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decays until the scrambling time. This decay is not uniform. We argue that the early time

exponent is universal while the late time exponent is sensitive to the butterfly effect. This

large c answer breaks down at the scrambling time, therefore we also study the relative

entropy in a class of spin chain models numerically. We find a similar universal exponential

decay at early times, while at later times we observe that the relative entropy has large

revivals in integrable models, whereas there are no revivals in non-integrable models.
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1 Introduction

There are many different notions of chaos with a somewhat limited understanding of the

relation between them. Some of these are

1. For classical systems, under chaos we usually mean some notion of ergodicity of the

dynamics. One signal of ergodicity is chaotic mixing of phase space trajectories,

which is related to the heavy dependence of them on small perturbations of the

initial conditions [1]. This is called the butterfly effect and is characterized by a so

called Lyapunov exponent λL, setting the speed at which nearby trajectories diverge

at early times.

2. For quantum systems, there is a notion of thermalization, which means that simple

(time ordered) correlators relax to their thermal values if the system is started from

some non-equilibrium state. This is an early time effect that happens at times of

order β = T−1, where T is the temperature.

3. For quantum systems with a classical limit controlled by some tuneable parameter χ,

the classical butterfly effect is related to the exponentially decaying behaviour of out

of time order correlators (OTOC) [2] at times smaller than the so called Ehrenfest

time tE = 1
λL

log 1
χ [3]. For general quantum systems, the OTOCs can still have

Lyapunov type behaviour and the rate of their decay is bounded as λL ≤ 2πT/~
because of causality and unitarity constraints [4]. The Lyapunov behaviour happens

at intermediate time scales, which are much longer than the thermalization time.

Note that χ might be ~ in which case the bound is trivial in the classical limit, but

this is not necessary. For example, in AdS/CFT one has χ = N−2.

4. Another, intrinsically quantum notion of chaos is the randomness of the energy spec-

trum, more precisely, the level spacing statistics, which is said to be chaotic if it

agrees with that of random matrix theory [5], in particular when nearby energy lev-

els repel each other [6, 7]. Since this phenomenon is sensitive to the discreteness of

the spectrum, it is associated to effects at very late times, exponential in the entropy.1

5. For quantum systems with some locality structure, there are notions like the eigen-

state thermalization hypothesis, which is the statement that energy eigenstates ap-

pear thermal when probed by sufficiently simple and local probes [9–11].

6. Again for quantum systems with a notion of locality, there is the phenomenon of

scrambling of localized quantum information [12]. At the intuitive level, this is related

to classical notions of ergodicity and divergence of trajectories, as both these measure

how mixing the dynamics is, and how much it forgets about initial conditions. There

is both the question of the speed of scrambling (measured by some scrambling time)

and how effectively does it happen, i.e. how scrambled localized information can

get. There are many quantities sensitive to this type of physics. For example, the

1See also [8] in the context of black holes.
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previously mentioned OTOCs are also sensitive to this at late times, because they

can be regarded as simple measures of operator growth in the sense of Lieb-Robinson

bounds [13–16].2 Beyond this, quantum information theoretic quantities, like the

trace distance [17], the mutual information or the tripartite information [18] are also

sensitive to scrambling.

The primary aim of this paper is to add another quantity to points 3 and 6, which is

sensitive to scrambling and possibly the Lyapunov behaviour, namely the relative entropy

of reduced density matrices associated with a local subregion. The relative entropy S(ρ||σ)

measures the distinguishability of two density matrices ρ and σ, and is defined by3

S(ρ||σ) = trρ log ρ− trρ log σ. (1.1)

Note that S(ρ||σ) = 0 implies ρ = σ. When a system scrambles, i.e. quantum information

becomes quickly delocalized, the reduced density matrices ρφ, ρψ of two states |φ〉, |ψ〉 of

similar energy become hardly distinguishable after the scrambling time without having

access to a large fraction of all the degrees of freedom. Based on this, we expect the

relative entropy on a spatial subsystem to show a decaying behaviour, with the rate of the

decay quantifying the speed of scrambling, while the late time value, after the decay ends,

quantifying how scrambled the initially localized information can get. In a chaotic system,

we therefore expect this late time value to be small.4

To sharpen this intuition, we could think about scrambling as the question of how ef-

fectively can we recover information from a state after the application of a quantum channel

Nt which consists of time evolution followed by a partial trace over some spatial region B

ρ 7→ Nt(ρ) = TrB
(
e−iHtρeiHt

)
. (1.2)

For such noninvertible channels, there exist approximate recovery maps. However, the

possible effectiveness of such recovery channels is bounded by the relative entropy [32]5

S(ρ||σ)− S(Nt(ρ)||Nt(σ)) ≥ −2 logF (ρ,Rσ,Nt(ρ)), (1.3)

where ρ and σ are any two states and Rσ,Nt is a particular approximate recovery channel

which can recover the state σ, while F is the fidelity. In this sense, the time dependent rel-

ative entropy S(Nt(ρ)||Nt(σ)) tells us how quickly approximate recovery from this channel

can fail.
2While OTOCs are always sensitive to scrambling, the classical butterfly effect, mentioned in point 3, only

makes sense if there is a classical limit of the system. It is not entirely clear what is the precise connection

between these two types of physics, in particular notions like the scrambling time (the time when initally

localized information gets maximally scrambled) and the Ehrenfest time (the time when a wavepacket

spreads so much that the classical approximation breaks down). In holographic systems, the two timescales

are the same basically because the parameter controlling the classical limit is also related to the number of

degrees of freedom. In a generic system with a classical limit such relation does not necessarily exist.
3The relative entropy has been used efficiently in the recent quantum information theoretic approach to

some fundamental questions in quantum field theory [19–23] and quantum gravity [24–30].
4Considering the relative entropy as an indicator of scrambling is very similar to using the trace distance,

as done in [17]. In fact, the relative entropy is a more refined probe because of Pinsker’s inequality [31].
5See also [33] for a use of this bound for bulk reconstruction.
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Figure 1. We consider a setup in which the eternal black hole is perturbed by an operator

insertion at early times (blue cross). We calculate the relative entropy of the subsystem drawn with

red between the TFD state and its perturbation.

The AdS/CFT correspondence [34] gives an excellent tool to analytically study quan-

tum chaos in strongly coupled systems. A particularly useful setup is the Shenker Stanford

process [35], in which one perturbs a thermofield double (TFD) state, which is holograph-

ically dual to a two sided eternal black hole, by injecting energy on one side. In the dual

gravity picture this amounts to sending a shock wave into the black hole. This process was

argued to be chaotic, in particular, time evolution of the mutual information was calcu-

lated in [35]. In the present paper, we will be concerned with the relative entropy between

the TFD state and its perturbation with the shockwave, both in the case of translational

invariant and localized shocks. We take the spatial subsystem to be the union of the half

line on both boundaries, see figure 1.

We will calculate this relative entropy in a holographic two dimensional conformal field

theory (CFT) with large central charge and show that it indeed diagnoses scrambling. The

result is that the relative entropy is initially proportional to the central charge of the CFT,

but it decays exponentially in time. Assuming that the subsystem is large enough,6 there

are two different exponential behaviours. Initially, the decay goes as exp(−2π
β t) until times

β � t ∼ β logE, where E is roughly the total energy of the perturbation. In our setup,

this energy will be large, but order c0 in terms of the central charge c. We will argue that

this decay rate is universal as it comes from the modular Hamiltonian piece. After this, the

decay crosses over to exp(−4π
β t). We will argue that in a generic CFT, the rate of this second

decay is related to the behavior of out of time order (OTO) correlators in the Lyapunov

regime, so that it is sensitive to chaos. This argument comes from doing the calculation

using the replica trick combined with large c vacuum block techniques [36], besides directly

6When the subsystem is smaller than the scrambling time, its size gives the relevant timescale when the

relative entropy drops to order one.
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applying the Ryu-Takayanagi formula [37]. We will see that Lyapunov regime shows up in

the replica correlators. This second decay continues until the relative entropy becomes of

order one at the scrambling time t ∼ β log c, at which point quantum corrections to the Ryu-

Takayanagi formula start to matter and we can no longer trust the result. We note that the

exponential decay in time is something new compared to the typical linear or logarithmic

time dependence of the entanglement entropy or the mutual information [38–42].

Another interesting feature is the dependence on the time when the shockwave is in-

serted. The sooner the shockwave is inserted, the larger the perturbation to the TFD state

is on the t = 0 slice. In fact, a shockwave entering at time t = −tW results in a relative

entropy proportional to e
2π
β
tW .7 This quantifies how far we end up with from the TFD state

as a result of such an earlier perturbation, which has a similar flavour as the butterfly effect.

We will argue however that this kind of dependence is universal in conformal field theories,

so it is not directly related to the Lyapunov exponent. It would be very interesting though

if this universal growth could be used to understand the chaos bound of [4] from an infor-

mation theoretic point of view. We will show that this relative entropy bounds out of time

order correlators, though unfortunately we were not able to relate to their rate of change.

In addition to the holographic results, we perform numerical calculation of this relative

entropy in a spin chain model. The main observation is that after the decay in t stops,

the relative entropy stays small for a chaotic system, while has revivals comparable with

the initial value for integrable systems.8 In this regard, it behaves similarly to the mutual

information or the tripartite information. In addition to this, we will observe that the

early time decay is exponential both for the chaotic and integrable cases. The exponent is

proportional to the temperature similarly to the CFT case.

The organization of this paper is as follows. In section 2, we explain our setup in the

setting of two dimensional conformal field theories. We show using the replica trick that the

relative entropy is determined by how the replica correlators analytically continue in the

replica index in their Regge-limit. Then, we obtain a concrete formula by approximating

these correlators with the large c vacuum Virasoro block. We spend section 3 explaining the

features of this formula and making some comments about the expected time dependence

for non-holographic large c theories via a possible connection to the Maldacena-Shenker-

Stanford (MSS) chaos bound. Sections 4 and 5 are devoted to calculations of the relative

entropy using the Ryu-Takayanagi formula, for translationally invariant and local pertur-

bations respectively. In section 6 we present our numerical results for the spin chain model.

We have appendix A complementing some calculations in section 2. In appendix B we de-

scribe a generalization of our relative entropy to the case when both states are deformations

of the thermofield double, while in appendix C we generalize the holographic calculations

of section 4 to the case when the subsystem has finite size.

