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 	 Abstract	
	
	

The elucidation of species diversity and connectivity is essential for conserving 

coral reef communities and for understanding the characteristics of coral populations. To 

assess the species diversity, intraspecific genetic diversity, and genetic differentiation among 

populations  of  the  brooding  coral  Seriatopora  spp.,  we  conducted  phylogenetic  and 

population genetic analyses using a mitochondrial DNA control region and microsatellites at 

ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora 

(Seriatopora-A,  -B,  and  -C)  were  detected  in  our  specimens.  We  collected  colonies 

morphologically  similar  to  Seriatopora  hystrix,  but  these  may  have  included  multiple, 

genetically distinct species. Although sexual reproduction maintains the populations of all the 

genetic lineages, Seriatopora-A and -C had lower genetic diversity than Seriatopora-B. We 

detected significant genetic differentiation in Seriatopora-B among the three populations as 

follows: pairwise FST  = 0.064–0.116 (all P = 0.001), pairwise G ST  = 0.107–0.209 (all P = 

0.001).  Additionally,  only  one  migrant  from  an  unsampled  population  was  genetically 

identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is 

within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be 

related to a low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will	



							
	

 	 probably not recover unless there is substantial new recruitment from distant populations.	
					
	
Introduction	
	
	

Reef-building corals are important marine organisms in tropical and subtropical reef 

areas because they constitute the framework of the ecosystem and enhance the productivity 

and  diversity  of  the  coral-reef  community.  In  addition,  coral  species  diversity  helps  to 

maintain the functionality and resilience of coral-reef communities to environmental stresses 

(e.g., Hughes et al. 2003; Richards and Hobbs 2014). However, stony corals are threatened by 

climate  change  and  anthropogenic  disturbances  at  both  local  and  global  scales  (e.g., 

Hoegh-Guldberg 1999; Hoegh-Guldberg et al. 2007). Accurate identification of coral species 

is essential to monitor, conserve, and manage coral populations (e.g., Bickford et al. 2007). 

However, in some cases, species definitions that are based solely on colony morphological 

traits have been misleading, and morphological homoplasy conceals the cryptic evolutionary 

relationships  (Richards  et  al.  2013,  2016  and  references  therein).  Because  traditional 

morphological species definitions have been problematic in corals, genetic tools have more 

recently proven to be useful in discriminating between morphologically similar species (e.g., 

Nakajima et al. 2012, 2016; Pinzón et al. 2013; Warner et al. 2015; Suzuki et al. 2016).	



							
	

 	 Population genetic approaches provide potential for distinguishing inter- and intraspecific 

relationships more clearly even when the relationships are impacted by recent speciation 

and/or hybridization. This is because changes in allele frequencies within a population are 

expected to occur at an ecological timescale, which can be properly assessed by genetic 

markers (e.g., Nakajima et al. 2012).	

Mitochondrial loci and polymorphic nuclear microsatellite loci provide fundamental 

information about species boundaries and intraspecific genetic diversity and differentiation. 

Mitochondrial DNA generally shows a higher mutation rate than nuclear DNA and is suitable 

as a genetic marker for phylogeny and species identification in animals (e.g., Avise et al. 

1987; Hebert et al. 2003). However, low mutation rates in coral species make this analysis 

inappropriate  (van  Oppen  et  al.  1999,  2001;  Fukami  et  al.  2000).  Recent  studies  have 

elucidated  species  boundaries  in  the  family  Pocilloporidae.  Species  within  the  genus 

Pocillopora  were  delineated  using  mitochondrial  loci,  an  open  reading  frame  with  an 

unknown function and a control region, and a nuclear internal transcribed spacer 2 (ITS2) 

region. These loci suggested a mismatch between genetic clusters and species definitions 

based on colony morphological traits (e.g., Pinzón and LaJeunesse 2011; Pinzón et al. 2013; 

Schmidt-Roach et al. 2013, 2014). Furthermore, species within the genus Stylophora were	



							
	

 	 divided into three clusters using mitochondrial loci or ITS2, and into four clusters using ITS1, 

and these were morphologically more variable than previously thought (Flot et al. 2011). 

Seriatopora collected from Okinawa, New Caledonia, and the Philippines consisted of four 

genetic clusters on a phylogenetic tree constructed based on the sequences of mitochondrial 

loci, D-loop, a control region between atp8 and cox1, along with the control region between 

atp6 and nad4 (Flot et al. 2008). Furthermore, Seriatopora hystrix was classified into four 

genetic lineages, including cryptic species, on the Great Barrier Reef (GBR) (Warner et al. 

2015).  Therefore,  it  can  be  difficult  to  estimate  the  species  diversity  within  the  family 

Pocilloporidae based on traditional morphological descriptions. Clarification of the genetic 

structure of sympatric populations using nuclear multilocus microsatellites is a robust method 

for estimating species diversity (Pocillopora: Pinzón et al. 2013; Seriatopora: Warner et al. 

2015).	

