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Abstract

Capturing the nonlinear dynamics of animal behavior
with Applications to the Nematode C. elegans

From microorganisms to humans, animals behave by making complex changes in their
shape and posture over time with remarkable �exibility. To deal with the complexity
of animal behavior existing analysis methods view it as a discrete time process, which
is composed of transitions between a �nite number of stereotyped motifs, such as walk-
ing or reaching. This viewpoint, however, ignores the fact that most behavior is not
stereotyped. There is, therefore, a need for a perspective that captures the continu-
ous complexity of animal behavior and o�ers detailed insights into general principles
underlying its generation and control.

In my Ph.D. thesis, I propose a new approach of analyzing animal behavior, based on
the idea that it is fundamentally a continuous time spatiotemporal dynamical system.
I develop methods to transform behavioral recordings into a geometrical object called
the "behavioral state space". As an organism moves, the corresponding behavioral
state traces out a continuous trajectory in the state space, such that the geometry and
topology of the trajectories encode quantitative and qualitative properties of behavior.
Finally, I characterize an organism's behavioral dynamics in terms of the topological
invariants estimated from the local Jacobians of the state space trajectories. The
invariants capture essential aspects of a dynamical system, such as the number of
degrees of freedom, symmetries in the governing equations of motion, and measures of
predictability and variability.

I use the tools and concepts developed the above to perform a detailed characteri-
zation of continuous dynamics of freely behaving C. elegans worms.
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Chapter 1

Introduction

1.1 Introduction

Animals move and behave in a wide variety of ways - they run, crawl, �y and swim. The
complex, nonlinear postural dynamics generating these behaviors evolve over multiple
spatiotemporal scales and show a con�icting coexistence of regularity and variabil-
ity. At large scales, behavior is structured, organized into stereotyped motifs such as
walking or running, but the small scale dynamics within each motif are usually highly
variable. Additionally, behavioral dynamics also show a large degree of intermittency
as a result of sudden transients or jumps between di�erent stereotyped motifs. De-
spite this complexity, animals have �ne control over their movements. They can make
rapid maneuvers to escape a predator, or to catch prey, and they can easily adapt
to any new situation. This remarkable �exibility and e�ciency in response to unpre-
dictable environmental perturbations is rarely observed in robots and other man-made
control systems, re�ecting our lack of understanding of mechanisms underlying gener-
ation and control of animal behavior. Consequently, understanding animal behavior
has the potential to drive future progress in several related �elds, such as neuroscience
[1], ethology [2, 3], physics of complex systems [4], control theory, and robotics and
arti�cial intelligence [5].

Recent technological advances in the ability to gather high-resolution movement
data make it possible for us to ask fundamental questions about how animals generate
and control complex behaviors [3, 6]. However, the complexity of behavioral dynam-
ics has presented unique challenges in quanti�cation and analysis of these datasets.
The main challenge is to �nd a quantitative representation of behavior that maps
high-resolution recordings of animal behavior into a small set of interpretable num-
bers without losing any information about the dynamics. Formally, any representation
that assigns numbers to instantaneous behavior of an animal must satisfy the following
conditions. First, it must not map distinct behaviors to the same set of numbers, in
other words, it must be one-to-one, or as close to it as possible. Additionally, in a good
representation, the numerical di�erence between two sets of numbers should to some
degree re�ect how similar or dissimilar two behaviors are. Finally, a good representa-
tion must capture the dynamics of animal behavior, which is to say that it must allow
us to predict what the animal will do in the near future. In addition to the formal
requirements mentioned above, to be practical, a representation of animal behavior
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14 Introduction

should be low dimensional and interpretable. Thus, each behavior should map to a
small set of numbers, which together provide insight into the biophysical principles of
how an animal generates and controls its behavior.

Clearly, when available, a representation that satis�es all the conditions above can
be invaluable in the study of animal behavior and its control. However, the conditions
mentioned above do not uniquely specify a quantitative behavioral representation. In-
deed, for most complex dynamical systems there can be several equivalent represen-
tations, such as the state space (or phase space), normal modes, or the collection of
periodic orbits. Given that there is probably no unique way of representing animal
behavior, the search for the best representation might seem like a pointless exercise.
Fortunately, there are a set of measures that are independent of the particular repre-
sentation used to describe a dynamical system. They capture only the essential, most
universal aspects of the dynamics. Examples of these so-called dynamical or topo-
logical invariants include Lyapunov exponents, Kolmogorov-Sinai (or metric) entropy,
and information dimension. These invariants pack a tremendous amount of information
about qualitative and quantitative aspects of dynamical systems, such as the number of
degrees of freedom, the symmetries of underlying dynamics, measures of predictability
and variability and so on. Because of their universal properties, seeking these invari-
ants from observations of behaving animals can lead us to general principles of how
animal behavior is organized and controlled.

In this thesis, I have taken a two-pronged approach. Unable to give up entirely
on the advantages of a good representation when it can be found. I �rst use ideas
from state space reconstruction and embedding theory in nonlinear dynamics, see for
example [7] to develop an interpretable and dynamic representation for C. elegans
behavior. Second, I estimate dynamical invariants from data of freely moving worms.
Both these approaches together provide unprecedented insights into the organization
and control of the behavior of freely moving worms. This task could not be done
directly using existing tools for state space reconstruction. Consequently, along the
way, I have also made contributions to the �eld of nonlinear time-series analysis by
developing tools and techniques that allow for robust estimation of an embedding and
of the dynamical invariants. Speci�cally, the main contributions of this thesis are as
follows

1. Estimation of Optimal Embedding Parameters

(a) In chapter 2, I lay out the key ideas behind state space reconstruction fol-
lowed by a discussion of popular approaches and their drawbacks. Subse-
quently, I describe a new method of reconstructing the state space

from time-series data based on maximizing predictability, and apply
it to known systems.

2. Robust Estimation of Lyapunov Exponents and Local Jacobians in State Space.

(a) In chapter 3 I detail the theory behind Lyapunov exponents and describe
common methods used to estimate them. I end by describing a new

method for robustly estimating local Jacobians in a state-space

embedding, which is demonstrated on known model systems.



1.2 Example Dynamical Systems Used 15

3. A new, dynamic behavioral representation of C. elegans behavior

(a) In chapter 4 I apply the methods developed in chapter 2 to reconstruct the
state space for C. elegans behavior from behavioral recordings. This is a
new method of representing and measuring C. elegans behavior

that captures the nonlinear continuous dynamics in a principled,

model independent manner. I then use the representation for measuring
C. elegans behavior at multiple scales, from instantaneous posture dynamics
to long time-scale foraging dynamics.

4. Estimation of the all the Lyapunov exponents and related invariants of freely
moving worms

(a) In chapter 5 I estimate the entire spectrum of Lyapunov exponents of freely
moving worms and estimate other related dynamical invariants. To the best
of my knowledge, this is the �rst for the �rst attempt at estimating

the Lyapunov exponents for an entire animal.

In addition to above, I end with preliminary results suggesting further use of local
Lyapunov exponents in understanding the control system underlying worm behavior. I
give evidence for and put forward a new hypothesis regarding how the worm maintains
a steady locomotory state by using an energy based feedback.

Before beginning I will brie�y describe some model dynamical systems used in this
thesis.

1.2 Example Dynamical Systems Used

Throughout the thesis I will use the following dynamical systems to clarify concepts
and as a testbed for the methods to be developed. All simulations are performed
with Matlab's ode45 adaptive Runge-Kutta solver with a time-step of 0.001s and error
tolerances of 10−6. When observation noise is added to simulations, it is added at 2
percent the standard deviation of the time-series.

1.2.1 Lorenz

First is the following canonical model of chaotic dynamics, �rst proposed by Ed Lorenz
in 1963 [8] as a simple model of atmospheric convection rolls.

ṡ1 = 10(s2 − s1)
ṡ2 = s1(28− s3)− s2
ṡ3 = s1s2 −

8

3
s3

(1.1)

The state space is three dimensional, s = (s1, s2, s3), and the evolution is de-
scribed by three coupled ordinary di�erential equations with two quadratic nonlinear-
ities. Fig. 1.1A illustrates the simulated trajectories of this system.



16 Introduction

-10 0 10

-20

-10

0

10

20

-10 0 10

10

20

30

40

-20 0 20

10

20

30

40

s2 s3

s1 s1 s2

s3

Figure 1.1: A. The phase portrait of the Lorenz system described by eqn 1.1.

1.2.2 Linear Coupled Oscillators and Normal Modes

Coupled oscillators play an important role in Neuroscience, whether it's central pattern
generators in locomotion, or neural rhythm generators in other cognitive and memory
related processes. To explore how state space reconstruction methods work with data
obtained from coupled oscillators I will use the system consisting of two particles cou-
pled together by three springs as shown in Fig. 1.2. The equations of motion of the
system can be obtained by applying Newton's laws to give the following coupled second
order di�erential equations:

mq̈1 = −2kq1 + kq2

mq̈2 = kq1 − 2kq2
(1.2)

Where q1, q2 are the displacements of the two particles from their equilibrium posi-
tions, while k,and m refer to spring constant and the masses of particles respectively.
Both these parameters will be set to unity, i.e. k = 1,m = 1 for the rest of the thesis.