7Note that the combined dependence on t, describing the location of the time slice, and tW describing

the insertion of the shock is nontrivial, because the TFD state is not invariant under time translations.
8Similar revivals for single sided global quenches in rational CFTs were studied in [43]. Also, time

evolutions in the process and its recurrence was studied in [44].
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2 Localized perturbations

In this section, we explain our setup in the CFT, and how to calculate the relative entropy of

interest using correlation functions. These correlation functions have several distinct OPE-

like limits, depending on the causality relation between the subsystem and the local pertur-

bations. The discussion of this is very much similar to those found in [41, 42], where the time

evolution of entanglement entropy for local quenches on thermal backgrounds were studied.

We will eventually focus on the relative entropy between a thermofield double state

and its perturbations, where we know the exact expression of the modular Hamiltonian.

The relative entropy consists of the modular Hamiltonian part as well as the entanglement

entropy part. We first explain the way to evaluate the modular Hamiltonian part with

again paying attention to the causality of the set up.

The entanglement entropy part can be evaluated by a four point function involving

twist operators in the cyclic orbifold of the original CFT. In a CFT with a gravity dual, this

four point function can be well approximated by the vacuum Virasoro conformal block and

the result agrees with the holographic one given by the Ryu-Takayanagi formula. In the

next section we will use the four point function expression to discuss a possible connection

between the time dependence of the relative entropy and the MSS chaos bound [4].

2.1 General replica setup

We will consider a two dimensional conformal field theory (CFT) and the thermofield

double state

|TFD〉 =
1√
Z

∑
n

e−βEn/2|n〉L|n〉R ∈ CFTL ⊗ CFTR. (2.1)

One can create this state by cutting up in half the Euclidean path integral on the cylinder

which calculates the thermal partition function. The two lines of the cut correspond to the

left and the right copy of the CFT. When the CFT has a gravitational dual, the |TFD〉
state is dual to the two-sided AdS-Schwarzschild black hole, connecting the two boundaries.

The |TFD〉 state is a special model of a non-equilibrium quench state with respect to the

time evolution generated by HL +HR, where H is the Hamiltonian of the single CFT [40].

We will be interested in local perturbations of the |TFD〉 state

V (x, tp − iε)|TFD〉, W (x, tp − iε)|TFD〉, (2.2)

where V and W are local primary operators of the CFT. The role of the Euclidean time shift

ε is to regulate the energy of these states and to make them normalizable. We will reduce

these states to a subsystem which consists of a half line on both CFTs. The reduced density

matrix is calculated as a path integral on the cylinder of circumference β with cuts corre-

sponding to the in and out indices of the matrix, see figure 2. The cuts are running from

P 1
R : (x, tE) = (0, it) to P∞R : (x, tE) = (∞, it) (2.3)

and from

P 1
L : (x, tE) = (0,−it+ β/2) to P∞L (x, tE) = (∞,−it+ β/2), (2.4)

– 6 –
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Figure 2. Euclidean path integral creating the perturbed state. Left: drawn on the cylinder,

red line is the cut along the subsystem, blue crosses are operator insertions. Right: drawn when

mapped to the plane. Red line is the cut, blue crosses are operator insertions. Note that we have

applied a global conformal map z 7→ −1/z on the figure compared to the text to make the location

of the cut more illustrative.

and operator insertions

V at (w1, w̄1) = (x−tp+ iε, x+tp− iε) and V † at (w2, w̄2) = (x−tp− iε, x+tp+ iε), (2.5)

where w = x + itE , w̄ = x − itE . When mapped to the plane with the map z = e
2π
β
w

,

we can see that the two points P∞R and P∞L are secretly the same and we get a single cut

running from

(za = e
− 2π
β
t
, z̄a = e

2π
β
t
) to (zb = −e

2π
β
t
, z̄b = −e−

2π
β
t
), (2.6)

and operator insertions at

V : z1 = z∗e
−i 2π

β
ε
, z̄1 = z̄∗e

i 2π
β
ε
,

V † : z2 = z∗e
i 2π
β
ε
, z̄2 = z̄∗e

−i 2π
β
ε
,

(2.7)

where z∗ = e
2π
β

(x−tp)
, z̄∗ = e

2π
β

(x+tp)
.

We will use the replica trick of [45] for the relative entropy

S(ρV ||ρW ) = − lim
n→1

∂n log
TrρnV

TrρV ρ
n−1
W

. (2.8)

We now want to compute TrρnV and TrρV ρ
n−1
W , which are given by the Euclidean path

integral on an n-sheeted cylinder with appropriate operator insertions on each sheet. We do

this by uniformizing to the plane with the map z̃ =

(
z−e−

2π
β
t

z+e
2π
β
t

)1/n

and ¯̃z =

(
z̄−e

2π
β
t

z̄+e
− 2π
β
t

)1/n

.

We get the following insertion positions

z1,2;k = e
2πik
n e
− 2π
βn
t

 sinh
π(w1,2+t)

β

cosh
π(w1,2−t)

β

 1
n

, z̄1,2;k = e−
2πik
n e

2π
βn
t

 sinh
π(w̄1,2−t)

β

cosh
π(w̄1,2+t)

β

 1
n

. (2.9)

– 7 –
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We have dropped the tilde from these insertion points, to ease the notation. It should

be understood that a coordinate with a subscript k means that the coordinate is on the

uniformized plane. The quantities of interest are then computed by the following correlation

functions on the plane

TrρnV
TrρnTFD

=
〈
∏n
k=1 V (z1;k, z̄1;k)V

†(z2;k, z̄2;k)〉∏n
k=1〈V (z1;k, z̄1;k)V †(z2;k, z̄2;k)〉

,

TrρV ρ
n−1
W

TrρnTFD
=
〈V (z1;1, z̄1;1)V †(z2;1, z̄2;1)

∏n
k=2W (z1;k, z̄1;k)W

†(z2;k, z̄2;k)〉
〈V (z1;1, z̄1;1)V †(z2;1, z̄2;1)〉

∏n
k=2〈W (z1;k, z̄1;k)W †(z2;k, z̄2;k)〉

.

(2.10)

Here, ρTFD is the density matrix for the TFD state, without operator insertions.

2.1.1 Small ε limits

The insertion points (2.7) approach each other in a particular way when we take ε → 0.

The physically distinct cases are controlled by the signs of

ζ1,2 = Re

 sinh
π(w1,2+t)

β

cosh
π(w1,2−t)

β

 , ζ̄1,2 = Re

 sinh
π(w̄1,2−t)

β

cosh
π(w̄1,2+t)

β

 , (2.11)

because when the argument of the nth root in (2.9) is negative, the insertion point picks

up an extra factor of e±i
π
n , where the sign depends on the sign of the iε shift in (2.7).

This difference corresponds to crossing the cut once. The signs of ζ1,2, ζ̄1,2 are controlled

by the causal relationship between the operator insertion point and the endpoint of the

subsystem, see figure 3. There are the following cases.

• When |x| > |t− tp|, we have either both ζ1,2 > 0 and ζ̄1,2 > 0 (when x > tp− t > −x),

so the argument of the nth root is positive, or both ζ1,2 < 0 and ζ̄1,2 < 0 (when

x < tp − t < −x), so the argument of the root is negative. In the x > tp − t > −x
case we have an OPE limit as ε→ 0

z1;k → z2;k z̄1;k → z̄2;k. (2.12)

This situation is analogous to a small subsystem limit in the setup of globally excited

states considered in [46, 47], with roughly ε playing the role of the size of the subsys-

tem. It follows that the relative entropy vanishes as ε→ 0. Physically, this is because

the local operator insertion is in the causal domain of dependence of the traced out re-

gion. Therefore, the RDMs of states with such insertions are the same and we expect

the relative entropy to indeed vanish as ε → 0. This situation is tractable entirely

with the OPE, we give a summary of how the relative entropy behaves in appendix A.

In the case x < tp − t < −x, half of the operators actually cross the cut once more

and we have

z1;k → z2;k+1 z̄1;k → z̄2;k+1. (2.13)

This situation is analogous to a large subsystem size limit for globally excited states,

therefore the relative entropy must diverge as ε→ 0 (this is because we are comparing

– 8 –
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pure states in this limit). Physically, this is when the insertion point is in the causal

domain of dependence of the region that we are not tracing over, so it is natural

that the relative entropy does not vanish as ε → 0. We mention here, that for the

correlators (2.10), which compute the replica relative entropy, this limit is still an

OPE limit and we can calculate their expansion in ε. However, we cannot take the

analytic continuation because of a singularity in the complex ε plane that moves to

the point that we are expanding around (ε = 0 in the present context) when n→ 1.

This is a feature of correlation functions that break replica symmetry. It is presently

unclear to us if there is a way around this obstacle.

• In the other case, when |x| < |t − tp|, i.e. the insertion is in causal contact with the

endpoint of the subsystem, we have either

ζ1,2 < 0, ζ̄1,2 > 0, when tp − t > |x|, (2.14)

or

ζ1,2 > 0, ζ̄1,2 < 0, when tp − t < −|x|. (2.15)

This is a weird situation, as the different chiralities of the operator insertions appear

to be on different sheets as ε→ 0. In the first case we have

z1,k → z2,k+1

z̄1,k → z̄2,k,
(2.16)

while in the second case we have

z1,k → z2,k

z̄1,k → z̄2,k+1.
(2.17)

This is not an OPE limit, instead it is a very similar limit as the one considered

in [48] in the context of entanglement scrambling. In the case of the replica symme-

try preserving correlation function, we will soon see that this corresponds to a Regge

limit in the cyclic orbifold theory.

We summarize the above cases on figure 3.

2.1.2 Chaos and the late time limit

Here we argue that in the case when |x| < |t− tp|, i.e. the operator insertion is in the future

or past lightcone of the endpoint of the subsystem, the replica relative entropy is sensitive

to the integrability of the CFT. Consider for example the case tp− t < −|x|, when we have

z1,k → z2,k and z̄1,k → z̄2,k+1. The point is that the way these coordinates approach each

other has a hierarchy. For x = 0 one has∣∣∣∣ z1,k − z2,k

z̄1,k − z̄2,k+1

∣∣∣∣ = e
− 4π
βn
t
. (2.18)

– 9 –
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Figure 3. Regions of the operator insertion (x, tp) relative to the endpoint of the subsystem (0, t)

on the right CFT, and the respective ε→ 0 limit of the positions of the operator insertions on the

replica manifold.