If genetic tools detect genetic homogeneity that is maintained within a species through 

genetic exchanges, populations could be genetically differentiated due to geographical and 

oceanographic barriers and population fluctuations, including genetic drift and bottlenecks 

that are caused by historical events (e.g., Bay et al. 2008). Microsatellites can be used to 

describe  the  genetic  connectivity  among  populations  and  species.  Genetic  connectivity	



							
	

  among  populations  within  species  is  maintained  by  larval  transport  via  oceanographic 

systems such as sea currents (e.g., Pineda et al. 2007). The Kuroshio Current is a strong 

oceanographic current that flows southwest to northeast along the Ryukyu Archipelago of 

Japan. This current is considered a major factor in the expansion and maintenance of coral 

reefs  and  reef-dwelling  organisms  around  the  islands  (Nishihira  and  Veron  1995).  The 

Ryukyu  Archipelago  is  a  subtropical  area  in  the  northwestern  Pacific  and  includes  the 

northern limit for most tropical coral species (Nishihira and Veron 1995). It is composed of 

multiple stepping-stone, isolated islands and a well-developed reef system. In the reef system, 

distances between islands range from tens to several hundreds of kilometers in most cases, 

and the area of suitable coral reef habitat is small compared to regions such as the GBR. Thus, 

we predict that larval recruitment among the isolated reefs is rare, especially in brooding 

corals, but occurs occasionally over long periods owing to the Kuroshio Current and its 

branches.	

Seriatopora is mainly distributed on tropical and sub-tropical reefs in the western 

Indo-Pacific  region  (Veron  2000).  Nishihira  and  Veron  (1995)  described  two  species  of 

Seriatopora (S. hystrix and S. caliendrum) that inhabit the Ryukyu Archipelago. Veron (2000) 

and   the   Corals   of   the   World   website   (http://coral.aims.gov.au/)   suggest   that   four	



							
	

 	 morphological species of Seriatopora are probably distributed in the Ryukyu Archipelago: S. 

hystrix, S. caliendrum, S. guttata, and S. stellata. The Japanese Coral Reef Society and 

Ministry of the Environment (2004) reported that three species of Seriatopora (S. hystrix, S. 

caliendrum, and  S.  stellata) inhabit  the area,  but  S. stellata is  only in  the Miyako and 

Yaeyama regions of the Ryukyu Archipelago.	

The extent of coral recovery after a mass bleaching event is highly variable among 

species. The population recovery of S. hystrix is very slow in the Ryukyu Archipelago and it 

is considered a long-term loser species that does not recover after a mass bleaching event 

(e.g., Loya et al. 2001; van Woesik et al. 2011). We assess multiple genetic lineages of 

Seriatopora  and  the  genetic  structure  and  connectivity  among  sites  using  microsatellite 

markers  to  understand  the  historical  interspecific  delimitation,  intraspecific  population 

dynamics including reproductive strategies, and recent migration patterns. In addition, we 

discuss the potential for recovery of Seriatopora corals along the Ryukyu Archipelago.	

			
	
Materials and methods	
	
	
Sampling and genomic DNA extraction	
	
	

We collected Seriatopora samples from ten sampling sites in four regions of the	



							
	

	 	 Ryukyu Archipelago (Fig. 1, ESM Table S1). While at least three morphological species of 

Seriatopora appear to be distributed in the Ryukyu Archipelago, we collected colonies with a 

S. hystrix morphology and avoided colonies with a different morphology, which were rare in 

the sampling areas. A small piece of branch was preserved in 99.5% ethanol and transferred 

to the laboratory. Total DNA was extracted from the ethanol-preserved tissue pellets using the 

DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) or the AquaPure Genomic DNA 

Isolation Kit (BioLad, Hercules, CA, USA) according to the manufacturer’s protocols. 

Sequencing of the mitochondrial putative control region	

As the most comparable sequence with other publications, the mitochondrial putative 

control region (mtCR) between atp6 and nad4 was amplified by polymerase chain reaction 

(PCR) using Ex Taq DNA polymerase (Takara, Kusatsu, Shiga, Japan) with the primers	

  
  
  
	

	 	
SerCtl-F1	

	
(5 -GTCTGCTCACATTAATTTAT-3 )	

	
and	

	
SerCtl-R1	

	 	
	

	
(5 -AGAGATCGAACTAAGAGTCG-3 )  (Bongaerts  et  al.  2010).  These  primers  were 

designed from the mitochondrial genome of S. hystrix (Bongaerts et al. 2010; and see Chen et 

al. 2008; GenBank EF633600). The mtCR was defined as a control region in Chen et al. 

(2008), but almost all the sequences can be translated into an open reading frame (ORF) of a 

hypothetical protein-encoding gene (Flot et al. 2008). The location corresponds to a novel	



							
	

 	 mitochondrial ORF that is next to atp6 in the case of Pocillopora, as shown by Flot and 

Tillier (2007). The PCR conditions were as follows: 40 cycles of 30 s at 94°C, 1 min at 56°C,	

1 min at 72°C, followed by a final extension for 5 min at 72°C, carried out in a total reaction	
	
	
volume of 10	 L. For direct sequencing, each PCR product was treated with ExoSAP-IT	
	
	
(Affymetrix, Santa Clara, CA, USA) following the manufacturer’s protocol. The primers used 

for the sequencing reactions were the same as those for the PCR amplification. The products 

were sequenced using an automated capillary-based DNA sequencer, the ABI 3130xl Genetic 

Analyzer (Thermo Fisher Scientific, Waltham, MA, USA).	

