(4.2)

Then

F1(x) =

∫
dΦeixΦ̄·ΦZÃ

ZA
=

∫
dΦeixΦ̄·Φe−i/2str(Ã2−A2) (4.3)

and

1

2
str
(

Ã2 −A2
)

=
n∑
1

riuiu
?
i +

m∑
1

ρjθ̄jθj +
1

2
(u? · u)2 + (u? · u)

(
θ̄ · θ

)
+

1

2

(
θ̄ · θ

)2
(4.4)

Using the representation

e−i/2(u
?·u+θ̄·θ)

2

=

∫
dyeiy

2/2+iy(u?·u+θ̄·θ) (4.5)

– 5 –
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(up to normalizations), we can now integrate out the u′s and θ′s and end up with a single

integral

F1(x) =<
1

sdet(x−M)
>=

∫
dye−iy

2/2
n∏
1

1

x+ y − ri

m∏
1

(x+ y − ρj) (4.6)

over the variable y; shifting y → y − x we end up with

<
1

sdet(x−M)
>= eix

2/2

∫
dyeiy

2/2+ixy

∏m
1 (y − ρj)∏n
1 (y − ri)

(4.7)

In this dual representation we could introduce a 2× 2 diagonal supermatrix with non-zero

elements
∏n

1 (y− ri) and
∏m

1 (y− ρj) on the diagonal and the fraction in (4.7) replaced by

1/sdet to make the duality more explicit.

The same technique may be applied to

Fk(x1 · · ·xk) =<
k∏
a=1

sdet(xa −M)−1 > (4.8)

i.e.

Fk(x1 · · ·xk) =<

k∏
a=1

∫
dΦae

iΦ̄a(xa−M)Φa > (4.9)

We are now dealing with a modified matrix source

Ã = A+

k∑
a=1

(
uai u

a?
j u

a
i θ̄
a
j

ua?j θ
a
i θai θ̄

a
j

)
(4.10)

The result of the integration over the matrix M produces again e−i/2str(Ã
2−A2) which involve

quartic terms in u’s and θ’s. The Gaussian disentanglement of those fourth order terms

involves now a k × k matrix yab and we end up with

Fk(x1 · · ·xk) = ei
∑k

1 x
2
a/2

∫
dyabe

i/2try2−i
∑

a xayaa

∏m
1 det(y − ρj)∏n
1 det(x− ri)

(4.11)

which we could again express as the superdeterminant of a 2k × 2k supermatrix.

5 What can we learn from supermatrices?

At this stage it is natural to ask whether the whole machinery which has been developped

over the years with usual matrix models, such as triangulations of random surfaces, planar

limit, multicritical points, double scaling limit, intersection numbers of curves on Riemann

surface, etc, lead to something new with supermatrices. For instance consider a matrix

model with a weight

P (M) =
1

Z
estrV(M) (5.1)

– 6 –
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in which V is a polynomial with complex coefficients. Integrating out the U(n|m) degrees

of freedom one has

Z =

∫ n∏
1

dli

m∏
1

dµj

(
∆(l)∆(µ)

∆(l|µ)

)2

e
∑

i V (li)−
∑

j V (µj) (5.2)

Introducing the densities

ρ1(λ) =
1

n

n∑
1

δ(λ− li) ρ2(µ) =
1

m

m∑
1

δ(µ− µj) (5.3)

we obtain

Z =

∫ n∏
1

dli

m∏
1

dµje
n
∫
dλρ1(λ)V (λ)−m

∫
dµρ2(µ)V (µ)

en
2
∫
dλdλ′ρ1(λ)ρ1(λ′) log |λ−λ′|+m2

∫
dµdµ′ρ2(µ)ρ2(µ′) log |µ−µ′|−2nm

∫
dλdµρ1(λ)ρ2(µ) log |λ−µ|

(5.4)

So if we define

ρ̃(λ) = nρ1(λ)−mρ2(λ) (5.5)

the integral for the partition function takes the same form as the usual matrix model with∫
Dρ̃(λ)e

∫
dλV (λ)ρ̃(λ)+

∫
dλdλ′ρ̃(λ)ρ̃(λ′) log |λ−λ′| (5.6)

Therfeore it seems that there are no modifications with respect to the usual matrix model,

at least in the planar limit: the mGrassmanian dimensions have simply reduced the number

of commuting dimensions to (n−m).