We see that for t large enough, this is small and we are effectively first taking z1,k → z2,k

and then z̄1,k → z̄2,k+1.9 The effect of first taking z1,k → z2,k is to project to chiral

operators h = 0 in the V × V † OPE channels of the correlators (2.10). This means that in

this limit the entire correlator is fixed by the chiral algebra of the CFT, so it is linked to

the amount of symmetries that the CFT has. This is very similar to the way the depth of

the quasiparticle dip works in the two interval entanglement entropy of a quench state [48].

2.2 The modular Hamiltonian part

After the general discussion of the previous section, we are now going to restrict to the

case when one of the states is the unperturbed thermofield double.10 In this case, we can

calculate the relative entropy as

S(ρW ||ρTFD) = 〈W |KTFD|W 〉 −
[
S(ρW )− S(ρTFD)

]
, S(ρ) ≡ −Trρ log ρ, (2.19)

where KTFD = − log ρTFD + α is the modular Hamiltonian for the thermofield double

state where we have fixed the number α so that 〈TFD|KTFD|TFD〉 = 0. In the present

subsection we evaluate 〈W |KTFD|W 〉, which is entirely fixed by kinematics.

In this section, we will consider the slightly generalized subsystem consisting of the

union of the intervals

A : (t, x > L) and B : (−t− iβ/2, x > 0), (2.20)

9For tp− t > |x|, we can get such a hierarchy for t largely negative, in that case we first take z̄1,k → z̄2,k
and then z1,k → z2,k+1.

10We will further discuss the relative entropy between two perturbed states in appendix B.

– 10 –



J
H
E
P
0
7
(
2
0
1
8
)
0
0
2

i.e. a half line with adjustable end point L on right CFT and a half line on left CFT. This is

still effectively a single interval setup and in terms of light cone coordinates the endpoints

are

(y1, ȳ1) = (L− t, L+ t) and (y2, ȳ2) = (t+ iβ/2,−t− iβ/2). (2.21)

The left moving part of the modular Hamiltonian can be obtained by the conformal map

z = e
2π
β
y

from the vacuum modular Hamiltonian on the plane

Kz1,z2 =

∫ z2

z1

(z2 − z)(z − z1)

z2 − z1
T (z)dz (2.22)

along the lines of [49]. It is given by

KL =
β

π

∫
C
dy

coshπ y−tβ sinhπ t+y−Lβ

coshπL−2t
β

T (y), (2.23)

where the contour C runs from y1 = L − t along the line Imy = 0 to y = ∞, where it

turns up to y = ∞ + iβ/2 and runs back to y2 = iβ/2, see the left of figure 4. This is

just an integral along the subsystem shown on figure 2. The right moving part is obtained

by complex conjugation of this contour, and a replacement t → −t in both the endpoint

positions and the integrand. The complete modular Hamiltonian is

K = −KL −KR, (2.24)

because T00 = − 1
2π (T + T̄ ). The stress tensor expectation value 〈Ψ|T (y)|Ψ〉 in the state of

interest (2.7) is computed from the three point function,

〈W (w1)T (y)W (w2)〉
〈W (w1)W (w2)〉

=
hW

(
β
π sinhπw1−w2

β

)2

(
β
π sinhπw1−y

β

)2 (
β
π sinhπ y−w2

β

)2 , (2.25)

here we employed the normalization of W , 〈W (∞)W (0)〉=1. In our set up w1, w2 are given

by

w1 = x− tp + iε, w2 = x− tp − iε, (2.26)

With the aid of this, we can write the explicit expression for the expectation value 〈KL〉 ≡
〈W |KL|W 〉 of (2.23)

〈KL〉 =
4πhW
β

sin2 2πε

β

∫
C
dy

coshπ y−tβ sinhπ t+y−Lβ

coshπL−2t
β

−1(
cos 2πε

β − cosh 2π
β (y − a)

)2 , (2.27)

with a = x−tp for the present left moving case, while the right moving case is obtained again

by complex conjugation and t→ −t, tp → −tp. The integrand has poles at y = a± iε+ iβk,

k ∈ Z. We have two possible cases:

• In case L − t > a = x − tp the contour stays clear of the vicinity of any poles. We

may send cos 2πε
β → 1 in the integrand and we can deform the contour into the sum

of two finite straight pieces, each of which on the integrand stays finite. The result

in this case is clearly finite, therefore we have 〈K〉 ∼ ε2 coming from the prefactor of

the integral.

– 11 –



J
H
E
P
0
7
(
2
0
1
8
)
0
0
2

Figure 4. Left: the modular Hamiltonian contour in (2.27). Right: the deformed contour when

a > L− t. When a < L− t, the contour stays clear of the poles at a± iε and we can deform it into

a finite length one without picking up any residue.

• When L− t < a = x− tp, we can deform the contour through the pole at y = a+ iε

to obtain again a finite length contour which stays clear of singularities as ε → 0,

see the right of figure 4. The price we pay for this is that we pick up a residue at

y = a+ iε. Therefore, in this case we have

〈KL〉 =
4πhW
β

{β
2

sinh π(L−2t)
β − sinh π(2a−L)

β

sin 2πε
β cosh π(L−2t)

β

+O(ε)


+ sin2 2πε

β

(
finite

)}
.

(2.28)

Notice that the condition L− t < a guarantees this to be negative. Note that the left

moving part of the total energy of the state can be obtained by taking t→∞ in this

formula, and it is EW ∼ hW / sin 2πε
β . To obtain the right moving part of the modular

Hamiltonian expectation value 〈KR〉, we set t → −t, tp → −tp (the results are obvi-

ously real), and we need t+L < ā = x+ tp to obtain a nonvanishing result as ε→ 0.

We will now restrict again to the symmetric interval case L = 0. We have seen that the

left moving part contributes only when −t < x− tp while the right moving part contributes

only when t < x + tp. These two cases correspond to the union of the right and bottom

wedges for the case −t < x − tp and the union of the right and top wedges for t < x + tp
on figure 3. There are the following cases.

• Top. The perturbing operator W is inserted in the causal future of the endpoint of

the subsystem. We see that only the right moving part contributes to nonvanishing

pieces in ε. The total modular Hamiltonian contribution is

〈K〉 = −〈KR〉 = 2hWπ
sinh

2π(x+tp)
β − sinh 2πt

β

sin 2πε
β cosh 2πt

β

. (2.29)

We have t < x+ tp in this region ensuring positivity.
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• Bottom. The operator is inserted in the causal past of the endpoint of the subsystem.

In this case, only the left moving part contributed, giving

〈K〉 = −〈KL〉 = 2hWπ
sinh 2πt

β + sinh
2π(x−tp)

β

sin 2πε
β cosh 2πt

β

(2.30)

Here, t > tp − x ensures positivity. We will have in mind a situation when the

perturbing operator is inserted at some early time tp < 0, |tp| � 1, while we follow

the evolution in t.

• Right. This is the causal diamond of the subsystem. In this case both the left and

right moving parts contribute, giving in total

〈K〉 = −〈KL〉 − 〈KR〉

= 4hWπ
cosh

2πtp
β sinh 2πx

β

sin 2πε
β cosh 2πt

β

.
(2.31)

Here, x > 0 ensures positivity.

• Left. This is the causal diamond of the complementary subsystem. In this case,

neither the left nor the right moving part contributes and the result is

〈K〉 ∼ ε2. (2.32)

We will not try to evaluate the finite integrals in this case, instead we give a separate

treatment of the relative entropy in appendix A.

2.3 The entanglement entropy part in general

The entanglement entropy part in (2.19) in our two sided setup was studied before in [42].

Here we review this setup in a slightly different way which makes the connection to the

behaviour of OTO correlators more transparent. To calculate the entanglement entropy

in (2.19), we can use a Zn symmetric replica trick, which can be implemented in the orbifold

theory CFTn/Zn, see e.g. [50, 51]. In this case, we can write

TrρnW
TrρnTFD

=
〈σ̃n(zb, z̄b)[W

†]⊗n(z1, z̄1)σn(za, z̄a)W
⊗n(z2, z̄2)〉

〈σ̃n(zb, z̄b)σn(za, z̄a)〉〈[W †]⊗n(z1, z̄1)W⊗n(z2, z̄2)〉
. (2.33)

Here σn and σ̃n are the elementary Zn twist and anti-twist, and the expectation value is

in the theory CFTn/Zn. The operator ordering in the nominator reflects the Euclidean

cylinder time order for the operators: W and W † has ∓ε, σn has 0 and σ̃n has β/2.

We can use a global conformal map to map these operators to ∞, 1, u, 0. There is no

Jacobian factor coming from this, because it is cancelled by the two-point function factors

in the denominator. The cross-ratio is

u =
(z1 − z2)(zb − za)
(z2 − za)(z1 − zb)

=
i sin(2π

β ε) cosh(2π
β t)

sinh π
β (t− tp + x+ iε) cosh π

β (t+ tp − x+ iε)
,

(2.34)
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while antiholomorhic cross ratio is

ū =
−i sin(2π

β ε) cosh(2π
β t)

sinh π
β (tp + x− t− iε) cosh π

β (t+ tp + x+ iε)
, (2.35)

The Rényi entropy is then given with the cross-ratios as

TrρnV
TrρnTFD

=
〈W⊗n(∞)[W †]⊗n(1)σn(u, ū)σ̃n(0)〉

〈σn(u, ū)σ̃n(0)〉
. (2.36)

Notice that both cross ratios are small for small ε for all times, as long as t − tp + x and

t− tp− x are neither close to zero, which means that the operator insertion is not lightlike

separated from the endpoint of the subsystem. In the case of lightlike separation, when

say κ = t− tp+x = 0, we have u→ 2 as ε→ 0. Similarly, when κ̄ = x− t+ tp = 0, we have

ū→ 2. As κ changes sign, u encircles u = 1, going from 0 to 2 from bellow and then going

back to 0 from above. Similar statement holds for ū and κ̄. On the tp − t = 0 section, we

are in Euclidean signature, and ū is the complex conjugate of u. The correlator is single

valued on this section, and it is thus given by the usual Euclidean conformal four point

function. We now need to track how the cross ratios move around 1 as we move away from

here, as we expect it to cross a branch cut whenever κ or κ̄ changes sign. We have the

following situations, depending on which wedge the operator insertion is in on figure 3:

• Left. Here κ < 0, κ̄ < 0. We take this to be the reference region, as we have seen in

section 2.1.1 that this should correspond to a direct OPE limit and the entanglement

entropy must vanish as ε → 0 due to causality reasons. Therefore, in this region we

take the limit u→ 0, ū→ 0 directly in the Euclidean correlator.