Phylogenetic analyses for mtCR haplotypes	
	
	

Tandem repeat sections in the intergenic spacer were identified using Tandem Repeat 

Finder ver. 4.09 (Benson 1999); the alignment parameters for mismatches and indels were 

three and five, respectively. If two or more patterns were detected in a haplotype, the pattern 

with  the  larger  score  was  adopted.  We  used  maximum  likelihood  (ML)  and  Bayesian 

inference (BI) analyses to construct a phylogenetic tree of the generated mtCR haplotypes, 

with the 23 Seriatopora sequences classified according to Chen et al. (2008), Flot et al. 

(2008), Bongaerts et al. (2010), and Warner et al. (2015), and one Pocillopora sequence 

identified from Flot and Tillier (2007) as the outgroup. These sequences were aligned using	



							
	

	 	 MUSCLE on MEGA, ver. 6.0 (Tamura et al. 2013). The consensus sequences, including 

repeat motifs, ranged from 513 bp to 741 bp of the mtCR. Prior to analysis, we searched for 

the best-fit model of evolution using MEGA, and the HKY (Hasegawa–Kishino–Yano) +G 

(Gamma distributed) model was selected. The robustness of each ML tree was tested by 

bootstrapping  (1,000  replicates)  under  the  condition   of  complete  deletion   of  gaps. 

Furthermore, this model was applied for the BI analysis using MrBayes, ver. 3.2.5 (Ronquist 

and Huelsenbeck 2003; Ronquist et al. 2012). Two isolated runs were conducted under the 

following  conditions:  four  Markov  chain  Monte  Carlo  (MCMC)  iterations,  50,000,000 

generations, a print frequency of 10,000, a sample frequency of 100 generations, and a 0.25 

burn-in fraction.	

Scoring of microsatellite genotypes	
	
	

We attempted to use nine microsatellite loci with amplification in our specimens of 

Seriatopora. Seven loci characterized by Underwood et al. (2006) were effective for our 

genetic analysis (ESM Table S2). Of the two remaining loci, Sh3-008 (Underwood et al. 

2006) showed no amplification for specimens from some sites, and Sh4.28 (Maier et al. 

2001) contained very few heterozygotes. The reaction mixture (5 µL) contained template 

DNA (<100 ng), AmpliTaq Gold 360 Master Mix (Thermo Fisher Scientific), and three	



							
	

 	 primers for each locus. The primers were a non-tailed forward primer (0.5 µM), a reverse 

primer with a U19 sequence tail (0.5 µM), and a U19 (5 -GGTTTTCCCAGTCACGACG-3 ) 

primer (0.5  µM)  fluorescently labeled  with  FAM,  VIC,  or  NED.  Amplifications  for  all 

microsatellite loci were carried out under the following conditions: 95°C for 9 min, followed 

by 35 cycles at 95°C for 30 s, 54°C for 30 s, 72°C for 1 min, and a final extension at 72°C for	

5 min. PCR products amplified with an internal size standard, GeneScan 600 LIZ, (Thermo	
	
	
Fisher Scientific) were analyzed using an ABI 3130xl Genetic Analyzer and GeneMapper ver.	
	
	
3.7 (Thermo Fisher Scientific).	
	
	
Estimating the genetic groupings using microsatellites	
	
	

We  inferred  the  genetic  structure  of  Seriatopora  through  Bayesian  clustering  of 

microsatellites using STRUCTURE, ver. 2.3.4 (Pritchard et al. 2000). First, we analyzed the 

genetic  structure  with  the  sampling  location  information.  A burn-in  period  of  100,000 

iterations followed by 1,000,000 MCMC replications was used for population clustering 

without LOCPRIOR model under the admixture model and correlated allele frequencies were 

assumed (Falush et al. 2003). Individuals were assumed to be drawn exclusively from the 

genetic  K  clusters  and  were  allowed  to  have  mixed  ancestry  in  the  admixture  model 

(Pritchard et al. 2000; Falush et al. 2003). Simulations included 10 iterations, and the number	



							
	

 	 of assumed subpopulations was 1 to 11. After calculation of the mean log probability, Ln 

P(D), determination of the number of K clusters that best fit the data was conducted based on 

the  highest  ∆K  value  using  the  method  of  Evanno  et  al.  (2005)  as  implemented  in 

STRUCTURE HARVESTER (Earl and vonHoldt 2012). To obtain adequate output panels to 

unify the colors, merged run data were implemented by CLUMPAK (Kopelman et al. 2015). 

Second, we analyzed the genetic structure and inferred the number of genetic lineages with 

the mtCR haplotype information using STRUCTURE. The run conditions of STRUCTURE 

were  the  same  as  the  first  step  analysis  except  for  the  sampling  location  information. 

Furthermore, discriminant analysis of principal components (DAPC) was conducted in R ver.	