The coupled mass spring system above makes a four dimensional dynamical system.
We can represent the two second order di�erential equations in eqn 1.2, as four coupled
�rst order di�erential equations as follows

q̇1 =
p1
m

ṗ1 = −2kq1 + kq2

q̇2 =
p1
m

ṗ2 = kq1 − 2kq2

(1.3)

Where, p1, p2 are the momenta of the particles corresponding to q1, q2. The phase
space of the system in (q1, p1) and (q2, p2) coordinates is shown in Fig. 1.3A along with
the corresponding power spectra on the right. As can be seen, both springs oscillate
with a mixture of frequencies ω1 = 1Hz and ω2 =

√
3Hz. Even though the system in

eqn 1.3 is linear, the mixture of frequencies makes the phase portraits, and time-series
look complex.
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Figure 1.2: Illustration of the spring mass system and it's two normal modes.
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Fortunately, for coupled linear systems, there is an alternate coordinate system
known as the normal mode coordinates in which the oscillations are decoupled, and
system behaves as a system of uncoupled oscillators. To see this for the spring mass
system above, we can add and subtract the two equations in eqn 1.2 to give

m(q̈1 + q̈2) = −k(q1 + q2)

m(q̈1 − q̈2) = −3k(q1 − q2)
(1.4)

If we now relabel the variables as n1 = q1+q2, and n2 = q1−q2, the above equations
simplify to

mn̈1 = −kn1

mn̈2 = −3kn2

(1.5)

The two equations above described by the normal modes n1 and n2 are uncoupled.
Each normal mode behaves like a spring oscillating at a single frequency: n1 at ω1 =√
k/m and n2 at ω2 =

√
3k/m. It is in this sense that we can say that the normal mode

coordinates behave like the coordinates of two uncoupled oscillators. By transforming
to the normal mode coordinates, we have uncoupled the oscillations.

Admittedly, the normal mode coordinates are an abstraction of the physical coor-
dinates (q1, q2). However, when a linear system is expressed in these coordinate, the
motion simpli�es considerably. For the spring mass system, the �rst normal mode n1,
corresponds to both springs moving in unison oscillating with ω1 = 1Hz. While, in the
second mode n2, springs oscillate exactly out of phase with each other at a frequency of
ω2 =

√
3Hz. These modes are illustrated pictorially in 1.2. Any motion of the original

coupled system can be expressed as a superposition of the normal modes n1, n2.

The phase portraits in the normal mode coordinate system are shown in Fig. 1.3B
along with the power spectra. As can be seen that the same system as Fig. 1.3A, looks
much simpler. Each mode has a single peak in the power spectrum and the phase
portrait is a circle, corresponding to a regular oscillation.

1.2.3 Nonlinear Coupled Oscillators and Normal Modes

In the nonlinear version of coupled oscillators in shown in Fig. 1.2, we replace the
springs by nonlinear springs. Speci�cally, instead of Hookean springs with a potential

equal to V (x) =
1

2
kx2 which cause a linear restoring force of F = −kx. I will use the

Du�ng potential equal to V (x) =
1

2
ax2 +

1

2
bx4, which leads to a nonlinear restoring

force of F = −ax− bx3 on the springs.

In addition to the spring restoring force, we can make the system more realistic by
adding a small viscous damping and a periodic driving. The equations of motion for
the damped driven, nonlinear spring oscillator system with the same con�guration as
in Fig. 1.2 and with the masses set to 1, is as follows. In this thesis I have set a = 1
and b = −1.



1.2 Example Dynamical Systems Used 19

-2
0
2

0 0.2 0.4

10-8

10-4

100

104

-4

0

4

-2 0 2
-4

-2

0

2

4

-2
0
2

-2 0 2
-4

-2

0

2

4

10-6

10-2

102

-5

0

5

-2
0
2

-2 0 2

-2

-1

0

1

2

-2
0
2

-2
0
2

-2 0 2

-4

-2

0

2

4

-5

0

5

10-6

10-2

102

10-6

10-2

102

Frequency (Hz)

PS
D

q1

q2

p1

p2

n1

n2

ṅ1
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Figure 1.3: Comparison of real space coordinate system (A.), and the normal mode
coordinate system (B.). Left column shows the time traces of the coordinates, middle
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the system appearing as two uncoupled oscillators with di�erent frequencies.



20 Introduction

-2 0 2
-5

0

5

-2 -1 0 1 2
-4

-2

0

2

4

-5 0 5

-5

0

5

-2 -1 0 1 2

-5

0

5

10-1 100

100

10-1 100

100

1ṅ 2ṅ
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system look chaotic. B. A transformation to normal mode coordinates doesn't simplify
the system signi�cantly. C. The PSD estimates of original normal mode coordinate
system also show that transformation to normal mode coordinates is not very helpful
in simplifying the dynamics.

q̇1 = p1

ṗ1 = −dp1 − 2aq1 + aq2 − bq31 + b(q2 − q1)3 + fq3

q̇2 = p1

ṗ2 = −dp2 + aq1 − 2aq2 − bq32 − b(q2 − q1)3
q̇3 = p3

ṗ3 = −kq3

(1.6)

The system in eqn 1.6 is ostensibly a 6D system as (q3, p3) make a linear spring with
a spring constant of k which drives the spring q1 with an amplitude of f . In addition,
d is the viscous damping due to the environment. For the simulations in this thesis,
the spring parameters are arbitrarily set to a = −1, b = 1, d = 0.5 and f = 7.3. The
spring constant for the driving spring is set so that its oscillation frequency is equal to
0.4Hz.

The phase portraits of the coupled oscillator system is shown in Fig. 1.4A. I also
plotted the projections in the normal mode coordinate system in Fig. 1.4B. It can be
seen that in this case the normal modes are not necessarily a good coordinate system
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as they are not able to disassociate the two frequencies.
In the next chapter I will set up the main problem of this thesis, which is estimate

the state space, from noisy measurements of a given dynamical system.





Chapter 2

Phase Space Reconstruction: Theory

and Practice

2.1 Dynamical Systems and Topological Equivalence

A dynamical system in continuous time is formally represented as

ds

dt
= F (s) (2.1)

while in discrete time it is
s(t+ 1) = F (s(t)) (2.2)

where, s = (s1, s2, . . . ), called the state of the system evolves in time according to F .
Thus, the state variable encapsulates all the information that is necessary to determine
the future of the system. In dynamical systems theory, s is usually thought of as a
point in a d-dimensional state space S, while F (s) is generally a nonlinear vector �eld
in S that determines how s changes in time.

Given an initial condition s(0), the solution of eqn 2.1 and eqn 2.1 can be written as
s(t) = f t(s(0)), where f t is the t-time map of the state space to itself. It maps the initial
condition s(0) t-steps forward in time. More generally, we can write s(t+τ) = f τ (s(t)),
where f τ maps state at time t to state at time t+ τ for some τ ≥ 0.

As illustrated in Fig. 2.1, geometrically, f t(s(0)) can be interpreted as a trajectory
or orbit in the state space starting at s(0) and ending in s(t). The solution to all
possible initial conditions, f t(S), describes a bundle of trajectories called the phase
portrait and can be interpreted as a �ow of points in the state space. In most systems
of interest, the trajectories f t(S) are bounded, i.e., the distance between s(t) and
s(0) does not grow to in�nity. This can happen for example due to the presence of
dissipative forces, because of energy conservation, or additional constraints on s and F .
For dissipative systems, in fact, the �ow f t(S) generally contracts to a set of dimension
lower than that of S, called an attractor. The attractor typically does not have a global
Euclidean structure, but exists within a smooth manifold M with dimension da < d.
For physical systems, the dimensionality d of the original state space is related to the
number of degrees of freedom of the system, but once the state lies on the attractor,
the dynamics have fewer active degrees of freedom and thus it requires less information
to specify its state.

23
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f t(s)

s

gt(Ψ(s))

Ψ(s)
Ψ

Ψ−1

Figure 2.1: A schematic showing topological equivalence. If an invertible, and one-to-
one map Ψ exists between two state spaces then they are to be topologically equivalent.

The solution f t of eqn 2.1, is in general impossible to obtain when F (s) is a nonlin-
ear vector �eld. However, it is still possible to characterize the geometrical and topo-
logical properties of the state space. An important concept which enables comparison
and classi�cation of di�erent dynamical systems is the idea of topological equivalence.
Two vector �elds, F and G are said to be topologically equivalent to each other if
there is a continuous and one-to-one mapping, Ψ, between them that preserves the
orientation of their corresponding orbits f t(s) and gt(Ψ(s)) [9]. Formally, we can write

Ψ ◦ f t(s) = gt ◦Ψ(s) (2.3)

This concept is illustrated schematically in Fig. 2.1. The mapping Ψ can be thought of
as a coordinate transformation which induces a smooth distortion in the state space �ow
without messing the order in which the points on the orbits are visited. Implying that
the causal structure of the dynamics is preserved under the coordinate transformation.

As a consequence of topological equivalence, any �xed points, closed orbits, limit
sets such as attractors, and other important topological details of F are preserved [9].
Moreover, if Ψ is di�erentiable as well as being continuous, then the stability properties
of �xed points and closed orbits are also preserved by the equivalence [9].