However the situation for the model with external source, which in the usual case was

useful for computing intersection numbers, is slightly different.

6 Intersection numbers for p-spin curves

The ordinary intersection numbers of the moduli space of curves may be derived from a

generalization of Kontsevich’ Airy matrix model [3]. The intersection numbers for one

marked point for p-spin curves are computed from U(t) by an appropriate tuning of the

external source [1]. When p = 2, we obtain simply the Kontsevich’ Airy model.

For supermatrices the one-point function U(t) is given by (2.15). We shall now tune

the external parameters ri and ρj (i=1,...,n, j=1,...,m). Define the sum

ck =
n∑
i=1

1

rki
−

m∑
j=1

1

ρkj
(6.1)

k is an integer and expand U(t) of (2.15) as,

U(t) =
1

z

∫
dz

2iπ

[
e
−

cp+1
p+1

(
(z+ t

2)
p+1−(z− t

2)
p+1

)]
(6.2)

– 7 –
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where we have chosen the r′s and ρ′s satisfying the conditions

c1 = 0, c2 = −i (6.3)

cj = 0, (j = 3, ..., p) (6.4)

The higher terms proportional to ck (k > p + 1) can be dropped in an appropriate

scaling region with n and m large. We assume cp+1 ∼ (n−m), which is large. In the case

n = m, it reduces to p = −1, which is expicited below. The new term is the second term

in (2.15) compared with the ordinary p-spin intersection numbers [1].

For p = −1, we find like in ([1]) the Euler characteristics χ(Mg,n). From (6.2),

U(t) =
1

t

∫
dz

2iπ

(
z − 1

z + 1

)N
(6.5)

where N = cp+1. By the change of variable, (z − 1)/(z + 1) = e−y, we compute

U(t) =
∑ B̃n

n

(
1

N

)n
(−1)n (6.6)

Denoting B̃1 = 1
2 , and B̃j = 0 for j odd, (j >1), we obtain the same intersection numbers as

for the ordinary case with an overall factor 2. (B̃2n = Bn(−1)n+1, and Bernoulli number

Bn = 2nζ(1 − 2n)(−1)n). Thus we have obtained the Euler characteristics for the one

puncture cas, equal to what was derived from the GUE matrix model with source [1],

χ(Mg,1) = ζ(1− 2g) (6.7)

For p = 2 and q = −1 case, we obtain a natural extension of the Kontsevich-Penner

model, related now to open intersection numbers. It is not necessary to deal with quantum

mechanical matrix models, or two matrix models, as was done in [1]. This is an advantage

of the supermatrices formulation.

7 Supermatrices UOSp(n|m) and open boundaries

In [1, 12] we had considered the non-orientable triangulated surfaces generated by matrix

models with matrices drawn from the Lie algebras of O(N) and Sp(N). For such algebras

the HarishChandra formula [10] allowed us to repeat all the steps followed for the unitary

model. We had obtained explicitly the n-point function U(t1, ..., tn). Thereby, after tuning

of the external source, this yields generating functions for topological invariants such as the

virtual Euler characteristics and the intersection numbers. For non-orientable surfaces, one

cannot introduce the first Chern class since the direction of the spin can not be defined.

However, in our previous study [2, 12] based on these Lie algebras, we have found, in analogy

with the unitary model, generalizations of the topological invariants. It is thus natural

to conjecture that they correspond to intersection numbers for non-orientable Riemann

surfaces.

It is interesting to generalize these non-orientable surfaces to super-surfaces generated

by a matrix model based on the super-unitary orthosymplectic Lie algebra UOSp(n|m).

– 8 –
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The extension can be easily done with the modification of the HarishChandra (Itzykson-

Zuber) formula for unitary supermatrices that we used in the above section 2.