3.0.2  (http://www.r-project.org)  using  the package adegenet,  ver.  1.3–9.2  (Jombart  et  al. 

2010),  to  represent  genetic  clusters  formed  by  microsatellite  genotypes  for  each  mtCR 

haplotype. This clustering method does not assume Hardy–Weinberg equilibrium (HWE) or 

linkage equilibrium. All multilocus genotypic data of microsatellites were plotted both with 

and without six clusters defined a priori based on mtCR haplotypes. A total of 40 principal 

components were retained, accounting for 97.9 % of the genetic variability.	

For multilocus genotypes (including replicated genotypes), we also calculated the	
	
	
probability of a given multilocus genotype occurring n times for each population within a	



							
	

	 	 genetic  lineage,  repeated  as  a  consequence  of  different  recombination  events  (PSEX, 

calculated taking into account the FIS  estimates in the data set) using GenClone, ver. 2.0 

(Arnaud-Haond and Belkhir 2007). We retained the replicated multilocus genotype if two or 

more  multilocus  genotypes  were  the  same  but  occurred  by  chance  because  of  sexual 

reproduction (the threshold of the PSEX value is 0.01). Based on the microsatellite genotypes 

for each genetic lineage and site, clonal diversity was estimated with the following index: R = 

(NMLG – 1)/(N – 1), where NMLG is the number of retained multilocus genotypes and N is the 

number of colonies analyzed. We removed duplicated genotypes of clonemates within a 

population to analyze the genetic differentiation and structure, genetic diversity, and migrants 

within genetic lineage. Genetic differentiation based on microsatellites was estimated using a 

hierarchical analysis of molecular variance (AMOVA) (Excoffier et al. 1992), partitioning 

among lineages, among populations within lineages, and within populations, by GenAlEx, 

ver. 6.501 (Peakall and Smouse 2006).	

Population genetic analyses between sites within a genetic lineage	
	
	

After removal of the duplicate genotypes of clonemates, the genetic structure within 

each genetic lineage was also inferred using STRUCTURE. The run conditions were the 

same as previously, except for the number of assumed subpopulations (K = 1 to 6 for each	



							
	

 	 genetic lineage). Additionally, we ran a LOCPRIOR model because the detailed genetic 

structure as shown in all lineages was not detected without the LOCPRIOR model (see 

Results). Only populations with 20 or more retained multilocus microsatellite genotypes 

within each lineage were used in further analyses. For each suitable population, the number 

of alleles and values of observed and expected heterozygosity (HO and HE, respectively) for 

each site were evaluated with GenAlEx. We calculated the fixation index (FIS) and the allelic 

richness  for  genetic  diversity  at  each  site  using  FSTAT  ver.  2.9.3.2  (Goudet  1995). 

Additionally, the significance of the FIS  was tested by randomization using FSTAT. The 

genetic differentiation index between sites was calculated using GenAlEx. The significance 

of each pairwise FST  value was tested with 999 permutations. Furthermore, the G-statistic 

method was used to calculate the pairwise G ST  values to account for the small number of 

populations (Meirmans and Hedrick 2011), and the significance of each value was tested with	

999 permutations. Migration patterns over the recent ecological timescale were estimated 

using GeneClass2 (Piry et al. 2004) and the Bayesian method developed by Rannala and 

Mountain (1997). We assigned each multilocus genotype to a source site using a 10,000 

resampling algorithm. A multilocus genotype with a >99% (P < 0.01) confidence interval was 

excluded from the sampled population, and we then assigned the colony as an immigrant to	



							
	

 	 the site of highest probability when the confidence of assignment was ≥10% (P ≥ 0.1). If a 

given  multilocus  genotype  had  low  probability  with  <10%  (P  <  0.1)  confidence  of 

assignment for all sites, the origin of this multilocus genotype was considered an immigrant 

from an unsampled site.	

			
	
Results	
	
	
Genetic differentiation and structure among the genetic lineages	
	
	

Of the 195 colonies of Seriatopora collected from ten sites (Fig. 1; ESM Table S1), 

we succeeded in obtaining mtCR haplotypes (6 haplotypes; Ser-1 to  -6) and multilocus 

genotypes with seven microsatellites in 182 colonies (93.3%). The community composition 

of individuals from different haplotypes differed among sites (Fig. 1; ESM Table S1). While 

some sites were dominated by a single haplotype (e.g., sites O-NKJ and K-AKA; see Fig. 1 

for site names), others had population mixtures with up to five different haplotypes (e.g., 

Y-TKT).  The  haplotype  sequences  are  available  in  the  GenBank  database  (accession 

numbers: LC107881–LC107886). The composition of each haplotype group differed greatly 

among  sites  (Fig.  1;  ESM  Table  S1).  Thirty-five  replicated  multilocus  microsatellite 

genotypes were detected, and 32 replicated multilocus microsatellite genotypes were detected	



							
	

 	 considering the mtCR haplotypes. Namely, three multilocus microsatellite genotypes were 

shared  between  the  Ser-1  and  Ser-2  mtCR  haplotypes  in  O-OUR  (one  multilocus 

microsatellite genotype was shared between the two Ser-1 and two Ser-2 colonies, one other 

multilocus genotype was in the five Ser-1 and 1 Ser-2 colonies, and the last multilocus 

genotype  was  also  in  the  five  Ser-1  and  one  Ser-2  colonies).  Multilocus  microsatellite 

genotypes were not shared between the sites.	