A remarkable practical consequence of topological equivalence is that if it's possible
to guarantee the existence of the mapping Ψ between a vector �eld from an unobserved
system of interest, and another vector �eld extracted from some observed dynamical
system, then we can use the latter to gain nontrivial insights about the behavior of the
unobserved system. In the next section, I will describe how this idea can be applied to
the study of complex dynamical systems in the real world.
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2.2 The reconstruction problem

Dynamical systems describe real world phenomena evolving in time, such as motion of
�uids, population dynamics, animal locomotion and neural dynamics. The underlying
state s, and evolution law f t of the dynamical system s(t) = f t(s(0)) governing these
phenomena is rarely available explicitly. Instead experimenters measure a D dimen-
sional time-series y(t) = (y1(t), y2(t), . . . , yD(t)) of quantities that they think are most
relevant to the phenomena. For example, in the study of animal movement, the un-
derlying state is the neuromuscular dynamics that drive an animal, along with sensory
input, and the physics of the interaction with the environment. In practice though,
experimenters might track the position of a point on the body; or they might take
video recordings and extract some measure of the instantaneous posture of the animal.
Another example is �uid phenomena, where the underlying state is governed by the
Navier-Stokes equations. In this case, experimenters usually measure the velocity or
pressure in a region of space.

We say that the measured time-series y(t) is related to the original dynamical
system by y(t) = h(s(t)) + ξ(t), where h is typically an unknown measurement func-
tion, which maps a point s(t) in the original d-dimensional state space onto the D-
dimensional time-series y(t). In addition, y(t) is subjected to observation noise asso-
ciated with each measurement ξ(t) = (ξ1(t), ξ2(t), . . . , ξD(t)).

In the absence of explicit knowledge of f and h, it is di�cult, if not impossible
to uncover the true state space S from noisy measurements alone. However, given,
the setup above, one can ask how much useful information is it possible to extract
about the underlying state space from the recorded time-series? This is the state space
reconstruction problem, where the goal is to construct a map Ψ that transforms the time-
series data to an alternative state space of dimensionality m, with state vectors x =
Ψ(y), that is topologically equivalent to the original state space in the sense described
above. This is schematically illustrated in Fig. 2.2.

Constructing Ψ from time series data is also known as embedding a time-series,
because to be successful, the map Ψ has to be topologically an embedding [10]. To
the extent it can be done, embedding an experimental time-series captures as much
information about the underlying dynamics as possible. This is because, when Ψ is an
embedding, the dynamics in the reconstructed space gt, are related to the dynamics in
the original state space by the following continuous transformation

gt(x) = Ψ ◦ f t ◦Ψ−1x (2.4)

Which follows from the condition of topological equivalence stated in eqn 2.3. Equa-
tion 2.4 simply says that when Ψ is an embedding, the reconstructed state space vector
x after t-steps, which is generated by gt(x), can be obtained by smoothly mapping x
to the original state space by Ψ−1x, propagating it forward t steps by applying the
original dynamics f t, and then mapping it back to the reconstructed state space by Ψ.

Equation 2.4 is signi�cant, because it means that an embedding not only gives us
a one-to-one copy of the original state space, but also of the dynamics ! This means
that estimating g from the reconstructed state space might allow us to gain nontrivial
insights about the underlying dynamics, such as their symmetries, conservation laws
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Measurement

Reconstruction

f t(s)

s

ΨΨ−1

Ψ( )y

gt(Ψ( ))y

h(s(t))

y(t) = h(s(t)) + ξ(t)

...

Ψ(y)

Figure 2.2: The reconstruction problem. True state s, and dynamics f are hidden.
We only have access to noisy observations in the form of D separate y time-series
measurements from the system. The problem is to reconstruct a state space x = Ψ(y),
that is topologically equivalent to the original state space, using just the time-series
data.
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and other dynamical properties. We can also use the estimated model for things like
noise reduction, prediction, and comparison and classi�cation of observed time-series.
Finally, even if the dynamics are non-stationary, say due to a time-dependent control
signal; g will still capture the stationary part of the dynamics, meaning that any
discrepancy between model predictions and observed time-series allows us to obtain
insights about the time-dependent control signal. In the following section I will describe
some of the methods that allow the construction of en embedding from the time-series.

In the thesis I will refer to Ψ as the total reconstruction map; Ψ is a composition of
all the transformations we do as part of reconstructing the state space, starting from
the process of measurement. As an example, if before reconstruction we perform a noise
reduction step, then Ψ is the composition of the measurement function, noise reduction
map, and another state-space reconstruction map. These ideas will be developed in
detail in the following sections.

2.3 Background to Takens' Embedding Theorem

The fact that it is possible to reconstruct an embedding from a time-series that is topo-
logically equivalent to the underlying state space was �rst demonstrated numerically by
Packard et al [11], they used numerical derivatives estimated from a single time-series
to form an embedding and showed that topological invariants such as dimensions and
Lyapunov exponents could be estimated from it. About the same time, Floris Takens
independently considered an alternative approach [10]; the delay reconstruction map
Φ, which amounts to using delays of a time-series as the embedding coordinates x(t),
i.e.

x(t) =
(
y(t),y(t− τ), . . . ,y(t− (m− 1)τ)

)

where τ is the time lag, and m is the dimension of the reconstructed space. By
studying the properties of Φ, he famously proved what is now known as Takens' embed-
ding theorem, which states that in the noiseless case, the delay reconstruction map Φ is
generically an embedding for m > 2d+1, where d is the dimension of the original state
space S [10]. In the same work he also proved that the derivative coordinates, which
can be seen as linear transformations of delay vectors x(t), also form an embedding for
m > 2d + 1 in the noiseless case. Simply put, Takens theorem states that the histor-
ical record of a time-series can be leveraged to gain information about the underlying
system. This is perhaps not surprising, indeed, statisticians had been using this idea
under the framework of Autoregressive modeling for a while [12]. Takens' contribution
was to show that temporal history can also recover geometrical and topological prop-
erties of the dynamical system. Thus in some sense, the information contained in the
temporal history can be complete, it contains all there is to know about the system.

Takens' original embedding theorem had several theoretical [10] (e.g. it didn't
apply to dynamics on compact sets, did not apply to stochastic or multi-deimensional
systems etc ). However, over the years it was generalized signi�cantly. First signi�cant
improvement was done in [13], where authors removed the limitation of compact sets
and �ltered time-series. Subsequent generalizations were made to include a broad class
of stochastic systems [14, 15], systems driven by deterministic forcing [16], time-series
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with uneven sampling [17], �ltered time-series [13], and most recently to the embedding
of multivariate signals [18].

Takens' original theorem and its generalizations provide important guarantees and
justi�cations for state space reconstruction. Using Takens' embedding theorem as
a general strategy for geometrical and topological characterization of time-series is
applicable to a wide variety of dynamical phenomena. However, the theorems are of
little practical use in guiding towards generating good embeddings from noisy real
world data. Speci�cally, they provide no insight about the role of the measurement
function h(s(t)) on state space reconstructions, which is a key choice an experimenter
has to make when faced with an unknown dynamical system. They also do not discuss
what constitutes an optimal embedding, neither do they talk about how to choose
key embedding parameters such as the lag time τ , dimension of embedding space m.
Finally, most generalizations do not mention how to best combine multivariate time-
series to form a single embedding.

E�orts to close the gap between the theory and practice of state space reconstruc-
tions have been in two general directions. First, to develop an understanding of the
e�ect of various parameters on the quality of an embedding [19, 20], which has led
to several heuristics towards choosing good values for di�erent embedding parameters
[21, 22]. While, the second line of work has used tools from statistics to �nd good trans-
formations of the delay coordinates. The most famous example of this is Broomhead
and King's singular spectrum analysis (SSA) [23] which uses Singular Value Decompo-
sition (SVD) on time delays to reconstruct a low dimensional state space. Although,
much progress has been made since Packard et al, and Takens' pioneering work. Key
issues still remain open. The biggest issue in my opinion is that there are no agreed
upon quantitative measures for the quality of an embedding. For low-dimensional sys-
tems, a visual inspection works best to choose parameters leading to a good embedding.
However, visual inspection becomes impractical as soon as we go up in dimensionality.
This is perhaps part of the reason why state space reconstruction methods haven't
been as successful in the study of high dimensional dynamical systems as they have
been for low dimensional systems. In the next section I review popular reconstruction
methods in greater detail and discuss common problems that all methods encounter.

2.4 Review of Popular Reconstruction Methods

To make the ideas in this section more concrete, let's set up the following measurement
problem. We will receive simulated observations from the Lorenz system described in
eqn 1.1. Speci�cally, let's now suppose that we measure N samples of the �rst variable
s1, i.e. the measurement function is h(s(t)) = s1(t), and our observed time-series is
y(t) = s1(t) + ξ(t), t ∈ [1, N ]. The problem is to reconstruct a mapping to the original
state space using the information is y(t). Fig. 2.3A shows projections of the original
state space coordinates show, while Fig. 2.3B, shows a sample of the measured signal.
We describe how di�erent methods achieve this and the problems they encounter.
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2.5 Method of Delays

The most straightforward implementation of Takens idea is to simply construct the
following delay vector from the above time-series, i.e.

x(t) =
(
y(t), y(t− τ), y(t− 2τ), . . . , y(t− (m− 1)τ)

)

for some lag time τ and, and embedding dimension m. The convention in this
thesis will be to treatx(t) as a row vector. The �rst delay vector is x(t0), where
t0 = (m− 1)τ + 1, and the last is x(N), thus the total number of delay vectors will be
N ′ = N − (m − 1)τ . As an example, if we had N = 8 samples

(
y(1), . . . , y(8)

)
, and

we set m = 3, τ = 2, then we can arrange the N ′ = 4 delay vectors into the following
4× 3 delay matrix X

X =




x(t0)
x(t0 + 1)
x(t0 + 2)
x(t0 + 3)


 =




y(5) y(3) y(1)
y(6) y(4) y(2)
y(7) y(5) y(3)
y(8) y(6) y(4)




In general, a time-series of N samples will give us the following delay matrix N ′×m
delay matrix

X =




x(t0)
x(t0 + 1)

...
x(N)


 =




y((m− 1)τ + 1) y((m− 2)τ + 1) . . . y(1)
y((m− 1)τ + 2) y((m− 2)τ + 2) . . . y(2)

...
...