• Right. Here κ > 0, κ̄ > 0 and this corresponds to doing the analytic continuation

(1− ū)→ e2πi(1− ū), (1− u)→ e−2πi(1− u), (2.37)

to the result in the left region, and then taking u → 0, ū → 0. Since we can do

this continuation while we stay on the Euclidean section (ū is the conjugate of u),

the correlation function must be single valued and this is an OPE limit.11 This is

consistent with the fact that the Rényi entropies of the complement subsystem must

agree with that of the original.

• Top. Here κ < 0, κ̄ > 0 and this corresponds to doing the analytic continuation

(1− ū)→ e−2πi(1− ū), (2.38)

to the result in the left region, and then taking u→ 0, ū→ 0. in (2.36). This is the

standard OTO continuation of the four point function, which diagnoses scrambling

and the Lyapunov behaviour [52, 53].12

11The fact that the correlation function is single valued on the Euclidean section follows from crossing

symmetry.
12The standard OTO analytic continuation is (1 − u) → e−2πi(1 − u), but we can combine this with

the continuation (1 − ū) → e−2πi(1 − ū), (1 − u) → e2πi(1 − u), which does nothing, to see that they are

equivalent.
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• Bottom. Here κ > 0, κ̄ < 0 and this corresponds to doing the analytic continuation

(1− u)→ e2πi(1− u), (2.39)

to the result in the left region, and then taking u → 0, ū → 0. Similarly to the

previous point, this is also an OTO continuation.

Notice that when neither κ nor κ̄ are close to zero, the cross ratios are related to the

modular Hamiltonian expectation values (2.29), (2.30) in a simple way

〈KL〉 = −4πihW
u

, 〈KR〉 =
4πihW
ū

. (2.40)

2.4 The entanglement entropy part from large c vacuum block

We can use the heavy-heavy-light-light large c Virasoro vacuum block to evaluate these

Rényi entropies, as done in [42]. Note, however, that we will focus here on the shockwave

limit, so the expressions will be different. As in [42], we treat W⊗n as the heavy operator

and σn as the light operator.13 The relevant conformal block is [36]

F(ū) ≈
(

ū

1− (1− ū)1−12hW /c

)2hn

, (2.41)

where hn = c
24(n − 1/n) is the conformal weight of the twist operator. Note that W⊗n

has weight nhW but we cancelled this by using that the orbifold central charge is cn. The

u→ 0 limit is

F(ū) ≈

(
1

1− 12hW
c

)2hn

≈ 1, (2.42)

given that hW /c� 1. On the other hand, doing the continuation (1 − ū)→ e−2πi(1− ū),

relevant for the top wedge in figure 3, and then taking ū→ 0 leads to a decay such as

F(ū) ≈

(
1

1− 24πihW
cū

)2hn

. (2.43)

This decay is also responsible for the decay of OTO correlators [52]. In our case, however,

the smallness of the cross-ratio is controlled by a combination of ε and the time. Writing

TrρnW
TrρnTFD

≈ F(u)F̄(ū), (2.44)

we can evaluate the entanglement entropy difference required for the relative entropy as

S(ρW )− S(ρTFD) = −∂n[F(u)F(ū)]. (2.45)

13We will ultimately have in mind a situation where hW is O(1) (opposed to what is considered in [42])

and the enhancement comes from taking the shockwave limit in the crossratio (2.34), meaning that we take

e
2π
β
|tp| ∼ c. This kinematic limit allows treating W⊗n as a heavy operator, similarly as done in [52]. The

twist field has weight porportional to c but it also vanishes in the n→ 1 limit so keeping only the leading

order in hn/c suffices to get the entanglement entropy accurately, see [51].
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The result of this approximation, in the different wedges of figure 3, can be neatly summa-

rized using (2.40) as

S(ρW )− S(ρTFD) =
c

6
log

(
1 +

6

c
〈K〉

)
, (2.46)

where 〈K〉 is the O(ε−1) part of the modular Hamiltonian expectation value in the cor-

responding wedge, given in (2.29), (2.30). The exception from this formula is the right

wedge of figure 3, i.e. the domain of dependence of the subsystem. Here, the result must

agree with that of the left wedge, because of S(A) = S(Ā) for pure states. Therefore, the

entanglement entropy goes to zero as ε → 0. On the other hand, we would get (2.46) in

the right wedge also by naively doing the continuation (2.37) to the large c vacuum block.

We are not allowed to do this for the following reason. While we know that the contin-

uation (2.37) leaves the total correlator invariant, it still changes the OPE channel.14 In

the right wedge, the analytically continued blocks never dominate the correlator, since the

new “direct” channel gives a vacuum block that does not decay as we take u, ū→ 0. This

is the reason for formula (2.46) not being valid in the right wedge.

Finally, based on the discussion of section 2.1.2 we expect that this answer remains

valid for times β � t� β log c for any large c CFT where the chiral algebra consists of the

stress tensor alone, regardless of any sparseness condition on the spectrum.

3 Discussion of the result

3.1 Timescales in the large c Virasoro answer

Let us focus on the bottom wedge in figure 3. In this case, the large c vacuum block

approximation results in a relative entropy (combine (2.29) and (2.46))

S(ρW ||ρTFD) = c

[
q − 1

6
log
(
1 + 6q

)]
, (3.1)

with

q =
1

c
〈K〉 =

2hWπ

c

sinh 2πt
β + sinh

2π(x−tp)
β

sin 2πε
β cosh 2πt

β

. (3.2)

We are interested in the shockwave limit, where the perturbation W is inserted at very

early times, tp < 0. We will set

tp = −tW , tW > 0 (3.3)

and take the insertion time to scale with the central charge as

e
2π
β
tW ∼ c. (3.4)

Notice that in this limit, the parameter q starts out as order one. As t increases, q ex-

ponentially decays and eventually becomes O(c−1) at the scrambling time t ∼ log c. This

14See e.g. [54], the blocks are single valued on the upper half plane. We thank Henry Maxfield for

discussion on this point.
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is when 1/c corrections to the vacuum block become important (or equivalently quantum

corrections to the Ryu-Takayanagi formula) and we can no longer trust the result. There

is actually another characteristic timescale of the above relative entropy. This is set by

q ≈ 1

6
, (3.5)

which is a time t ∼ β logEW , where EW ∼ hW / sin 2π
β ε, i.e. the total energy of the pertur-

bation. At earlier times, q � 1
6 is large and

S(ρW ||ρTFD) ≈ hWπ
e

2π
β

(x+tW )

(sin 2πε
β ) cosh 2πt

β

− c

6
log

(
6hWπ

c

e
2π
β

(x+tW )

(sin 2πε
β )

)
+O(c0), . (3.6)

This is an exponential decay in t with exponent 2π/β. After these times, q � 1
6 is small

and we may expand the logarithm. The linear piece gets cancelled with the modular

Hamiltonian piece resulting in

S(ρW ||ρTFD) ≈ 3cq2

≈ 3c

(
hWπ

c

e
2π
β

(x+tW )

(sin 2πε
β ) cosh 2πt

β

)2

,
(3.7)

where we have again assumed tW � t. This is an exponential decay again, but the exponent

crossed over to 4π
β . This decay then continues until the relative entropy reaches O(1) values

and our approximations are no longer valid. This happens at the scrambling time, q2 ∼ c−1.

3.2 Relative entropy and the chaos bound

Let us point out something interesting about this latter regime, i.e. when q � 1
6 . This

expansion in q is the same as the early time Lyapunov expansion of the OTO continued

vacuum block (2.43)

F(ū) ≈

(
1

1− 24πihW
cū

)2hn

≈ 1 +
48πihWhn

cū
+ · · · ,

(3.8)

which is valid as long as 1 � ū−1 ∼ ε−1 � c/hW . Notice that writing this we treat hn as

O(1) even though it is proportional to c.15 This assumption was also made when we used the

formula (2.41) for the vacuum Virasoro block. The fact that the q expansion is formally the

same as the early time Lyapunov expansion of the OTOC suggests that the cancellation of

the modular Hamiltonian part in (3.1) for q � 1
6 and therefore the speeding up of the decay

could be tied to the saturation of the Maldacena-Shenker-Stanford (MSS) chaos bound.

Let us give another argument that this is indeed the case. This argument is going to

rely on assuming that the four point function (2.36) satisfies the MSS chaos bound when

continued away from n integer, at least when Ren ≥ 1, which we cannot justify, therefore

15An honest 1/c expansion would give F(ū) ≈ e2πi
hW
ū (n− 1

n ) +O(1/c), which only differs from the Regge-

type expansion at order (n− 1)2.
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what follows is not a proof. Recall that for a generic large c chaotic CFT in the Regge (or

Lyapunov) regime, the normalized four point function is expected to behave as

F = 1 + if0
1

c

1

ūJ ′−1
+O(c−2), (3.9)

where J ′ is the “effective spin” of the “Regge pole” [4, 53, 55]. We usually call the combina-

tion λL = 2π
β (J ′ − 1) the Lyapunov exponent. The reason for this name is that for OTOC

the cross ratio would be ū ∼ −e−
2π
β
t

so the above translates to an exponential decay

|F | = 1− ε̃e
2π
β
t(J ′−1)

+ · · · , (3.10)

(with ε̃ ∼ 1/c), which in some cases is related to the exponential divergence of classical

trajectories [2, 4, 56]. The statement of the MSS chaos bound is that J ′ ≤ 2. More

generally, one has
1

1− |F |

∣∣∣∣dFdt
∣∣∣∣ ≤ 2π

β
. (3.11)

We would like to translate this bound to our setup, where the same analytic continu-

ation is done for the cross ratios, followed by the same u, ū → 0 limit in the replica four

point function (2.36) as the one taking the correlator to the Regge limit.16 The way u and

ū approaches zero for the OTOC setup is [52]

u ∼ αe
2π
β

(xOTOC−tOTOC)
, ū ∼ αe

2π
β

(−xOTOC−tOTOC)
, (3.12)

for α some complex number, while in our setup we have (2.34), which in the regime

where (3.4) holds and β � t� β log c reads as

u ∼ α̃e
2π
β

(t−tW−x)
, ū ∼ α̃e

2π
β

(t−tW+x)
, (3.13)

for α̃ another complex number. We can therefore identify t = −tOTOC , x = −xOTOC ,

α = α̃e
− 2π
β
tW and we see that we can apply the bound (3.11) to (2.36) directly.