For the Bayesian clustering, the Evanno method indicated that the most probable 

number of genetic populations was three: best K = 3 (∆K = 2712.52 when each site was 

designated as the population, and ∆K = 4632.23 when each mtCR haplotype was designated 

as  the  population).  The  STRUCTURE  analyses  suggested  that  there  was  no  obvious 

agreement with geographical sites (Fig. 2). For example, multiple clusters were mixed in 

O-ONA and Y-TKT, and a common cluster was shared between populations from different 

regions (e.g., O-ONN and K-AKA, K-TKS and Y-IRO). STRUCTURE found at least three 

distinct genetic lineages among the sampled individuals, and the lineages include different 

mtCR  haplotypes  (Seriatopora-A:   Ser-1   and   Ser-2;  Seriatopora-B:   Ser-3  and   Ser-4; 

Seriatopora-C: Ser-5 and Ser-6), although the lineages of five colonies in Ser-5 and Ser-6 

were not defined (Fig. 2; ESM Table S1). DAPC detected three main clusters when each	



							
	

 	 haplotype was assigned to each multilocus genotype (ESM Fig. S1). Of the five colonies with 

lineage  undefined  by STRUCTURE,  four  were  assigned  to  Seriatopora-B  without  prior 

information of mtCR haplotype and to Seriatopora-C with prior information. A hierarchical 

AMOVA quantified the extent of the genetic differentiation among the genetic lineages based 

on STRUCTURE after removal of the five colonies with undefined lineage (total FRT = 0.349, 

P  =  0.001;  Table  1).  Thus,  we  concluded  there  were  at  least  three  genetic  lineages  of 

Seriatopora in the Ryukyu Archipelago.	

On the ML (Fig. 3) and BI (ESM Fig. S2) phylogenetic trees, four haplotypes (Ser-1, 

Ser-2,  Ser-3,  and  Ser-4)  were  assigned  to  the  clusters  including some  haplotypes  of  S. 

caliendrum, and two (Ser-5 and Ser-6) were assigned to the group including several S. hystrix 

lineages. Within the mtCR analyzed, Ser-2 was identical to the haplotype previously obtained 

from Okinawa and Taiwan, and had one nucleotide gap compared with the haplotype from 

the Philippines. Ser-5 is identical to S. hystrix HostU from the GBR, which is the same 

haplotype from Okinawa and Taiwan. In contrast, the other four haplotypes have not been 

reported before. However, the relationship of the phylogenetic trees defined according to 

mtCR haplotype was not in agreement with the relationship identified through the genetic 

structure  from  microsatellites.  All  Ser-5  and  one  Ser-6  were  the  same  clusters  by	



							
	

 	 microsatellites, but were separated on the phylogenetic tree using mtCR, although there were 

only two samples in Ser-6. In addition, tandem repeats (composed of 51 bp) were observed in 

the mtCR, and these were separated into three groups based on the type of tandem repeat 

[Ser-1: 8.5 times; Ser-2, Ser-3, and Ser-4: 4.4 times; Ser-5 and Ser-6: 5.2 times (ESM Fig. 

S3)], but this pattern was also not completely related to the genetic structure obtained using 

microsatellites.	

Clonal diversity and the population genetic index within the genetic lineages	
	
	

Although  35  multilocus  microsatellite  genotypes  (32  when  considering  mtCR 

haplotypes) were replicated the PSEX value revealed that the number of clonal replicates was 

low, with only six of the 182 colonies appearing to be derived from asexual reproduction 

(Table 2). The clonal diversity for each genetic lineage and site was relatively high, especially 

considering the PSEX value (R = 0.75–1.00) (Table 2).	

We retained 176 multilocus genotypes after removing the six duplicate genotypes of 

clonemates.  We  calculated  the  allelic  richness  (AR),  standardized  against  21  multilocus 

genotypes (i.e., NMLG = 21; lowest number of multilocus genotypes). We also calculated the 

expected heterozygosity (HE) at each site and for each genetic lineage to estimate the genetic 

diversity. The results for Seriatopora-A colonies at O-OUR and Seriatopora-C colonies at	



							
	

 	 Y-IRO indicated that these populations were maintained under low genetic diversity (Table 3). 

The genetic differentiation indexes, the pairwise FST  and G ST, were 0.064–0.116 (all P = 

0.001) and 0.107–0.209 (all P = 0.001), respectively, among the three sites (with 20 or more 

retained  mutilocus  microsatellite  genotypes)  within  Seriatopora-B  (ESM  Fig.  S4).  The 

genetic structure was established for each genetic lineage without the LOCPRIOR model 

(Seriatopora-A:  best  K  =  2,  ∆K  =  188.38;  Seriatopora-B:  best  K  =  2,  ∆K  =  35.80; 

Seriatopora-C: best K = 2, ∆K = 790.50) and with the LOCPRIOR model (Seriatopora-A: 

best K = 2, ∆K = 284.83; Seriatopora-B: best K = 2, ∆K = 39.54; Seriatopora-C: best K = 2, 

∆K = 67.90) (ESM Fig. S4). The migration estimation using GeneClass2 indicated that 

migration from other sites was rare within the analyzed genetic lineages. Only one migrant 

was found in Seriatopora-B (to M-IKM from an unsampled site); therefore, the migration 

direction was not estimated.	