. . .
...

y(N) y(N − τ) . . . y(N − (m− 1)τ)




The delay reconstruction as set up above, requires two parameters, the lag time
τ , and the embedding dimension m. For a �xed embedding dimension, changing τ
changes the length of the time window that de�nes a state. In the example above, for
m = 3 and τ = 2, the window length denoted by K is 5. This means that the state at
time t contains information from the current time point, and previous 4 time points.
In general the window length is K = (m− 1)τ+1.

For systems that decorelate, either because of noise or because of chaotic dynamics,
the window length K is a crucial parameter. If K is too small, then we might hit
the noise time-scale or the sampling time-scale; in either case there will not be enough
samples to see any nontrivial structure. On the other hand, if K is too large (compared
to, say the autocorrelation time), then the points included in the de�nition of the state
might not be related to each other at all, and the state space trajectories will look
random. This idea is implicit in Takens' theorem which states that the state space
points must lie on the same trajectory. In the continuum limit which Takens studied,
it is easy to ensure that points lie on the same trajectory. However, for real, noisy data,
or even numerical integration schemes, it is much harder to enforce the constraint. In
fact the right choice of K might depend on several di�erent factors such as noise,
sampling time, numerical precision, and even integration scheme used, as has been
discussed earlier [24, 25].

The e�ect of window size on the reconstructions using the method of delays is
shown in the �gure below. We have kept the embedding dimension m = 3 �xed
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Figure 2.3: Delay embedding on the Lorenz attractor. A. The original state space
variables of eqn 1.1. B. A sample of the noisy observation which is used for state
space reconstruction. C. Autocorrelation function of y(t) with the dots corresponding
to K = 3,K = 15 and K = 31. D-F. Delay embedding reconstructions for the
parameters listed on top. G-H. Two delay coordinate projections that look identical.
I. Derivative coordinates using backward �nite di�erence approximation.
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and plotted reconstructions for di�erent lag times τ , corresponding to window sizes of
K = 3, 15, 31 respectively. Fig. 2.3C shows the relationship between the window sizes
and the autocorrelation function. When the window size is, K = 3, the reconstructed
attractor is stretched out along diagonal in state space, and squeezed in the orthogonal
directions. This happens generically for small windows, as the points in a delay vector
are nearly identical to each other (up to observation noise). Next, for K = 15, we are
able to resolve most of the details, the attractor looks more uniform, and visually at
least, it is a good embedding. Finally, for K = 31, the geometry is signi�cantly more
complex; in fact, there is barely any resemblance left to the original state space of the
Lorenz attractor. Importantly, there are regions in the reconstructed attractor, such
as the one marked by the black circle, where the state space points are densely packed
and di�cult to resolve.

The window size K = 31 lies at the �rst minimum of the autocorrelation function,
possibly suggesting that there is a relationship between K and the correlation structure
of signal time points. Indeed, several heuristics exist in literature which suggest setting
K to quantities derived from the autocorrelation or automutual information function.
Examples of these suggestions include, the autocorrelation time [26], the �rst minimum
of the automutual information [21], and the �rst zero crossing or the �rst minimum
of the autocorrelation function [21]. For systems where there is a single underlying
period, most of the above heuristics give a similar estimate of K. However, when there
is no periodic structure, or there are multiple coexisting periods, the estimates generally
di�er, and there is no well agreed upon heuristic [26]. As we will see, �nding an optimal
value for K is a �rst step in all state space reconstruction techniques. Consequently,
it could be argued that the lack of reliable guides to optimize K is a major limitation
of state space reconstruction methods.

The e�ect of embedding dimension m, is in some sense less severe, and better un-
derstood. Until the attractor is not fully embedded, and the dimension is insu�ciently
low, it consists of self-intersections where the state space cannot be fully resolved.
However, once, the attractor is fully embedded, the e�ect depends on the application.
For example, estimates that are based on the local density of points, such as the cor-
relation dimension, or the metric entropy are not fundamentally a�ected by the value
of m once the attractor is embedded. On the other hand, estimates that are based
on approximating the local Jacobians, such as the spectrum of Lyapunov exponents
or the Kaplan-Yorke dimension, are a�ected. This is because, in m dimensions, the
local Jacobians are m ×m matrices, and have m, usually distinct eigenvalues. But if
the attractor has dimension d < m, then we have m − d spurious eigenvalues which
are typically not easy to weed out [7]. Consequently, knowing the right embedding
dimension is crucial for the estimate of the Lyapunov spectrum and related quantities.

We can use results from Fig. 2.3, to conceptually understand the distinction between
a good embedding and a bad embedding. Formally, an embedding enables a one-to-
one mapping from the reconstructed state space to the underlying state space using
the inverse of the total reconstruction map Ψ−1. As Takens showed, in the continuum
limit, this only fails when there are self intersections. However, for real world data,
there is a limit to our resolution, denoted by ε. If distance between two points is of
the order ε, then it becomes impossible to tell them apart. This can happen when
two points are actually on an intersection, or it can happen because the complex
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A B C

Ψ−1Ψ−1 Ψ−1

Figure 2.4: Good vs Bad embeddingsA. A real self-intersection implies that points in
the neighborhood cannot be mapped uniquely back to the underlying state space. B.
A good embedding has no self-intersections and a simple geometry, as a result, points
in the reconstructed space can be mapped back to their original states. C. Complex
geometry can also lead to e�ective self-intersections when the attractor gets so curved
that two points that are not neighbors come within minimum resolution of the dataset.
Denoted here by the red circle.
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geometry of the reconstructed attractor brings them within a distance ε of each other.
Schematically, this is illustrated in Fig. 2.4. If the radius of the red ball is taken to be
ε, then in Fig. 2.4A we see that a self intersection will result in the mapping that is
not one-to-one to the original state space. In Fig. 2.4B, we have a "good" embedding,
where a simple geometry of the attractor leads to a successful one-to-one mapping
of all the states. Finally, in Fig. 2.4C, we see that when the reconstructed attractor
has a complex geometry, we can again fail to get a one-to-one mapping of all states,
as two points might come within ε of each other due to strong curvature e�ects. The
di�culty of formalizing this notion, in order to develop a measure of a good embedding
is that, without access to the underlying state space it is not possible to know whether
a reconstruction is one-to-one. Nevertheless, as we will see in a later section, the e�ects
of complex geometry can be measured, which allows us to �nd an optimal value of the
embedding window K.

Finally, to conclude this section, we would like to point out some shortcomings of
the method of delays as it's implemented above. First, the basis that describes the
canonical delay embeddings is arbitrary, there is no reason to use integer multiples
of τ as the coordinate axes. Indeed, the most general case would be to use x(t) =(
y(t), y(t− τ1), . . . , y(t− τm)

)
to de�ne an m dimensional embedding. However, this

would introduce m di�erent parameters, (τ1 . . . τm), with no clear way of determining
them. A consequence of the choice of basis vectors for Takens embedding is that it
introduces arti�cial symmetries. This the projections di�cult to interpret, and results
in a confusing property of the delay coordinates where many projections are identical.
This is shown in Fig. 2.3G and 2.3H which show the projection of the delay embedding
for tau = 7m = 3 on two di�erent planes. Further, the method does not deal with
observation noise in any way. And �nally, the method is designed for scalar time-series.
It is not immediately clear how one might include information from a multivariate time-
series into the framework. In the following sections, we generalize the framework of
delay embedding by abstracting out the choice of basis from constructing delays and
then use it to review two other reconstruction methods.

2.6 An Abstraction

It is useful to introduce the following abstraction in the delay embedding framework
we have described above. Consider the general case of D dimensional time-series y,
and let's introduce the following matrix.

Y =




y(K) y(K − 1) . . . y(1)
y(K + 2) y(K) . . . y(2)

...
...

. . .
...

y(N) y(N − 1) . . . y(N −K + 1)


 (2.5)

Where, as before, K is the window length, i.e. the total number of past samples
that go into the de�nition of a state, and N is the number of samples in our time-series.
Clearly, the size of Y is N ′ ×KD, where N ′ = N −K + 1. For a scalar time-series, Y
is the simply the delay matrix introduced above, with τ = 1, and m = K. However,
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the usefulness of Y , comes from the fact that all state space reconstructions can be
seen as linear (or nonlinear) transformations of Y . Thus, it is the starting point, and
the fundamental object of interest in any state space reconstruction method. This also
makes it explicit that the window length K is the key parameter that determines the
success of an embedding.