The random matrix M belonging to UOSp(n|m) and the external source A are diago-

nalized by unitary orthosymplectic matrices U, V ∈ UOSp(n|m)

U†MU =

(
l 0

0 µ

)
, V †AV =

(
r 0

0 ρ

)
(7.1)

The extension of the HarishChandra formula to superLie algebras has been derived by

Guhr [11],

I =

∫
U∈UOSp(2n|m)

dUeistrU
†DUA

=
(det[cos(2lirj)] + det[isin(2lirj)]) det[−2isin(2µiρj)]∆

(
l2|µ2

)
∆
(
r2|ρ2

)
∆ (l2) ∆ (µ2) ∆ (r2) ∆ (ρ2)

∏
µj
∏
ρj

(7.2)

up to a normalization. After integrating out these “angular” degrees of freedom one ob-

tain an integral over the eigenvalues l’s and µ’s of the random matrices with the new

“Berezinian”

J(l, µ) =

[
∆
(
l2
)

∆
(
µ2
)∏

µj

∆(l2|µ2)

]2

(7.3)

with

∆
(
l2|µ2

)
=

n∏
1

m∏
1

(
l2a − µ2

b

)
(7.4)

Using the above formulae, one obtains the one point function U(t) =< streitM >,

U(t) =
∆
(
r2|ρ2

)
ZA∆(r2)∆(ρ2)

∏
ρj

∫ ∏
dlidµj

(∑
a

cos(tla)−
∑
b

cos(tµb)

)
∆
(
l2
)

∆
(
µ2
)∏

µj

∆ (l2|µ2)
ei(
∑
l2i−
∑
µ2j)+2i

∑
liri−2i

∑
µjρj (7.5)

The cos tl and cos tµ lead to a split

U(t) = UI(t) + UII(t) (7.6)

UI(t) =
e−it

2/4

t

∮
dz

2iπ
e−itz

n∏
i=1

(
z + t

2

)2 − r2
i

z2 − r2
i

m∏
j=1

z2 − ρ2
j(

z + t
2

)2 − ρ2
j

(
z

z + t
4

)
(7.7)

where the contour encircles all the poles at z = ±ri. This expression is similar to the one

that was derived with the O(N) antisymmetric real matrices [1]. The second term gives

UII(t) =
eit

2/4

t

∮
dz

2iπ
e−itz

m∏
i=1

(
z − t

2

)2 − ρ2
i

z2 − ρ2
i

n∏
j=1

r2
i − z2

r2
i −

(
z − t

2

)2 (z − t
2

z − t
4

)
(7.8)

where the contour is taken around all the poles at f z= ±ρj .

– 9 –
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This second term may in fact be obtained from the first one for UI(t) in (7.7), if the

contour in the z-plane is extended to encompass also the poles at z = − t
2 ± ρj . Therefore,

we obtain the sum of the two terms U(t) = UI(t)+UII(t) as a single contour integral. After

the shift z → z− t
4 in (7.7), the contour encircles now all the poles at z = − t

4±ri,
t
4±ρj , and

U(t) =

∮
dz

2iπ
e−itz

n∏
i=1

((
z + t

4

)2 − r2
i(

z − t
4

)2 − r2
i

)
m∏
j=1

(
z − t

4

)2 − ρ2
j(

z + t
4

)2 − ρ2
j

(
1− t

4z

)
(7.9)

One verifies that in the case m=0, this coincides withi the one point function of O(N) case,

and for n=0, we obtain the Sp(N) result [1]. The generalization to the k-point functions

may easily follow as was done hereabove in the unitary supersymmetric case.

A number of studies may be performed on the basis of these general formulae. We

intend to consider the interesting case of the UOSp generalized Kontsevich model with

a logarithmic term (open-boundary). This might be related to the geometry of super

Riemann surfaces with open boundaries, but we leave the question to a subsequent work.

8 Summary

We have investigated the k-point correlation functions for the vertices streitM , in a Gaus-

sian ensemble invariant under U(n|m). The formulae that we have derived extend the

usual Hermitian matrices results, with the freedom of two kind of external sources ri and

ρj , bosonic and fermionic. This freedom allows one to compute various topological in-

variants of surfaces, for example, the intersection numbers with boundaries, through an

extension of the Kontsevich-Penner model. The extension to supermatrices UOSp(n|m) is

a generalization to non-orientable surfaces generated by matrix models based on the O(N)

or Sp(N) Lie algebras. The Kontsevich-Penner model obtained from supermatrices in the

Lie algebra of UOSp(n|m) may give more informations on manifolds with open boundaries,

but this remains to be investigated in a future work.
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