The correlator (2.36) of course satisfies the general assumptions of the chaos bound for

any n ∈ Z+ but since the twists have dimension O(c) it is not clear that they have a Regge

limit of the form (3.9). Nevertheless, there is another small parameter, namely n − 1, in

which we can expand:

〈W⊗n(∞)[W †]⊗n(1)σn(u, ū)σ̃n(0)〉
〈σn(u, ū)σ̃n(0)〉

≈ 1− (n− 1)f(t) + · · · . (3.14)

Assuming that the MSS chaos bound remains valid when we continue away from integer n

to Ren ≥ 1, we have that
|∂tf |
Ref

≤ 2π

β
. (3.15)

Note that f is the entanglement entropy difference S(ρW )− S(ρTFD) so it should be real.

For the chaos bound to hold we also need |F | ≤ 1 therefore our assumption requires f ≥ 0.

16Note that the Regge and the chaos limits are only the same in two dimensions.
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It is interesting to note that the f coming from (2.43) satisfies this bound for any value of

hW /c, and saturates it to leading order in hW /c. This suggests that we have the Regge-like

pole in f when we expand in 1/c, but with a coefficient proportional to c0 instead of 1/c.

Now in this limit we can write the relative entropy with (2.19) and (2.30) as

S(ρW ||ρTFD) ≈ 2hWπ
e

2π
β

(x+tW )

(sin 2πε
β )

e
− 2π
β
t − f(t). (3.16)

We have seen that for the gravitational answer the e
− 2π
β
t

piece gets canceled between f

and the modular Hamiltonian piece. We now see that this cancellation is only possible

when the bound (3.15) is saturated. On the other hand, when there is no cancellation, the

bound (3.15) implies in the regime β � t� tW that

− ∂tS(ρW ||ρTFD)

S(ρW ||ρTFD)
≥ 2π

β
. (3.17)

This is a lower bound on the decay rate which might seem surprising. However, one

must keep in mind that it relies on our somewhat bold assumption about the analytic

continuation of the chaos bound. We note that for the gravitational answer (3.1) in the

regime β log hW /ε� t� tW we actually have

− ∂tS(ρW ||ρTFD)

S(ρW ||ρTFD)
∼ 4π

β
. (3.18)

3.3 Comment on integrable systems

For integrable systems (or systems with λL=0), we expect that both the replica four point

function and the entanglement entropy is O(ε). This is because the Regge limit of the

four point function (2.36) is expected to contain only positive powers of the cross-ratio

u. As a consequence, we expect that the relative entropy is dominated by the modular

Hamiltonian piece. For example, for chiral vertex operators Vα = eiαX of the free boson,

one may explicitly check that17

〈V ⊗n−α (∞)σn(1)σ̃n(w)V ⊗nα (0)〉
〈σn(1)σ̃n(w)〉

= 1, (3.20)

so that the entanglement entropy difference is just zero

S(ρVα)− S(ρTFD) = 0, (3.21)

and the relative entropy is entirely given by the modular Hamiltonian part. Therefore, we

expect that for integrable systems, the complete exponentially decaying part has exponent

2π/β until the decay stops.

17Parametrizing w = eix and using a uniformization map to map the branched correlator to the plane

we have
〈V ⊗n−α (∞)σn(1)σ̃n(w)V ⊗nα (0)〉

〈σn(1)σ̃n(w)〉 =

[
2

n
sinπx

]nα2

〈
n∏
k=1

V−α(wk)Vα(ŵk)〉, (3.19)

where wk = e2πi
k
n and ŵk = e2πi

x+k
n . Using the known vertex operator 2n point function [57] gives a

cancellation between the correlator and the Jacobian factor. For more on relative entropy for the 2d free

boson, see [45, 58, 59].
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3.4 The tW dependence

Let us briefly comment on the dependence of the result (3.1) on the time of insertion of the

perturbing operator W . Since the relative entropy measures distinguishability of states,

its tW dependence quantifies how far the perturbed state ended up from the thermofield

double if a perturbation was made in the past at time tp = −tW < 0. This has a similar

flavor to the butterfly effect even though the relative entropy is not obviously related to

phase space trajectories in a classical limit. The intuition is that it is a more refined

probe of distinguishability than any kind of correlator, such us the commutator-squared

correlators that are used to define the Lyapunov exponent. In this light, it is satisfying

to see that (3.1) has a fairly universal exponentially growing dependence on tW , coming

from the modular Hamiltonian expectation value (2.30) that is the same for any 2d CFT.

It would be very interesting if this growth could be used to give an information theoretic

understanding of the MSS chaos bound.

We close here with something more modest, by showing that the relative entropy setup

that we are considering indeed bounds the magnitude of OTO correlators (but not their

time derivatives). This is just a simple application of the quantum version of Pinsker’s

bound [31]

S(ρW ||ρTFD) ≥ 1

2
||ρW − ρTFD||21, (3.22)

and the duality identity of ||.||p norms

||X||1 = sup
Y

(
Tr(XY †)/||Y ||∞

)
. (3.23)

We pick X = ρW − ρTFD which lives on the two half lines L1 ∪ R1 on the two sides, and

restrict the supremum to operators which factorize, i.e. Y = UL1ZR1 . We imagine U(0)

and Z(0) to be bounded operators defined on the t = 0 slice of a single copy of the CFT,

such that UL1 = U(0) has support on the left half line L1 and ZR1 = Z(iβ/2) has support

on the right half line R1. Now

Tr(ρTFDUL1ZR1) (3.24)

is calculated by a path integral on the cylinder, with an insertion of U on one side and an

insertion of Z on the other side. Therefore

Tr(ρTFDUL1ZR1) = 〈U(0)Z(iβ/2)〉β . (3.25)

Here, 〈.〉β denotes a thermal expectation value in a single copy of the CFT. On the other

hand,

Tr(ρWUL1ZR1) (3.26)

is calculated by the same path integral with extra insertions of the local operator W at

time tW + iτ and tW − iτ , therefore

Tr(ρWUL1ZR1) ∼ 〈U(0)Z(iβ/2)W (tW + iτ)W (tW − iτ)〉β ≡ F (tW ) (3.27)
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The path integral of course gives an Euclidean time ordered correlator, and since 0 < τ <

β/2 we see that the operator ordering is WUWZ in this correlator, which is precisely the

OTOC that we were after. Taking into account that ρW is normalized we actually have

Tr(ρWUL1ZR1) =
F (tW )

〈W (2iτ)W (0)〉β
(3.28)

We now combine (3.22) and (3.23) with this to get

S(ρW ||ρTFD) ≥ 1

2
sup
U,Z

{
〈U(0)Z(iβ/2)〉2β
||U ||2∞||Z||2∞

(
1− F (tW )

Fd

)2
}
, (3.29)

where

Fd = 〈U(0)Z(iβ/2)〉β〈W (2iτ)W (0)〉β . (3.30)

If U = Z were local operators [4], then for td � tW � ts (td: collosion time, ts: scrambling

time) we would be in the Lyapunov regime

F (t) ∼ Fd − εeλLtW + · · · , (3.31)

so the r.h.s. of (3.29) would be proportional to e2λLtW . Of course the above bound is only

nontrivial when U and Z are bounded operators, so they cannot be local. We think that

this is not a major obstacle as long as W is allowed to be local, because of a semiclassical

reasoning: divergence of phase space trajectories is equally well measured by the Poisson

bracket {e−q(t)2 , p(0)} as {q(t), p(0)}. Still, this bound is clearly not related to the chaos

bound as it does not say anything about the rate of change.

4 Holographic calculation I: global shocks

In the following two sections, we use holography to calculate the relative entropy in similar

setups as in the previous section. Since the bulk geodesics in 3d gravity are directly related

to Virasoro 4 point conformal blocks in 2d CFTs in the large central charge limit [51], we will

be doing similar calculations as in the previous section. Nevertheless, these computations

provide some generalizations compared to the setup of the previous section and we hope

that they give additional bulk insights to the physics of scrambling.18

The strategy to compute the relative entropy is the following. First we split the relative

entropy to the modular Hamiltonian part and the entanglement entropy part.

S(ρ||ρTFD) = trρ log ρ− trρ log ρTFD,

= [trρKTFD − trρTFDKTFD]− [S(ρ)− S(ρTFD)] , (4.1)

where S(ρ) = −trρ log ρ. We use the Ryu-Takayanagi formula to compute the entropy

part, and combine it with the universal modular Hamiltonian result of section 2.2.

18We also consider a slightly generalized set up in appendix C, namely when the subsystem is the disjoint

union of two finite intervals, one in the right CFT and the other is in the left. This introduces additional

finite size effects.
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To begin with, we first calculate the relative entropy between the TFD state and its

global perturbation. We consider the translationally invariant state,

|ΨS〉 = UL(tW )|TFD〉, (4.2)

where UL(tW ) is a unitary operator on left Hilbert space HL, and tL = tW denotes the time

when the operator is inserted. This state, when the left Hilbert space is traced out, gives a

thermal density matrix on the right Hilbert space. Therefore it can be regarded as one of

the black hole microstates for the observers of HR. Note that here we insert the operator

on the left CFT, whereas in the previous section we added it on the right. This will of

course not modify the result in a relevant way. Killing time runs backwards on the left

CFT therefore an early perturbation now corresponds to tL = tW > 0 large and positive.

The reduced density matrix of |ΨS〉 to the union of the positive half lines on both sides

will be denotes with ρS .

4.1 Dual geometries

Here we briefly review the dual geometries of the two states |TFD〉 and |ΨS〉 in the CFT,

in order to fix the notations.