We will call Y the state matrix of a time-series because it contains all the informa-
tion that goes into reconstructing a state from a time-series. To make this idea more
concrete, let's consider the above example again, where we observe N = 8 samples(
y(1), . . . , y(8)

)
and K = 5. The state matrix is then

Y =




y(5) y(4) y(3) y(2) y(1)
y(6) y(5) y(4) y(3) y(2)
y(7) y(6) y(5) y(4) y(3)
y(8) y(7) y(6) y(5) y(4)




To obtain Takens' delay reconstruction with m = 3 and τ = 2, we simply project
Y onto the matrix VTakens, as shown below

X = Y VTakens =




y(5) y(4) y(3) y(2) y(1)
y(6) y(5) y(4) y(3) y(2)
y(7) y(6) y(5) y(4) y(3)
y(8) y(7) y(6) y(5) y(4)







1 0 0
0 0 0
0 1 0
0 0 0
0 0 1




=




y(5) y(3) y(1)
y(6) y(4) y(2)
y(7) y(5) y(3)
y(8) y(6) y(4)




Thus, in general, Takens' delay reconstruction corresponds to a linear transforma-
tion Y by a K ×m matrix VTakens, where each column of VTakens is a basis vector with
1 at the (i− 1)τ + 1 entry and 0 otherwise.

Numerical derivatives are another common embedding method that can be seen
as a linear transformation of Y . For example, for window length K = 3, a simple
backward �nite di�erence approximation of the �rst and second order derivatives of
the data above would be,

X = Y Vfdiff =




y(3) y(2) y(1)
y(4) y(3) y(2)
y(5) y(4) y(3)
y(6) y(5) y(4)
y(7) y(6) y(5)
y(8) y(7) y(6)







1 1 1
0 −1 −2
0 0 1


 =




y(3) y(3)− y(2) y(3)− 2y(2) + y(1)
y(4) y(4)− y(3) y(4)− 2y(3) + y(2)
y(5) y(5)− y(4) y(5)− 2y(4) + y(3)
y(6) y(6)− y(5) y(6)− 2y(5) + y(4)
y(7) y(7)− y(6) y(7)− 2y(6) + y(5)
y(8) y(8)− y(7) y(8)− 2y(7) + y(6)




A projection onto the derivative coordinates is shown in Fig. 2.3I, and illustrates
that in the presence of noise, �nite di�erence based derivatives result in signi�cantly
worse embedding than delays.

Multidimensional Observations

When we are dealing with a multidimensional observations only the construction of the
state matrix Y needs to change. Speci�cally, we treat the multidimensional time-series
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Figure 2.5: Random projections can also result in valid reconstructions A. Y with
K = 3 is projected onto a random matrix with unit Gaussian entries. Qualitatively
similar features to delay reconstruction are observed; attractor is stretched along the
diagonal line and squeezed perpendicular. B. Random projection of Y with K = 15,
here the attractor is more uniform, and more details are visible. C. Random projection
of Y with K = 31, once again we see that increasing the window length leads to a
complex geometry of the attractor with little resemblance to the original state space.
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y(t) as a single object and construct Y according to eqn 2.5. For example, let's say we
observe N = 8 samples of a 2−dimensional time-series, y(t) = as shown below

y =




y1(1) y2(1)
y1(2) y2(2)
y1(3) y2(3)
y1(4) y2(4)
y1(5) y2(5)
y1(6) y2(6)
y1(7) y2(7)
y1(8) y2(8)




In this case Y has the following form

Y =




y1(5) y2(5) y1(4) y2(4) y1(3) y2(3) y1(2) y2(2) y1(1) y2(1)
y1(6) y2(6) y1(5) y2(5) y1(4) y2(4) y1(3) y2(3) y1(2) y2(2)
y1(7) y2(7) y1(6) y2(6) y1(5) y2(5) y1(4) y2(4) y1(3) y2(3)
y1(8) y2(8) y1(7) y2(7) y1(6) y2(6) y2(5) y2(5) y2(4) y2(4)




After construction of Y , rest of the pipeline is identical to what is described above.
This framework allows us to split process of reconstruction into two parts, �rst is the
construction of the state matrix Y , which is essentially the choice of the window length
K. Second, is the choice of a transformation P , which maps KD dimensional vectors
in the state matrix, to an m dimensional state space. Here, the choice of embedding
dimension m is made explicit. In principle, P can be any linear or nonlinear trans-
formation that results in an embedding. Indeed, as shown in Fig. 2.5, even random
matrices, i.e. setting P equal to a random matrix V with normally distributed entries
(or any other distribution) result in perfectly reasonable embeddings, that are signi�-
cantly better than derivative coordinates [27]. Fig. 2.5 emphasizes the dependence of
attractor geometry on the widow size K. It also suggests that the window length's role
on attractor geometry is independent of the transformation V .

If P can be any transformation of the state matrix. Then a natural question to ask
is: does an optimal transformation P exists? And if so, is there a straightforward way
to �nd it? In the next section we will see that if we restrict ourselves to the space of
linear transformations, then the answer is yes to both questions.

2.7 Singular Spectrum Analysis

As we saw in the previous section, the transformations giving rise to both delay em-
bedding, and derivate embeddings were in some sense arbitrary. In fact the derivative
embeddings actually performed worse than simply projecting Y on to a random set of
basis vectors. The question then is can we do better? In 1986, Broomhead and King
showed that if we take into account the correlational structure of the points in Y , then
we can [23]. Their idea was to perform a singular value decomposition on Y , using the
�rst m right singular vectors as the basis vectors for their embedding space, a method
they called Singular System Analysis. Soon, Vautard and Ghil [28] working in the



2.7 Singular Spectrum Analysis 37

context of climate sciences extended Broomhead and King's work, calling it Singular
Spectrum Analysis (SSA). They also connected it to older results in stochastic pro-
cesses literature in the name of Karhunen-Loeve decomposition [29, 30, 31]. Since then
SSA has become an important tool in �elds dealing with spatiotemporal dynamical
systems such as climate and geo sciences [32, 33].

The basic idea underlying SSA is that although, each point in the state matrix Y
is of dimension KD, typically however, KD � d. This means that the points in Y
do not span the entire KD dimensional space; but are well approximated by a lower-
dimensional subspace. Thus, the best linear transformation of the state matrix Y is
the one that identi�es the linear subspace along which the data points in Y mostly lie.
This is because any other transformation will contain directions which do not explain
most of the data points and will therefore be redundant [19, 23].

The problem then is to �nd a set of orthogonal basis vectors vi, along which most
of the data lies. This is done by a singular value decomposition (SVD) of the state
matrix Y [19, 23]. Brie�y, SVD �nds the matrix V of orthogonal basis vectors vi, such
that the projections onto vi are maximally spread apart. Formally, we want the sum
of squared distances, σ2

i , of the projections Y vi, onto each of the basis vectors to be
maximum. Statistically, this amounts to maximizing the variance of the data along
each basis vector vi. Indeed, the basis vectors vi are nothing but the eigenvectors of

the covariance matrix Y
T
Y , and σ2

i are its eigenvalues.

In matrix notation, the above can be written as Y V = UΣ, or the way its more
popularly written, Y = UΣV T . Where, V is a KD × KD orthogonal matrix with
each column being the basis vector vi. Σ is a KD×KD diagonal matrix consisting of
singular values σi, and U is the matrix of projections onto the singular vectors scaled
by the singular values, i.e., U = Y V Σ−1. Simply speaking, we are describing the points
in Y , as an ellipsoid; vi are the directions of the principal axes of the ellipsoids, and σi
are their lengths.

The usefulness of SSA comes from the fact that the singular values are ordered
in decreasing order by the variance explained by the projection onto each vi (or the
lengths of principal axis of the ellipse), i.e. σ1 > . . . > σKD. This singular value spec-
trum provides important information about the noise and precision limits of the data.
Typically, the singular values decrease until they hit a plateau, beyond which they're
roughly equal [19, 23]. The height of the plateau is related to the noise variance 〈ξTξ〉
in the observations y(t), and any singular value which is in the plateau is dominated by
noise [19, 23]. Thus, in the case of noisy observations, if the points approximately lie
on a p dimensional subspace, then σ1 > . . . σp � σp+1 . . . σKD ≈ 〈ξTξ〉, i.e. the �rst p
singular values are signi�cantly above the plateau and the remaining are roughly equal
to the noise variance.

One might wonder if the number of signi�cant singular values is related to the
dimensionality of the attractor in a trivial way. Unfortunately, it has been shown
analytically, and numerically, that the number of signi�cant singular values p, are not
related to the embedding dimension [19, 26]. Instead, they re�ect the number of linear
modes in the dynamics that are above the noise resolution [19, 23]. In fact, it can be
shown that for nonlinear dynamics, even in in�nite precision, no singular value will
be identically 0 [19]. This means that a separate method of estimating the embedding
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dimension is required once have projected Y onto the top p singular vectors.
An important advantage of SSA is that it is theoretically well understood. It can be

shown that in the large window limit ofK tends to in�nity, SSA is equivalent to discrete
Fourier analysis [23, 28]. Further it was shown in [19], that the small window limit of
K tending to zero corresponds to estimating numerical derivatives of the time-series.
Several other theoretical properties of SSA and its connections with other methods in
signal processing can be found in the review [32].