			
	
Discussion	
	
	

Population genetic analyses using microsatellite markers revealed that there are at 

least three distinct genetic lineages and population genetic structure of Seriatopora corals in 

the  Ryukyu  Archipelago.  However,  the  phylogenetic  trees  that  were  based  on  mtCR	



							
	

 	 haplotypes  did  not  always  correspond  to  the  genetic  structure  that  was  derived  using 

microsatellites. The community composition of genetic lineages was variable among the sites, 

and only Y-TKT included all three genetic lineages in our data set. Considering the PSEX 

value, the clonal diversity was high in all three genetic lineages, and clonal replicates were 

found in only six of our 182 genotyped colonies. Therefore, our data suggest that sexual 

reproduction is the main contributor to population maintenance of Seriatopora in the Ryukyu 

Archipelago. Nevertheless, there was large genetic differentiation among the populations 

within Seriatopora-B. This suggests that larval recruitment from other populations rarely 

occurred over the long-term history in the lineage.	

Genetic lineages of Seriatopora in the Ryukyu Archipelago	
	
	

We  identified  and  collected  all  specimens  of  Seriatopora  spp.  in  the  Ryukyu 

Archipelago, but previous studies by Flot et al. (2008) noted that morphological traits do not 

align with genetic clusters of Seriatopora. Warner et al. (2015) suggested the existence of 

cryptic species within S. hystrix; four genetic types of S. hystrix were detected on the GBR. 

Two microsatellites showed no amplification for specimens from some sites, which may also 

reflect  the  difference  of  species.  Seriatopora  has  a  very  limited  population  size  and  is 

endangered in the Ryukyu Archipelago (in our field observation, see also van Woesik et al.	



							
	

 	 2011). Therefore, it may take considerable time or not be possible to identify more genetic 

lineages due to the difficulty of collecting samples from only a limited number of populations 

or colonies even if more minor lineages are distributed in this region.	

On the phylogenetic tree, the Ser-1 haplotype of the mtCR, found only at the O-OUR 

site, appeared to be the most recent common ancestor type for Ser-2, Ser-3, and Ser-4. 

Tandem repeats in this locus were about twice as long in Ser-1 (8.5 times) as in haplotypes 

Ser-2, Ser-3, and Ser-4 (4.4 times). However, these mitochondrial groupings revealed by the 

phylogenetic tree and tandem repeats were not necessarily supported by levels of genetic 

differentiation and Bayesian clustering using microsatellite genotypes, which suggests that 

Seriatopora-A is one genetic lineage, comprised of haplotypes Ser-1 and Ser-2. Although 

Chen et al. (2008) and Flot et al. (2008) investigated and registered the D-loop, a control 

region between atp8 and cox1, sequences on GenBank, the number of sequences is fewer 

than that of the mtCR and therefore it is not possible to use the D-loop to compare haplotypes 

from multiple regions on the phylogenetic tree.  By increasing the number of  registered 

sequences and using a greater number of genetic loci and amino acid sequences, including 

other nuclear loci, it may be possible to resolve the evolutionary processes and relationships 

among Seriatopora species.	



							
	

 	 Habitat selection related to depth and geographical location	
	
	

Although  we  could  not  perform  statistical  analysis  along  depth  gradients  due  to 

limited sample sizes, we found that Seriatopora-A appeared to occur mostly at relatively deep 

sites (>13 m) compared to the distributions of the other two lineages. In particular, one of the 

two associated haplotypes (Ser-1) was only found at ≥30 m (O-		OUR). Our data set indicated 

that all three genetic lineages of Seriatopora inhabit both shallow (2–10 m) and deep (30–32 

m)  habitats.  Flot  et  al.  (2008)  also  confirmed  that  all  genetically  different  clusters  of 

Seriatopora were distributed in various water depths (Cluster 1: 6.7–40.3 m; Cluster 2: 0.6–	

34.0  m;  Cluster  3:  0.5–30.2  m;  Cluster  4:  1.0–34.0  m).  Recent  studies,  however,  have 

suggested  that  there  is  strong  genetic  structuring  with  depth  in  Seriatopora  populations 

(Bongaerts et al. 2010; van Oppen et al. 2011). Larval habitat selection for settlement among 

depths is an important factor in determining coral distribution patterns (Baird et al. 2003). 

Further sampling efforts including expanding or changing the focal area may clarify any 

potential depth structure among lineages.	