BTZ black hole. In the Schwarzchild coordinates, the metric of the BTZ black hole is

given by

ds2 = −r
2 −R2

l2
dt2R +

dr2

r2 −R2
+ r2dy2, R2 = 8GNMl2. (4.3)

l denotes the AdS radius, R the location of the horizon and the inverse temperature of the

black hole is given by

β =
2πl2

R
. (4.4)

It is also convenient to introduce the Kruskal coordinates, in which the black hole metric is

ds2 =
−4l2dudv +R2(1− uv)2dy2

(1 + uv)2
. (4.5)

In this coordinates the AdS boundary is uv = −1. Left (Right) CFT is defined on u > 0

(u < 0) part of the curve.

The coordinate transformations between these two is explained in [35]. Here we only

quote the relevant ones

v − u
1 + uv

=

√
r2 −R2

R
cosh

2πtR
β

(4.6)

u+ v

1 + uv
=

√
r2 −R2

R
sinh

2πtR
β

(4.7)

The original Schwarzchild coordinates (tR, r) only cover the right wedge u < 0, v > 0 of the

geometry. We have analogous coordinates (tL, r) on the left wedge u > 0, v < 0 just by the

shift tL = tR+iβ2 . The black hole in the Kruskal coordinates is dual to the TFD state (2.1).
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Black hole with a shock wave. Imagine that we send a null shock wave from the

left boundary at tL = tW with energy E. The trajectory of the shock is u = e
− 2π
β
tW .

The shock wave is highly blue shifted near the black hole horizon, and its backreaction is

non-negligible at the horizon. In the limit,

E → 0, tW →∞ with α ≡ E

4M
e

2π
β
tW kept fixed, (4.8)

the backreacted metric is [35]

ds2 =
−4l2dudv +R2

[
1− u(v + αθ(u))

]2
dy2[

1 + u(v + αθ(u))
]2 , (4.9)

where θ(u) denotes the step function. This geometry is constructed by gluing two BTZ

black holes with mass M + E and M at the location of the shock wave, and taking the

limit (4.8). This geometry is dual to (4.2), a TFD state perturbed by a unitary transfor-

mation UL(tW ) at tL = tW in the left CFT.

4.2 Holographic calculations of the entanglement entropy

The holographic entropy is computed by the Ryu-Takayanagi formula

S =
A(γA)

4GN
, (4.10)

where A is the length of the bulk geodesic γA connecting two end points of the subsystem

A. We take the same subsystem as in the previous section. In the BTZ black hole, the

result is given by

S(ρTFD) =
c

3
log

r∞
R

+
c

3
log

[
cosh

2πt

β

]
(4.11)

where r∞ denotes the UV cut off. In the BTZ black hole with a global shockwave we

can also calculate the length of the geodesic, just by gluing two geodesics in each BTZ

black hole ending on the null surface u = 0, and minimizing the length with respect to the

location of the end point. The result is given by [35]

S(ρS) =
c

3
log

r∞
R

+
c

3
log

[
cosh

2πt

β
+
α

2

]
(4.12)

α is defined in (4.8).

4.3 Evaluation of modular Hamiltonian part

Next we compute the modular Hamiltonian expectation value trρSKTFD. Notice that

tr [T00(tL, x)ρS ] =

{
E
2π tL ≤ tW
0 tL ≥ tW

, tr [T00(tR, x) ρS ] = 0, (4.13)

since the shockwave is sent in at tL = tW and there is never any stress energy on the right.

Using T00 = − 1
2π (T + T̄ ) and the contour prescription described in section 2.2, adapted
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so that the perturbation is now made on the left, we have that the modular Hamiltonian

expectation value is

trKTFDρS =
βE

2π cosh 2πt
β

∫ tW+ iβ
2

−t+ iβ
2

[
sinh

2πt

β
− sinh

2πy

β

]
dy (4.14)

→
(
β

2π

)2 2Mα

cosh 2πt
β

(4.15)

in the shockwave limit (4.8). By using the relation between the mass and temperature of

the black hole

M =
c

12

(
2π

β

)2

(4.16)

We have

trK(c)ρS =
c

6

α

cosh 2πt
β

(4.17)

This expression is plausible since it obeys the first law relation

δS = trKTFD ρS +O(α2) (4.18)

4.4 Relative entropy

Putting together the pieces, the final result is

S(ρS ||ρTFD) =
c

6

α

cosh 2πt
β

− c

3

(
log

[
cosh

2πt

β
+
α

2

]
− log cosh

2πt

β

)
. (4.19)

Notice that this has the form (3.1) with the replacement

cthere = 2chere, q =
1

12

α

cosh 2πt
β

, (4.20)

and hence the time dependence has qualitatively the same behavior as for the local per-

turbations.

5 Holographic calculations II: localized shocks

In this section we generalize the above holographic calculation to the cases where the

perturbations are localized along the spatial direction. This is the same setup as the one

considered in section 2, where we have obtained the answer with large c vacuum block

techniques. Therefore, here we move quickly and only summarize the dual geometry as

well as its properties and the resulting relative entropy.

We consider the state realized by an insertion of a local primary operator W , which

was defined in (2.2)

|Ψ〉 = W (tW + iτ, x)|TFD〉, (5.1)

where x is the location of the insertion, and we have an Euclidean shift in the timelike direc-

tion tW → tW+iτ to make the state normalizable. We will set τ = β
2−ε, so that the primary

is located at the left CFT. We denote the conformal dimension of the primary by hW .
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5.1 Dual gravity geometry

The metric of the localized shock is given by19 [52, 60]

ds2 = − 4

(1 + uv)2
dudv +

(
1− uv
1 + uv

)2

dy2 + 4δ(u)h(y)du2 (5.2)

with

h(y) = 2πGNPe
−|y−x|. (5.3)

This metric is a solution of Einstein equations in the presence of the bulk stress tensor,

Tuu(u, v, y) = Pδ(u)δ(y − x). (5.4)

By evaluating 〈Ψ|Tuu|Ψ〉, one can fix the coefficient

P =
2hW
sin τ

etW (5.5)

This metric can be constructed by gluing two BTZ’s at u = 0 with a shift,

δv = h(y). (5.6)

5.2 The geodesic length

We now calculate the length of the geodesic which is starting from P1 : (t, y, r) = (−t +

iβ2 , 0, r∞) and ending at P4 : (t, y, r) = (t, 0, r∞). This was done in [52], which we slightly

generalize here. The way to calculate this is very similar to the spherically symmetric shock

case. We first consider the length of the geodesic d(P1, P2) starting from P1 and ending at

the horizon P2(u, v, y) = (0, v+ h(y), x), as well as d(P3, P4) with P3 = (u, v, y) = (0, v, y).

The sum of these geodesic length is given by

d(v, y) = 2 log
r∞
R

+ log
[
cosh y − ve−t

]
+ log

[
cosh y + (v + h(y))et

]
. (5.7)

We then extremalize the function d(v, y) with respect to v and y. The resulting holographic

entanglement entropy is

SEE =
c

3
log cosh t+

c

6
log

[
1 +

h(0)

cosh t

]
(5.8)

=
c

3
log cosh t+

c

6
log

[
1 +

1

cosh t

(
6πhW
c sin τ

)
etW+x

]
(5.9)

here c = 3l/2GN . This gives the same entanglement entropy as in (2.46), provided we

are in the shockwave limit etW ∼ c � 1. Combining this with the universal results for

the modular Hamiltonian expectation value in section 2.2, we obtain the relative entropy

S(ρW ||ρTFD).

19In this section we set β = 2π.
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6 Spin chains

In this section, we present numerical results on the relative entropy in spin chains. We

simulate the localized shock studied in the previous section in a lattice spin chain and

numerically calculate the relative entropy. We find an exponential decay of the relative

entropy in both integrable and non-integrable spin chains at early times. The relative

entropy remains small after the decay in non-integrable cases while weak revivals are ob-

served in integrable cases. Furthermore, the decay rate seems to be proportional to the

temperature, which is consistent with the conformal field theory results. We also study

the tW -dependence of the relative entropy and find an algebraic growth instead of the

exponential growth discussed in section 3.4.

6.1 Setup of spin chain

We consider a spin chain consisting of N sites,

H = −
N∑
i=1

(ZiZi+1 + gXi + hZi) , (6.1)

where Xi, Yi, and Zi are the Pauli operators acting on site i and the periodic boundary

condition XN+1, YN+1, ZN+1 = X1, Y1, Z1 is imposed. When g 6= 0, the system is integrable

for h = 0 and non-integrable for h 6= 0. Throughout this section we choose g = −1.05, h =

0.5 for a non-integrable spin chain (the same as in refs. [18, 61]) and g = 1, h = 0 for an

integrable spin chain, i.e., the critical transverse-field Ising chain.

Similarly as eq. (2.1), the TFD state in spin chains is defined as a pure state of two

copies of the spin chain:

|TFD〉 :=
1√
Z(β)

2N∑
n=1

e−βEn/2 |n〉L |n〉R , (6.2)

where L(R) denotes the left (right) system, |n〉L(R) and En are energy eigenstate and energy

eigenvalue of the left (right) system, and Z(β) =
∑

n e
−βEn is the partition function of the

single system at inverse temperature β. Time evolution of the TFD state is defined as

|TFD(t)〉 = e−i(HL+HR)t |TFD〉 =
1√
Z(β)

∑
n

e−β
En
2
−2iEnt |n〉L |n〉R . (6.3)

We note that the time evolution yields (trivial) phase in the wave function. The (locally)

perturbed TFD state is defined as

|TFD′(t = 0, tW )〉 := e−itWHL
(

(Zx)left ⊗ Îright

)
eitWHL |TFD〉 , (6.4)

which means that we perturb only the left system by local Pauli-Z operator at site x in

the past of time tW .20 Time evolution of |TFD′〉 is again

|TFD′(t, tW )〉 = e−i(HL+HR)t |TFD′(t = 0, tW )〉 . (6.5)

20We note that |TFD′〉 is still normalized because Z2 = 1.
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We take a subregion A1(A2) as the sites i = 1, . . . ,m on the left (right) chain and define

A = A1 ∪ A2. We consider the t- and tW -dependence of the relative entropy between

|TFD′(t, tW )〉 and |TFD(t)〉, namely,

S(t; tW ) = S(ρ′tW (t)‖ρ(t)) (6.6)

where

ρ′tW (t) = TrĀ |TFD′(t, tW )〉 〈TFD′(t, tW )| , ρ0(t) = TrĀ |TFD(t)〉 〈TFD(t)| . (6.7)

In addition to S(t; tW ), we calculate the mutual information, I(t; tW ), between the subsys-

tems A1 and A2 of the perturbed TFD state |TFD′(t, tW )〉.