Finally, Fig. 2.6 shows the results of state space reconstruction using SVD. The
projections in �rst three plots of Fig. 2.6A shows qualitatively similar results for small
K as before. The reconstructions are dominated by noise. Additionally the singular
value spectrum is decreasing for all three dimensions, and no cuto� is observed, meaning
that there is not enough data to obtain a separation between signal and noise. For
K = 15 in Fig. 2.6B, we observe our best reconstructions yet. The trajectories are noise
free, and geometrically simple. The singular value spectrum shows a clear separation
between signal and noise, with p = 6 singular values above the noise �oor. Finally, the
singular vectors resemble Legendre polynomials, as was proven by authors in [19] for
small K. In Fig. 2.6C we show results for K = 31. Once again, we see that for long
window size, geometry of the attractor becomes complex, trajectories appear random,
and the reconstruction loses resemblance to the original state space. The singular
spectrum shows p = 10 signi�cant singular values, and the singular vectors appear
more sinusoidal consistent with the long window limit approaching fourier basis [19].
It should be emphasized again that the number of signi�cant singular values do not
signal the dimensionality of the attractor or the embedding space.

2.7.1 SSA and Linear Modes

SSA is able to easily deal with multidimensional time-series. Importantly, for linear
dynamical systems SSA is able to reconstruct the normal modes from time-series of
the con�guration variables alone (depending on the window length K)). To illustrate
this point, I applied SSA on a time-series measurement of q1, q2 from the linear coupled
oscillators described in eqn 1.3. To reconstruct the state space, I �rst constructed Y
with K corresponding to a quarter of ω2 and then applied SVD to Y . The results are
shown in Fig. 2.7. As can be seen the reconstructed coordinates are composed of two
regular oscillations corresponding to the two normal modes of this system. The phase
space shows two circles corresponding to the regular oscillations. The phase portrait is
simply a scaled version of the phase portrait of the normal modes shown in Fig. 1.3B.

2.7.2 Independent Component Analysis and Additional Linear

Transformations

As mentioned above SSA �nds the optimal subspace, in a least square sense, in which
most of the attractor lies. However, because of the SVD the basis vectors are con-
strained to be orthogonal. In practice, it might not be valid to assume that the basis
vectors describing the reconstructed state space be orthogonal. Ideally, we want the
state space coordinates to be independent, and it could be desirable to perform a further
optimization within the SVD subspace for a set of independent basis vectors.
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Figure 2.6: Results from application of SVD on Y with di�erent window sizes. The
�rst three plots in A.,B.,C. show projections of the attractor onto the three pairs
of singular vectors. Fourth plot shows normalized singular values, σi/

∑
σi on a log

scale. And the bottom plot shows the three singular vectors. A. SVD on Y with
K = 3. As before, we see that for small K, the projections are dominated by noise.
Additionally, the singular values do not saturate and the singular vectors are piecewise
linear functions. B. SVD on Y with K = 15 gives us the cleanest embedding so
far, the trajectories are smooth, and the attractor has a relatively simple geometry.
The singular values, hit the noise �oor after about p = 6 dimensions, implying that
higher dimensions are dominated by noise. C. SVD on Y with K = 31, again results
in a complex shaped attractor with no resemblance to the original state space. This
suggests that SVD can also not deal with the e�ects of large embedding windows. The
singular spectrum drops to the noise �oor after about p = 10 dimensions, meaning
that the number of signi�cant singular vectors are dependent on the window length.
Finally, the singular vectors are starting to look more sinusoidal, consistent with the
large window limit.
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Independent component analysis (ICA) [34] is a popular method that achieves the
goal mentioned above. In particular, ICA attempts to �nd basis vectors that are inde-
pendent, instead of being just orthogonal. Speci�cally, the ICA basis can be found by an
orthogonal transformation of the projections in the normalized or whitened SVD basis.
The procedure corresponds to simply a rotation of the whitened SVD subspace. The
orthogonal transformation (rotation) is estimated by maximizing the non-Gaussianity
of the marginal densities along each axes [34]. The justi�cation for this comes from the
central limit theorem, which states that a linear combination of independent variables
is more Gaussian than the original variables. Thus ICA makes an equivalence between
independence and non-Gaussianity, and uses the latter to estimate an independent
set of basis vectors describing the data. In several applications the additional linear
transformation given by ICA can be useful for the purposes of interpretation. Indeed,
in the latter chapters I will use ICA to perform reconstruction of C. elegans crawling
dynamics.

Along with ICA several other linear transformations can be used depending on the
assumptions one wants to make. For example sparse PCA [35], non-negative matrix
factorization [36] and sparse autoencoder neural networks [37].

2.8 Choosing The Right Embedding By Maximizing

Predictability

The full reconstruction pipeline is shown in Fig. 2.8. To summarize, we �rst lift a D di-
mensional experimental time-series into a KD dimensional space by stacking delayed
copies of the time-series up to a window length K. This gives us the state matrix
Y K = ΦK(y), where ΦK represents the delay map with window length parameter K.
Next, we �nd a transformation Pm to project Y K on to an m dimensional subspace
of RKD, giving us a candidate reconstructed state space XK,m = Pm ◦ ΦK(y). Sub-
scripts in ΦK and Pm make their parameter dependence explicit. The entire process
is therefore represented by the total reconstruction map ΨK,m = Pm ◦ ΦK ◦ h. For
any choice of K and m we have a candidate state space reconstruction, the problem
then is to choose those reconstructions that are optimal in some sense. We have seen
already in the previous section that not any choice of parameters gives us a reasonable
reconstruction. Moreover, it is not immediately clear from Takens' theorem and its
generalizations which values of K and m should result in a good state-space recon-
struction, or what a good state space reconstruction even is. In the following, I use
the condition of topological equivalence discussed earlier to present arguments that
suggest a good state-space reconstruction allows us to make good predictive models
of the time-series. Consequently, optimal embedding parameters can be identi�ed by
maximizing an appropriately de�ned measure of predictability. Although the following
discussion is applicable to any reconstruction method, I will focus on SSA (i.e. Pm is
given by the right singular vectors Vm of Y K), as it is the main method that will be
used throughout this thesis.

As mentioned in section 1, for ΨK,m to result in an embedding, it must be topologi-
cally equivalent to the underlying state space. Thus, if our candidate reconstruction is
an embedding then it must satisfy the condition of topological equivalence in eqn 2.3.
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Figure 2.8: The entire reconstruction pipeline summarized. Starting from some mea-
surements, we construct the state matrix by choosing the window length K and then
project to an m-dimensional subspace by applying the transformation Pm. Exam-
ples of Pm include, Takens' method of delays, singular spectrum analysis, numerical
derivatives and random projections.
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Speci�cally, we can write

ΨK,m ◦ f τ (st) = gτK,m ◦ΨK,m(st) (2.6)

where, as before, f represents the evolution law in the underlying state space S. It
maps the current state st, τ steps forward, i.e. s(t+ τ) = f τ (st). While, gK,m is
the corresponding evolution law in the candidate state space reconstruction XK,m.
Equation 2.6, is just the statement that when ΨK,m results in an embedding, f and
gK,m are related to each other by a continuous transformation. We can expand ΨK,m

on the LHS of 2.6 and substitute ΨK,m = Pm ◦ ΦK ◦ h. Additionally, we know that
ΨK,m(st) is just the current state in the reconstructed state space, so we can substitute
xt = ΨK,m(st) on the RHS. Equation 2.6 then becomes,

Pm ◦ ΦK ◦ h ◦ f τ (st) = gτK,m(xt) (2.7)

Assuming for the moment that there is no observation noise, h ◦ f τ (st) is the
measurement applied to state s(t+ τ), and corresponds to the time-series at time
t + τ . Thus, we can substitute y(t + τ) = h ◦ f τ (st) on the LHS of eqn 2.7 above.
Next, we recognize that Pm ◦ΦK is invertible, meaning that we can map a point in the
reconstructed state space xt back on to the time-series by (Pm ◦ ΦK)−1xt. This allow
us to �nally write

y(t+ τ) = (Pm ◦ ΦK)−1 ◦ gτK,m(xt)

=
(
Φ−1K ◦ P−1m

)
◦ gτK,m(xt)

(2.8)

Equation 2.8 is the main idea of this section, and states that for a candidate state
space reconstruction to be an embedding, the observed value of the time-series at a
future time t+ τ , must be equal to the value obtained by propagating the current state
in a reconstruction xt forward τsteps by g

τ
K,m, and mapping it back to the time-series

by
(
Φ−1K ◦ P−1m

)
. Simply put, eqn 2.8 says that when a candidate reconstruction is an

embedding, it allows us to accurately predict the future of the time-series. This gives
us a way to measure the "goodness" of a candidate state space without having access to
the underlying state space. For parameter values where the reconstructed state space
XK,m is not an embedding, say due to self-intersections or complex geometry, eqn 2.8
will not hold, and we will not be able to predict y(t+ τ) accurately.

Arguments presented above give us a way to �nd optimal values of K, and m
simultaneously by minimizing the discrepancy between y(t + τ) and

(
Φ−1K ◦ P−1m

)
◦

gτK,m(xt). A commonly used measure of this discrepancy is the root mean squared

error E(τ). If we let ŷK,m(t+τ) =
(
Φ−1K ◦ P−1m

)
◦gτK,m(xt), then the root mean squared

error is written as EK,m(τ) = 〈‖y(t+τ)− ŷK,m(t+τ)‖2〉1/2t , where ‖·‖ is the Euclidean
norm, and 〈·〉t denotes averaging over di�erent time instances.