Our data did not indicate habitat differentiation between sheltered vs. exposed sites, or 

among  latitudes.  However,  the  community  composition  of  genetic  lineages  was  clearly 

variable among the sites sampled, although genetic lineages of Seriatopora were separated	



							
	

 	 between sheltered and exposed sites on the GBR, and habitat selection been found to be 

related to the symbionts hosted (Warner et  al. 2015). The geographical structure of the 

Ryukyu  Archipelago  consists  of  a  series  of  isolated  reefs  that  may  restrict  the  genetic 

connectivity among populations and the homogeneity of community composition of genetic 

lineages in each population. In addition, there are populations with only one cryptic species in 

the  large  habitat  of  the  GBR  (Warner  et  al.  2015).  The  relationship  between  species 

distribution  and  geographical  distance  is  also  somewhat  complicated  in  the  Ryukyu 

Archipelago. For example, while K-TKS and K-AKA are geographically isolated from each 

other  by  approximately  6  km,  the  community  composition  of  the  genetic  lineage  is 

completely different. Conversely, one haplotype (Ser-2) in Seriatopora-A was shared between 

O-OUR and Y-TKT, regions that are isolated by approximately 470 km. Historical reef events 

and other environmental factors likely determine the distributions of the different lineages. 

For example, Y-TKT is located on Sekisei Reef, which constitutes the largest reef area and is 

also the only site we sampled that contained corals from all three lineages. Non-random 

sampling,  standardization  of  site  size  and  sample  density,  and  further  standardized 

demographic, ecological and biological information for each population will be helpful to 

solve  the  outstanding  questions  about  habitat  selection  and  population  dynamics  of	



							
	

 	 Seriatopora.	
	
	
Population connectivity and the reproductive system of Seriatopora	
	
	

We found large genetic differentiation among sites in Seriatopora-B. Previous studies 

have also found a high degree of genetic subdivision among the populations of S. hystrix 

(Ayre and Hughes 2000, 2004; Underwood et al. 2007, 2009; van Oppen et al. 2008; Noreen 

et al. 2009), which corresponds to the findings of this study. Some previous studies showed 

complex distribution patterns of multiple genetic clusters unrelated to geographical location 

(e.g., Noreen et al. 2009), but may not have divided the genetic lineage and may have 

overestimated   the   genetic   differentiation   among   sites.   Nevertheless,   large   genetic 

differentiation might be related to the low dispersal ability of the brooding coral Seriatopora. 

The low dispersal ability is because the larvae settle soon after release from the natal colony, 

the peak of settlement is within 1 d, and almost all larvae are settled within 5 d of spawning 

(Atoda 1951; Ayre and Hughes 2000). The range of almost all dispersal in Seriatopora will 

occur at the local habitat scale.	

Mean larval duration of Seriatopora is much shorter than for broadcast-spawning 

species such as Acropora. The settlement peak of Acropora is 5 to 8 d after spawning (Suzuki 

et al. 2011), and the maximum rearing durations of two Acropora species have been found to	



							
	

 	 be more than 50 d under artificial rearing conditions (Nishikawa and Sakai 2005). However, 

some brooding corals have been found to have the potential for long distance dispersal with 

successful settlement competency suggested by both experiment and model predictions (e.g., 

approximately 100 d in Pocillopora damicornis; Richmond 1987). The genetic differentiation 

of Acropora in this region has often been shown to be significant, but lower overall among 

islands (Nishikawa et al. 2003; Nishikawa and Sakai 2005; Nakajima et al. 2010; Zayasu et al. 

2016). Estimates of migration in the present study did not reveal the source population of 

recruitment. Migration analysis also suggested that larval dispersal of Seriatopora occurs 

mostly within the local site. Nevertheless, gene flow among sites within a genetic lineage 

might contribute to long-term population persistence because few long-distance migrants are 

likely  between  populations  of  S.  hystrix  (van  Oppen  et  al.  2008,  Noreen  et  al.  2009). 

Inbreeding by self-recruiting in a restricted geographical range may enhance the fixation of a 

small number of genotypes because most larval recruitment occurs within 100 m of the natal 

habitat (Underwood et al. 2007), but oceanographic conditions and high reproductive output 

may  facilitate  the  occasional  dispersal  of  brooded  larvae  over  10  km  for  S.  hystrix 

(Underwood et al. 2009).	

Clonal diversity in the Ryukyu Archipelago suggests that all three genetic lineages	



							
	

 	 have been maintained by sexual reproduction. Recruitment by migration of S. hystrix on the 

GBR was mainly by sexually produced larvae (van Oppen et al. 2008). However, some 

multilocus  genotypes  were  the  same  among  colonies,  indicating  that  populations  are 

maintained with low genetic diversity (Seriatopora-A in O-OUR and Seriatopora-C in Y-IRO). 