6.2 t-dependence of the relative entropy

First we fix tW and study t-dependence of the relative entropy S(t; tW ). From the conformal

field theory and holographic considerations that we have discussed so far in sections 2, 4, 5,

we expect this to show an exponential decay in a proper parameter region. We show that

this is indeed the case in the spin chain. Here we take the size of each subsystem as m = 2

and set the position of the perturbation as x = 2. We vary inverse-temperature β and

calculate S(t; tW ) by exact diagonalization of the spin chain of N = 8 sites.

Numerical results in the non-integrable case (g = −1.05, h = 1 in the model (6.1)) are

presented in figure 5. As expected, the relative entropy decays exponentially at first and

its rate is proportional to the temperature β−1, which is qualitatively similar to what is

predicted by conformal field theory considerations. The initial exponential decay of the

relative entropy is well explained by exp(−0.42π
β t) for β & 0.6. For β = 0.4 the exponent

seems to be smaller. A possible reason for this is that since the butterfly velocity is vB = 2.5

in this specific model [18], the thermal cycle is of one lattice size vBβ ≈ 1 meaning that we

have reached the cutoff temperature.

The left panel of figure 6 is the result for the integrable case (g = 1, h = 0). As in

the non-integrable case, the relative entropy decays exponentially at first (up to t ∼ 1.5).

However, there is a revival of the relative entropy after the initial decay. In the right panel

of figure 6, we compare the results of the non-integrable model and the integrable model

for β = 0.6. The relative strength of the revival is by far larger in the integrable case than

in the non-integrable case. We also note that the mutual information I(t; tW ) is in phase

with the relative entropy and exhibits the revival. The revivals of the relative entropy and

the mutual information are clear manifestations of the integrability of the model.

6.3 tW -dependence

Next we fix t and investigate tW -dependence of S(t; tW ). Again we take the size of each

subsystem to be m = 2 and the position of perturbation to be x = 2. In order to avoid

numerical error in the relative entropy S(t; tW ) due to very small eigenvalues (∼ machine

precision) of the density matrix, we set t = 0.1 rather than t = 0.

Figure 7 is a result for the non-integrable model (g = −1.05, h = 0.5 in (6.1)) at

various inverse-temperature β. S(t; tW ) grows with tW at first but it starts to decay to
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Figure 5. Relative entropy S(t; tW ) in the non-integrable model for tW = 2 (left) and tW = 4.0

(right). Dashed lines are proportional to exp(−0.4 2π
β t).
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Figure 6. (left) Relative entropy S(t; tW ) in the integrable model for tW = 2 and various inverse-

temperature β. (right) Comparison between the non-integrable model and integrable model for

tW = 2 and β = 0.6.

some stationary values. The inverse temperature β affects the rate of the growth of the

relative entropy, but dose not affect the time scale at which it becomes stationary. We

also observe that the time when S(t; tW ) becomes stationary coincides with the time when

the mutual information I(t; tW ) decays to zero. Moreover, the log-log plot (right panel of

figure 7) indicates that the initial growth of S(t; tW ) in tW obeys a power-law, although the

holographic calculation predicts an exponential growth. It would be interesting to study

this algebraic growth in a spin chain from the viewpoint of the field theory.

As for the integrable model, the qualitative behaviors of the relative entropy and the

mutual information are almost the same as for the non-integrable model (figure 8). Again,

we observe an initial algebraic growth of the relative entropy and its saturation in tW .

However, the relative entropy shows a long-lived oscillations and a possible revival (around

tW = 8.5), which results from the integrablity of the system.
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Figure 7. tW -dependence of the relative entropy S(t; tW ) and the mutual information I(t; tW ) in

the non-integrable model at t = 0.1. Left panel is in a linear scale and right panel is in a log-log

scale.
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Figure 8. tW -dependence of the relative entropy S(t; tW ) and the mutual information I(t; tW ) in

the integrable model at t = 0.1. Left panel is in a linear scale and right panel is in a log-log scale.

7 Discussions

We have considered the time evolution of relative entropy between the reduced density

matrices of the thermofield double state and its perturbations. We have argued that the

behavior of the relative entropy is in accord with the chaotic nature of the system. There

are several things that could be investigated.

• Is there any bound on the decay rate of the relative entropy? We now know that the

growth rate of both entanglement entropy and OTO correlators (ie, butterfly veloc-

ity vB and entaglement velocity vE respectively) are bounded by the corresponding

thermal quantities [4, 62]. It seems natural to anticipate that our two sided relative

entropy is bounded as well. We have discussed a possible lower bound (3.17) on the

decay rate assuming the chaos bound continues well for n ≥ 1. It is not clear however

if this assumption can be justified. Also, one might anticipate the existence of an

upper bound on the decay rate.
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• We have seen that the relative entropy grows exponentially with the insertion time

of the perturbing operator, and that this growth is fairly universal with an exponent

2π/β. It would be interesting to see if this can be used to understand the chaos

bound of [4] from an information theoretic point of view.

• It might be interesting to ask what is the holographic relative entropy doing after

the scrambling time. An eternal decay such as in (3.1) might be in conflict with

unitarity because it would mean that the density matrices become identical, though

we do not have a tight argument that this is not possible as for the thermal two point

function [63] or the spectral form factor [64].

• Higher dimensional generalization of the result. One can in principle calculate the

holographic entanglement entropy in the presence of a shock wave in higher dimen-

sions, at least when the subsystem is the half of the total spatial manifold [35]. Once

the entanglement entropy is known, one can obtain the relative entropy by removing

the first law term.

• There are other black holes with a long wormhole throat in the horizon interior. For

example [65]. The time evolution of entanglement entropy was discussed in [66]. It

would be interesting to generalize our analysis to this case.

Acknowledgments

We thank discussions to Pawel Caputa, Nima Lashkari, Aitor Lewkowycz, Henry Maxfield,

Masahiro Nozaki and Onkar Parrikar.

Y.O.N. was supported by Advanced Leading Graduate Course for Photon Science

(ALPS) of the Japan Society for the Promotion of Science (JSPS) and by JSPS KAKENHI

Grants No. JP16J01135. The work of G.S. was supported in part by a grant from the

Simons Foundation (#385592, Vijay Balasubramanian) through the It From Qubit Simons

Collaboration, by the Belgian Federal Science Policy Office through the Interuniversity

Attraction Pole P7/37, by FWO-Vlaanderen through projects G020714N and G044016N,

and by Vrije Universiteit Brussel through the Strategic Research Program “High-Energy

Physics”.

A The out of causal contact case for localized perturbations

The only case we can always solve analytically is when the insertion point is in the domain

of dependence of the traced out region on figure 3, i.e. −x > tp − t > x. Let us summarize

the result in this case. We just briefly adapt the calculation in [46, 47] to the present

situation without going into too much details.

As mentioned earlier, as ε→ 0 we are in the OPE limit

z1;k → z2;k, z̄1;k → z̄2;k, (A.1)
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and we can obtain the result in a similar way as done in a small subsystem size limit. We

will assume x > 0. We have the OPE

V (z1;k, z̄1;k)V (z2;k, z̄2;k) (A.2)

= 〈V V 〉
(

1 + COV V (e2πik/n2πiεgn)hO(−e−2πik/n2πiεḡn)h̄OO(e2πik/nun, e
−2πik/nūn) + · · ·

)
,

where O is the lightest primary in the OPE and we introduced the notation

un = e
− 2π
βn
t

 sinh π(w∗+t)
β

cosh π(w∗−t)
β

 1
n

,

gn = un
1

βn

(
coth

π(w∗ + t)

β
− tanh

π(w∗ − t)
β

)
,

(A.3)

and the barred counterparts have w∗ → w̄∗ with w∗ = x− tp, w̄∗ = x+ tp and t→ −t. We

need to do the analytic continuation for

n−1∑
k 6=l=0

〈O(e2πik/nun)O(e2πil/nun)〉. (A.4)

However, we may scale out the common un factors using global conformal invariance and

write

1

uhOn ūh̄On

n−1∑
k 6=l=0

〈O(e2πik/n)O(e2πil/n)〉, (A.5)

which is the same correlator that needs analytic continuation in the small subsystem size

limit for global states, see [46, 47] for the details. The replica relative entropy then reads

Sn(ρV ||ρW ) =
f(∆, n)

1− n

(
n

2
(COV V )2 − COWWC

O
V V −

n− 2

2
(COWW )2

)
×
[
2πi

εgn√
un

]2hO
[
−2πi

εḡn√
ūn

]2h̄O

,

(A.6)

with

f(∆, n) ∼
n−1∑
k 6=l=0

〈O(e2πik/n)O(e2πil/n)〉. (A.7)

Taking n→ 1 leads to

S(ρV ||ρW ) ∼ (COV V − COWW )2

×

ε2 e
2πt
β cosh2 2π

β t

2β2 cosh 2π
β (x− tp − t) sinh3 2π

β (x− tp + t)

hO

×

ε2 e
− 2πt

β cosh2 2π
β t

2β2 cosh 2π
β (x+ tp + t) sinh3 2π

β (x+ tp − t)

h̄O ,
(A.8)
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where we have neglected some Γ function factors depending on the dimensions of O for

simplicity, they are the same as in [46, 47]. There is an expected singularity as the operator

insertion approaches the light cones on figure 3 (reminder: the above formula is valid in

the left wedge), so this formula is valid as long as |βε2(x+ tp − t)−3| � 1 and |βε(x− tp +

t)−3| � 1. Higher orders in ε in the left wedge are systematicaly obtainable using modular

perturbation theory techniques [67].