We can relax the assumption of noise free measurements by considering the proba-
bility density function p(y(t + τ)|xt), which is the object of direct relevance for noisy
measurements. Under the assumption of noise distributed according to an isotropic
Gaussian with variance η2, p(y(t+ τ)|xt) is given by the following

p(y(t+ τ)|xt) =
1

(√
2π
)D
η

exp

{
− 1

2η2
‖y(t+ τ)− ŷK,m(t+ τ)‖2

}
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It can be shown that the maximum likelihood estimate of y(t + τ) distributed as
above is given by parameters that also minimize the root mean square, EK,m(τ) =

〈‖y(t + τ) − ŷK,m(t + τ)‖2〉1/2t . Thus, even in the presence of observation noise, the
optimal strategy for identifying a good reconstruction is to �nd coordinates that enable
best predictability as measured by EK,m(τ).

Arguments similar to above, along with analytical calculations can be found Cas-
dagli et al [38]. Others such as Judd and Mees have also argued for prediction as
a method to �nd optimal embedding parameters [39, 40]. Indeed, even ostensibly
geometric methods of parameter optimization such as false nearest neighbors can be
interpreted as optimizing predictability [22].

To turn the above ideas into an operational algorithm for �nding optimal embedding
parameters, two key ingredients are necessary. First is the estimation of the evolution
law of the reconstruction, which is used to map xt to xt+τ . Speci�cally, we want an
approximation of gτK,m. While, second is the fact that EK,m(τ) is not a number, but a
function of prediction or forecast time τ . If we interpret EK,m(τ) as a number, then it
would seem that optimal embedding parameters depend on our choice of a particular
time-scale τ . Indeed, others have argued that optimal embedding parameters depend
on the intended application [39]. This is especially true when several di�erent time-
scales are present simultaneously. For example, an embedding that is optimal for
modeling daily changes in weather might not be optimal for modeling seasonal or
yearly variations. Similarly, in animal behavior, an embedding that is optimal for
modeling instantaneous changes in posture might not be optimal for modeling large
time-scale foraging dynamics. However, for attractors and other bounded systems,
there is a natural time-scale τs beyond which the error Ek,m stops changing. In the
following I will show that a direct consequence of the existence of an upper bound
on the value of Ek,m allows us to estimate the predictability time, i.e. the time after
which our predictions become useless. We will see that good embeddings maximize
this predictability time, meaning that a good coordinate system is one which allows us
to predict for as long as it is possible to predict. Before that however, I will address
how to approximate the dynamics gτK,m in the reconstructed state space.

2.8.1 Simple nearest neighbor predictor to predict the time-

series

In principle there are several ways to model the dynamics gτK,m with varying levels
of complexity. However, because our goal here is to measure predictability rather
than generating accurate predictions, it makes sense to choose the simplest method.
Speci�cally, if gτK,m exists and is continuous, then we can use the future of the nearest
neighbor of x(t) to predict x(t + τ). This is the nearest neighbor predictor, also
known as Lorenz's "method of analogs" [41], and has been used previously to choose
embedding parameters [39, 40]. We are essentially approximating gτK,m by a locally
constant model, as opposed to a local linear, or local polynomial model. Speci�cally,
to predict x(t + τ) we �nd the nearest neighbor of x(t) in state space, say x (t′), and
assume that x (t′ + τ) is the predicted value for x(t + τ). To ensure that we only use
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past points to predict the future state we enforce that t′ < t. Formally, we write

ŷK,m(t+ τ) =
(
Φ−1K ◦ P−1m

)
x (t′ + τ) , where

t′ = argmin
T
{‖x(t)− x(T )‖ : T < t} (2.9)

Intuitively, this means that if gτK,m is continuous, then two neighboring points in the
state space are also close to each other when mapped back on the time-series, ensuring
that EK,m(τ) is small. The schematic in Fig. 2.9 illustrates these points further.

The nearest neighbor predictor provides an upper bound to the predictability of
an embedding. In an embedding where the nearest neighbor prediction error is small,
better modeling methods must also give small errors. But the biggest advantages of
this method is it's simplicity, computational e�ciency and the fact that there are no
parameters to estimate. Once we have selected embedding then we can use other more
advanced methods to generate better predictions.

We address the fact that EK,m(τ) depends on forecast time τ . Most authors set
τ = 1 and minimize the one-step prediction error [39, 40, 42]. However, good one-
step predictions do not necessarily imply good multi-step predictions. Indeed, for real
systems EK,m(τ) is a complex consequence of all the di�erent factors that a�ect the
predictability of a time-series, be it noise, amount of data, dynamical complexity such
as Lyapunov exponents or mixing and ergodic properties. In the following I will de�ne
a new quantity that captures all the di�erent a�ects and measures the overall predictive
performance of a model.

2.8.2 A new measure of overall predictability

The �rst thing to note is that for a stationary system EK,m(τ) is bounded from both
below and above. For �nite data, no prediction can be better than the minimum
resolution of our data, denoted from here on by ε. Clearly, for a completely predictable,
noiseless time-series, with a perfect model EK,m(τ) = 0. On the other hand, the worse
we can do is guess randomly, i.e. set ŷK,m(t+τ) to a random time point from past. If we
let es denote the average error obtained by predicting randomly, then for a completely
random sequence EK,m(τ) = es, and we have, ε 6 EK,m(τ) 6 es. Geometrically, ε
is related to the minimum distance between two points in the state space, while es is
related to the size of the attractor. Thus, the bounds on the error are simply bounds
on the pairwise distances in the reconstructed state space.

Broadly speaking, for most real systems which get more unpredictable with time,
EK,m(τ), starts with some minimum value, denoted by e1 and grows with τ according
to a nontrivial growth process, possibly involving multiple growth rates [41, 43]. For
attractors and bounded systems EK,m(τ) �nally saturates to a value es. Saturation
typically happens due to dissipation or energy constraints on the underlying dynam-
ical system. For �nite, noisy data, saturation means that error gets within ε of the
saturation value es for some time τs and remains there for all τ > τs. Formally, the
following is true es − EK,m(τ) < ε, for all τ > τs. Fig. 2.10A shows a schematic error
curve along with the bounds. The existence of a saturation level signi�es the presence
of an invariant geometrical object on which the trajectories are forced to lie for all
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Figure 2.9: Predictability as criterion for choosing optimal embedding parameters.
To test whether a set of embedding parameters lead to faithful copy of the dynamics,
we would ideally like to compare it to the original state space. However, the true state
of the dynamical system is only available to us in the form of a noisy time-series. In this
case, the best we can do is use the observations as a proxy to underlying state space,
and generate predictions of the time-series from the dynamics of di�erent candidate
state space reconstructions. Optimal embedding parameters will necessarily allow us to
generate good predictions. We use the simplest possible predictor, which is to use the
future of nearest neighbor as an estimate of the future value of the state. The current
state x(t) and its future x(t+ τ) is denoted by open circles, and neighboring trajectory
is denoted by red circles. The estimated value of x(t+ τ) is the set to x(t′ + τ)
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Figure 2.10: Measuring overall prediction performance. A For many real systems
E(τ) starts from some small value, and grows with τ accordingto some growth process
(possible with multiple scale dependent growth rates), before saturating to a level es.
The growth process can in general be quite complicated and might not be simply
characterized by a single number. I propose that the normalized area A bounded
between eu and E(τ) for 0 ≤ τ ≤ τs as a measure of the overall predictability.

τ > τs. For example, a purely stochastic process like Brownian motion is not bounded,
consequently we will not expect EK,m(τ) to saturate.

The one step error, e1, measures the short term predictability and is determined
by noise, amount of data, prediction method used and the distortion introduced by
the embedding coordinates. Next, as mentioned earlier, the growth of EK,m(τ) can be
quite complicated and carries important information about the dynamics. For chaotic
systems with one positive Lyapunov exponent, short term error growth is known to be
exponential with a rate equal to the Lyapunov exponent [41, 44]. However, over long
times it has been hypothesized by Lorenz and others that a logistic process describes
the error growth best [41]. Indeed, as we will see later a logistic function �ts EK,m(τ)
very well for systems with a single positive Lyapunov exponents. For chaotic systems
with multiple Lyapunov exponents, EK,m(τ) grows with di�erent exponential rates
in a scale dependent fashion [43, 45] before it saturates to es. Additionally, damped
driven stochastic dynamics have been known to show power law growth [45]. Thus, in
general the growth of EK,m(τ) is largely determined by the nature of the underlying
dynamics. A proper characterization of of the growth process can tell us a great deal
about the underlying cause of unpredictability in a dynamical system. Finally, the
saturation level es measures long time predictability and it's largely determined by the
probability density of the attractor (also known as the invariant density for stationary
or nearly stationary systems).