While there is no obvious relationship between genetic diversity by neutral loci and rarity in 

corals  (Richards  and  van  Oppen  2012),  populations  including  these  colonies  may  be 

endangered due to low genotypic variation because genetic diversity is an important index for 

evolutionary responses to rapid climate change (Ayre and Hughes 2004). More populations of 

Seriatopora should be surveyed for further estimation of genetic diversity and gene flow 

within each lineage, especially from the southern region near the center of the geographical 

distribution  including the  Coral  Triangle.  Different  reef systems  should  be examined to 

understand overall genetic diversity and differentiation and the possibility for migration	

When the population size of Seriatopora is unusually large and the colonies are also 

large, large numbers of larvae are produced and larvae that reach other reefs probably help to 

establish  and  maintain  populations  (van  Oppen  et  al.  2008).  Reef  areas  in  the  Ryukyu 

Archipelago are fewer and smaller than those in other regions such as the Coral Triangle and 

GBR, and therefore the population size of Seriatopora will not be large compared with	



							
	

 	 populations on large reefs. This difference in the reef system is likely to dictate the number of 

migrants  between  sites.  Using  individual-based  ecological  modeling  with  ecological 

parameters for a Seriatopora population in the Ryukyu Archipelago, constant recruitment or 

occasional abundant recruitment from other populations was found to be necessary to recover 

the population after disturbances (Muko et al. 2014). Our population genetic analysis found 

evidence of only a single migrant in three populations of Seriatopora-B. Without continuous 

recruitment from other populations, Seriatopora in the Ryukyu Archipelago is in danger of 

extinction locally if the local habitat suffers from disturbances.	
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Figure legends	
	
	
Fig. 1 Map of the sampling sites, depths, numbers of samples, and number of haplotypes of 

the mitochondrial control region (mtCR) of Seriatopora in the Ryukyu Archipelago. Location 

data, sample size, and the number of colonies of each genetic lineage are shown in ESM 

Table S1	

Fig. 2 STRUCTURE analysis for 182 microsatellite multilocus genotypes. Analyses for each 

genetic lineage were conducted with 176 genotypes after removing the duplicate genotypes of 

clonemates. Probable cluster number, shown as K, for each site (a) was assumed as three (K =	

3) based on the method described by Evanno et al. (2005). Probable cluster number K for 

each genetic lineage (b) was assumed as K = 3 to 6. The arrow shows the undefined lineage 

detected by this analysis	



							
	

 	 Fig. 3 Maximum likelihood phylogenetic tree composed of 30 sequences using the mtCR of 

Seriatopora and one sequence of Pocillopora damicornis as an outgroup. Values on the 

branches indicate bootstrap values (%). Twenty-three haplotypes shown by their GenBank 

accession numbers were cited from Chen et al. (2008), Flot et al. (2008), Bongaerts et al. 

(2010), and Warner et al. (2015). Sequences from other references were selected to avoid 

duplication of sequence, region, or publication	



 

 

 
 
 
 

 



 

 

 



 

 

 
 

 



 

 

  
 
 
 
 
 
 

Hierarchical group Source d.f. SS Var. (%) F-statistics P value 

Lineages-haplotypes (NMLG = 170) Among lineages 2 197.778 0.794 (35%) FRT = 0.352 0.001 
 Among haplotypes within lineages 2 22.291 0.158 (7%) FSR = 0.108 0.001 
 Within haplotypes 335 436.502 1.303 (58%) FST = 0.422 0.001 
 Total 339 656.571 2.255 (100%)   

Lineages-sites (NMLG = 171) Among lineages 2 206.244 0.788 (35%) FRT = 0.349 0.001 
 Among sites within lineages 10 78.473 0.297 (13%) FSR = 0.202 0.001 
 Within sites 341 399.218 1.171 (52%) FST = 0.481 0.001 
 Total 353 683.935 2.256 (100%)   

 
 

Table 1 



 

 

 
 
 

 Seriatopora-A   Seriatopora-B  Seriatopora-C    Undefined 

Code N G NMLG R N G NMLG R N G NMLG R  N G NMLG R 

O-OUR 37 14 35 0.94 - - - - - - - -  - - - - 

O-NKJ 7 7 7 1.00 - - - - - - - -  - - - - 

O-ONN 5 4 4 0.75 - - - - 2 2 2 1.00  - - - - 

O-GNW - - - - 23 22 22 0.95 - - - -  - - - - 

K-TKS - - - - - - - - 23 21 23 1.00  - - - - 

K-AKA - - - - 23 23 23 1.00 - - - -  - - - - 

M-IKM - - - - 23 21 21 0.91 - - - -  - - - - 

Y-NGR - - - - 2 2 2 1.00 - - - -  3 3 3 1.00 

Y-TKT 7 7 7 1.00 10 10 10 1.00 3 3 3 1.00  2 2 2 1.00 

Y-IRO - - - - - - - - 12 6 12 1.00  - - - - 

Total 56 32 53 0.95 81 78 78 0.96 40 32 40 1.00  5 5 5 1.00 
 
 

Table 2 



 

 

 
 
 
 

Genetic lineage Site NMLG AR HO HE FIS 

Seriatopora-A O-OUR 35 1.66 0.151 0.178 0.165* 

Seriatopora-B O-GNW 22 4.81 0.390 0.413 0.079 
 K-AKA 23 4.87 0.348 0.421 0.195** 
 M-IKM 21 5.00 0.442 0.474 0.091 

Seriatopora-C K-TKS 23 2.92 0.193 0.258 0.275** 
 
 

Table 3 