B Relative entropy between two perturbed states

Here we give a generalization of the large c vacuum block result (3.1) for the relative

entropy to the case when both states have operator insertions with different dimensions,

i.e. we study the relative entropy S(ρV ||ρW ) between two states of the form

V (tp − iε, x)|TFD〉, W (tp − iε, x)|TFD〉. (B.1)

The situation we tackle is when V is an arbitrary primary, while W is some uniformized

operator creating a conformal transformation of the thermofield double. In holography,

any state dual to a Bañados geometry can be treated this way. Now

S(ρV ||ρW ) = tr [KW δρ]− [S(ρV )− S(ρW )] , (B.2)

where δρ = ρV − ρW . The second term is just the difference of entanglement entropies

S(hV )− S(hW ) which we can easily obtain from (2.46). Because of the first law, to linear

order in hV − hW , the first term of the relative entropy (B.2) is given by the derivative of

the entanglement entropy (2.46) as a function of h

tr [KW δρ] ≈ S′(hW )(hV − hW )

=
c

6

(hV − hW )F (t)

1 + hWF (t)
, F (t) =

π

3c

sinh 2πt
β + sinh

2π(x−tp)
β

sin 2πε
β cosh 2πt

β

. (B.3)

The above formula should be valid to linear order in hV − hW and in the bottom wedge of

figure 3 and it is easy to obtain the analogous formula for the top wedge. Further progress

can be made by restricting to the case when the state |W 〉 is a conformal transformation of

the TFD state, since in this case it has a local modular Hamiltonian that is an integral of the

stress tensor and therefore the linear order in hV −hW expression is exact. The application

of this “first law trick” also relies on the assumption that we can continuously turn off the

perturbation in S(ρW ||ρTFD). We do not expect this to be true in the right wedge (causal

diamond of the subsystem) since in this case the first law is already violated in S(ρW ||ρTFD)

as hW → 0. This is because the modular Hamiltonian expectation value (2.31) is ∼ ε−1

while the entanglement entropy vanishes as ε → 0. The distinguishing feature of the

result (3.1) allowing this trick to work is that it only depends on the energy EW ∼ hW / sin ε

of the state and not on its coupling to other operators.21

21One can also play this trick for thermal states on the line, where the modular Hamiltonian is known

and it can be easily verified that the trick works, see [47].
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In the bottom wedge for such states we therefore have

S(ρV ||ρW ) ≈ c

6

(hV − hW )F (t)

1 + hWF (t)
− c

6
log

(
1 + hV F (t)

1 + hWF (t)

)
(B.4)

Notice that in the regime F (t)� h−1
W , this still shows an exponential decay

S(ρV ||ρW ) ∼ c

12
(hV − hW )2F (t)2, (B.5)

with exponent 4π
β . On the other hand, for early times (F � h−1

V , h−1
W ) the exponential

decay is absent from the modular Hamiltonian part, whenever hW 6= 0.

C Relative entropy of two disjoint intervals

In this section we generalize the calculation of the relative entropy between the states

|TFD〉, |ΨS〉 to include the effect of a finite subsystem size. We consider the case where

the subsystem is the union of two disjoint intervals, one is in the left CFT, and the other

is in the right.

We take the disjoint union of two intervals A ∪B, whose end points are

P1 :
(
−x

2
, tL = −t

)
, P2 :

(x
2
, tL = −t

)
, P3 :

(
−x

2
, tR = t

)
, P4 :

(x
2
, tR = t

)
(C.1)

Let γij be the bulk geodesics connecting Pi and Pj and Lij be the length of the curve γij .

The holographic entanglement entropy is given by

SA∪B =
1

4GN
min [L12 + L34, L13 + L24] . (C.2)

Hereafter we denote

Sc ≡
L13 + L24

4GN
, Sd ≡

L12 + L34

4GN
. (C.3)

C.1 Holographic entanglement entropy

BTZ black hole. In this case [40]

Sc =
2c

3
log

r∞
R

+
2c

3
log

[
cosh

2πt

β

]
, Sd =

2c

3
log

r∞
R

+
2c

3
log

[
sinh

πx

β

]
(C.4)

where r∞ denotes the UV cut off. In the high temperature limit x� β, the entanglement

entropy is given by

SA∪B(ρTFD) =

{
Sc t ≤ x

2

Sd t > x
2

. (C.5)
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Shockwave wave geometry. In the shock wave limit (4.8) Sc, Sd are given by [35]

Sc =
c

3
log

r∞
R

+
c

3
log

[
cosh

2πt

β
+
α

2

]
, Sd =

2c

3
log

r∞
R

+
2c

3
log

[
sinh

πx

β

]
(C.6)

When α is smaller than the critical value α∗

α ≤ α∗, 1 +
α∗
2

= sinh
πx

β
, (C.7)

the holographic entanglement entropy is given by

SA∪B =


c
3 log r∞

R + c
3 log

[
cosh 2πt

β + α
2

]
, t ≤ t∗

2c
3 log r∞

R + 2c
3 log

[
sinh πx

β

]
, t > t∗

, cosh
2πt∗
β

+
α

2
= sinh

πx

β
(C.8)

However, when α > α∗ there is no phase transition analogous to the BTZ case in the

entanglement entropy, as Sd always gives dominant contribution.

SA∪B =
2c

3
log

r∞
R

+
2c

3
log

[
sinh

πx

β

]
. (C.9)

C.2 Modular Hamiltonian of the TFD state for two disjoint intervals

Vacuum modular Hamiltonian for two disjoint intervals in the large c limit. It

is hard to analytically obtain the modular Hamiltonian for two disjoint intervals A∪B even

for the vacuum state. However, in the large central charge limit this modular Hamiltonian

must have a simple expression because of its relation to the bulk area operator in the dual

gravity theory [26]

K =
A

4GN
+ o(1). (C.10)

If we denote wi by the holomporphic coordinate of the end point Pi of the subsystem A∪B,

then the holomorphic part of the modular Hamiltonian K
(0)
A∪B is

K
(0)
A∪B =


K

(0)
w1,w2 +K

(0)
w3,w4 w ≤ 1

K
(0)
w1,w3 +K

(0)
w2,w4 w > 1

w =
(w1 − w2)(w3 − w4)

(w1 − w3)(w2 − w4)
. (C.11)

K(0)
w1,w2

=

∫ w2

w1

(w2 − w)(w − w1)

w2 − w1
Tww(w)dw (C.12)

where Tww(w) is the holomorphic part of stress tensor. We also have similar expression for

the anti holomorphic part.

Modular Hamiltonian of the TFD state. The modular Hamiltonian of a TFD state

is then given by conformal mapping of the result (C.11)

KT =


K(c) = K13 +K24 + c.c t ≤ x

2

K(d) = K12 +K34 + c.c t ≥ x
2

, (C.13)
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with

K12 =
β

2π sinh πx
β

∫ x
2

−x
2

dy

(
cosh

πx

β
− cosh

2πy

β

)
Tzz

(
−t+ i

β

2
, y

)
, (C.14)

K34 =
β

2π sinh πx
β

∫ x
2

−x
2

dy

(
cosh

πx

β
− cosh

2πy

β

)
Tzz(t, y), (C.15)

K13 =
β

2π cosh 2πt
β

∫ t

−t+ iβ
2

dy

(
sinh

2πt

β
− sinh

2πy

β

)
Tzz

(
y,−x

2

)
, (C.16)

K24 =
β

2π cosh 2πt
β

∫ t

−t+ iβ
2

dy

(
sinh

2πt

β
− sinh

2πy

β

)
Tzz

(
y,
x

2

)
. (C.17)

Let us evaluate expectation values of these operators on the state ρS . For K12,K34, these

values are vanishing in the Vaidya limit (4.8)

trρS K12 = trρS K34 = 0,→ trρS K(d) = 0. (C.18)

For K(c) = K13,+K24 + c.c, since

tr [T00(tL, x)ρS ] =

{
E
2π tL ≤ tW
0 tL ≥ tW

, tr [T00(tR, x) ρS ] = 0, (C.19)

we have

trK(c)ρS = tr [(K13,+K24 + c.c) ρS ] (C.20)

=
2βE

2π cosh 2πt
β

∫ tW+ iβ
2

−t+ iβ
2

[
sinh

2πt

β
− sinh

2πy

β

]
dy (C.21)

→
(
β

2π

)2 4Mα

cosh 2πt
β

, (C.22)

in the Vaidya limit (4.8). By using the relation between the mass and temperature of the

black hole

M =
c

12

(
2π

β

)2

, (C.23)

We have

trK(c)ρS =
c

3

α

cosh 2πt
β

. (C.24)

This expression is plausible since it obeys the first law relation

δSc = trK(c) ρS +O(α2). (C.25)
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C.3 Relative entropy

By combining these results we obtain the expressions of the relative entropy. When α < α∗,

from (C.8) and (C.13) we obtain

S(ρS ||ρTFD) =



c
3

α
cosh 2πt

β

− 2c
3

(
log
[
cosh 2πt

β + α
2

]
− log cosh 2πt

β

)
t ≤ t∗

c
3

α
cosh 2πt

β

− 2c
3

(
log sinh πx

β − log cosh 2πt
β

)
t∗ ≤ t ≤ x

2

0 x
2 ≤ t

. (C.26)

For t < t∗ the relative entropy is of the general form (3.1) that we observed for infinite

subsystems. However, at time t∗, depending on the size of the subsystem via (C.8), the

form of the decay changes and the relative entropy reacher zero at time t = x
2 . This shows

that the decay is controlled by the size of the subsystem whenever this is smaller than the

scrambling time β log c.

When α > α∗ , from (C.9) and (C.13) we have

S(ρS ||ρTFD) =


c
3

α
cosh 2πt

β

− 2c
3

(
log sinh πx

β − log cosh 2πt
β

)
t ≤ x

2

0 t ≥ x
2

(C.27)

In the expression of the first line, the first term is of order e
2πl
β because of the critical

value (C.7), while the second term is of order 2πl
β , therefore the fist term dominates. This

means that the relative entropy is exponentially decaying in time, but we clearly see that

the value of the relative entropy stays large until t = x
2 . This is because the initial differ-

ence between two reduced density matrices ρS(0) and ρTFD(0) is too large for the system to

scramble the quantum information of ρS by t = x
2 . Indeed, ρS has factorized form even at

t = 0, ρS = ρA⊗ρB. This follows from the fact that the mutual information IAB of ρS van-

ishes, and IAB(ρS) = S(ρAB||ρA⊗ρB). On the other hand it takes t = x/2 time for ρTFD to

get factorized, and this is the reason why the relative entropy stays large during the process.
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