Thus, the precise shape of EK,m(τ) is a result all the di�erent factors that a�ect
the predictability of a time-series. Despite the complicated nature of EK,m(τ), most
studies only look at the short time error properties by either studying e1 or the local
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error growth. However, an embedding should preserve both local and global properties.
What is required then is an overall measure of predictability that takes into account
various factors outlined above. Here, I claim that the following quantity

Tpred =
A

es
=

1

es

∫ ∞

0

(es − E(τ))dτ (2.10)

which is the normalized area bounded by es; (see Fig. 2.10) measures the pre-
dictability time of a dynamical system. The argument for introducing this quantity
is the following. The total prediction error up to some time T is given by

∫ T
0
E(τ)dτ

or the area under the curve E(τ). We can see geometrically that for T > τs, the
integral is equal to the area of the rectangle esT minus the area A, which is given by∫∞
0

(es − E(τ))dτ . Thus, the total prediction error is composed of an extensive term
esT that scales with time T and a non-extensive term which equals the area bounded
between the curve E(τ) and the level es. As the prediction time T gets larger, the
contribution of the extensive term esT increases, hence es is a measure of the long
term predictability. On the other hand, the non-extensive term determined by the
area A governs short term predictability. The time at which these two are equal is
the predictability time Tpred de�ned in eqn 2.10. It is important to point out that as
de�ned, Tpred doesn't make any assumption about the nature of the dynamics (other
than boundedness). It is fundamentally a measure of predictability of dynamics, and it
can characterize chaotic, stochastic, limit cycle, or any combination of di�erent e�ects
that lead to unpredictability in a dynamical system. As we will see later, for chaotic
systems with a single positive Lyapunov exponent λ, Tpred is trivially related to λ.
In the following I will show the error curves for known dynamical systems, and then
illustrate how di�erent embedding parameters change the form of EK,m(τ). In all the
cases, Tpred as de�ned in eqn 2.10 correctly captures the overall behavior of EK,m(τ).

2.8.3 E(τ) for canonical systems

In Fig. 2.11, I have plotted E(τ) for the Lorenz systems in its original coordinates
without embedding any particular time-series. For clarity I have removed the subscripts
K,m as we're dealing with the original state space here. It can be seen that the error
curve E(τ) is well �t by the logistic function of the following form

E(τ) = ε+
es − ε

1 + c exp(−λτ)

where E(−∞) = ε is the lower asymptote corresponding to the minimum resolution,
and E(∞) = es is saturation level. The saturation time τs is technically ∞. However,
in practical settings we are interested in the time it takes for E(τ) to get within ε of
es, which is well de�ned. The parameter c determines the value of e1, and λ is the
Lyapunov exponent. The logistic �t is consistent with previous claim by Lorenz that
for simple chaotic systems with a single positive exponent the error growth is a logis-
tic. Consequently, the Lyapunov exponent (and technically e1) is all that's required
to measure their predictability [41]. Next, I will describe, how di�erent embedding
parameters a�ect E(τ) for the Lorenz system. We will see that bad embedding param-
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Figure 2.11: Prediction error for Lorenz system. E(τ) for the Lorenz system in
original coordinates (s1, s2, s3) has a logistic form with a growth rate given by the
maximum exponent, which is consistent with reported literature.

eters lead to a loss in predictability and again Tpred provides an adequate measure of
predictive performance.

2.8.4 Dependence of E(τ) on embedding parameters K and m

To see how di�erent window lengths a�ect predictability I �rst embedded the time-
series derived from the �rst component s1 of the Lorenz system (with noise variance
ξ2=0.04) using three embedding windows K = 3, K = 15, K = 13, while keeping the
embedding dimension �xed at m = 3. To study the e�ect of embedding dimension,
I kept K = 15 and tested the following embedding dimension m = 1, 2, 3, 6. The
estimated values of EK,m(τ) are plotted in Fig. 2.12.

In Fig. 2.12 A, we see that for small window sizes (green curve), the loss of pre-
dictability happens by the way of rapid growth of the error. This means that the time
it takes before predictions become comparable to random is signi�cantly shorter com-
pared to other window sizes. This is presumably because, as we saw earlier, embeddings
with shorter window lengths are strongly a�ected by noise which leads to a rapid error.
While, longer windows (blue curve) lead to a sharp increase in the short term error,
including the one-step error e1, but a slight decrease in the long term error as seen by
the longer saturation time. The rate of growth for long windows is also smaller than
that of small windows. All these observations imply that longer windows average over
small scale dynamics important for short term prediction, with the upside of better
long term prediction. Finally, moderately sized windows around K = 15 provide the
best compromise, as they have best overall predictability. It can be visually seen that
the area bounded from above captures all these e�ects, we shall soon see this re�ected
in the numerical estimates of Tpred across di�erent window sizes.

The e�ect of embedding dimension is simpler compared to embedding window.
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Figure 2.12: Suboptimal embedding parameters lead to loss in predictability A. E(τ)
for the Lorenz system embedded by SSA with K = 3, 15, 31 and m = 3. For K = 3 the
error starts small but grows at a rapid rate and saturates faster than for larger windows.
For K = 15, e1 remains small but the growth is more steady. While for K = 31, the
one step error e1 is large, but the long term performance is slightly better and the
saturation time τs is larger compared to others. Thus larger windows allow better
long term prediction at the cost of worse short term prediction. These di�erences are
captured in the normalized area. B. E(τ) shown for K = 15 and m = 2, 4, 6. m = 3
gives the best overall predictive performance. In m = 1 dimensions, the attractor is
folded tightly which causes a signi�cant loss of predictability. While, once the attractor
is embedded for m ≥ 3, SSA coordinates are dominated by noise and lead to a loss of
predictive performance.



2.8 Choosing The Right Embedding By Maximizing Predictability 51

Fig. 2.12B shows that the predictability drastically increases betweenm = 1 andm = 2
(green and blue curves respectively). It increases by a small amount for m = 3 (pink
curve), and then decreases again for m = 6 (orange curve). This indicates that the best
predictive performance is reached (for K = 15) in m = 3 dimensions. For m = 1 and
m = 2 we note that most of the di�erences lie in the short term predictability, this is
because when the system is not fully embedded, a fraction of nearest neighbors are not
true neighbors but are a result of self intersections due to insu�cient embedding [22].
The nearest neighbor predictor is sensitive to these so called false nearest neighbors,
which leads to bad short term predictability. For large embedding dimensions such as
m = 6, the error curve looks similar to that of small embedding windows in Fig. 2.12B
(K = 3), suggesting that the loss of predictability happens for a similar reason. Indeed,
that seems to be the case, as SSA coordinates in higher dimensions are dominated by
noise, which leads to faster error growth.

2.8.5 Numerical estimation of Tpred| to �nd optimal embedding

parameters

The examples above hopefully make it clear the optimal embedding parameters lead
to good overall predictability, and the area bounded between E(τ) and es which de-
termines the predictability time Tpred is a valid characterization of overall predictive
performance. In this section, I will estimate Tpred numerically to obtain optimal em-
bedding parameters for SSA embeddings of the Lorenz and Du�ng oscillator systems.
The numerical estimation of Tpred is relatively straight forward as compared to other
measures derived from state space reconstructions, such as Lyapunov exponents, di-

mensions and entropies. I exploit the fact that for τ > τs,

∫ T

0

E(τ)dτ = esT − A to

estimate both es and A at the same time. First E(τ) is estimated by the nearest
neighbor method outlined above for a reasonably large value of τ (say, twice the auto-
correlation time). I then numerically integrate E(τ). For τ > τs this integral is given
by the linear function esT − A, consequently, I �t a line to the last one tenth of the
numerically estimated integral. The slope of the line estimates es while the intercept

estimates the bounded area A. Tpred is then estimated by
A

es
.

Once we have a way to estimate Tpred, then the optimization of embedding param-
eters proceeds in two steps. First, I optimize the embedding window K by estimating
Tpred for a range of K values in the embedding space described by Y K . Typically, there
is a range of K values for which Tpred is maximized, any value of K within this range
is appropriate. After choosing optimal K, denoted by K∗ that maximizes Tpred, in the

next step I perform SSA on Y
∗
K and again estimate Tpred in the SSA coordinates as a

function of embedding dimension. Once the attractor is fully embedded at the optimal
embedding dimension m∗, Tpred either saturates or decreases on increasing the embed-
ding dimension. It is possible to perform this optimization by genetic programming
or some other nonlinear optimization method. This was done previously to optimize
other predictive measures for choosing embedding parameters [39, 40]. However, in
practice, the range of values for K and m is not prohibitively large, so that a brute
force search is a reasonable approach.
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I estimated Tpred for a range of values of K and m for the Lorenz. The result is
shown in Fig. 2.13. In 2.13A, we see that Tpred rises with K reaching it's maximum
value at K = 20, after which it declines gradually. The fact that there is a maximum
for the window length means that there is an optimal range of values for K, beyond
which the predictability gets worse. To estimate the embedding dimension I performed
SSA with K = 20 and plotted Tpred as a function of m in 2.13B. It can be seen that for
m > 3 there is a drastic reduction in predictability, implying that this a 3 dimensional
system. It is notable that in terms of predictability m = 2 is also a good embedding,
this is because it is known that the dimension of the Lorenz system is approximately
2.

2.9 Conclusion

In this chapter I discussed the state space reconstruction problem in detail. I described
the general mathematical ideas behind the process, previous attempts at reconstruc-
tion and their drawbacks. Finally, I proposed a new method of estimating optimal
reconstruction parameters that were shown to result in a good reconstruction of model
systems. In chapter 4 I will show the utility of these methods in the reconstruction of
C. elegans locomotory dynamics.
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Figure 2.13: Optimization of reconstruction parameters for the Lorenz system. A.
Estimated Tpred for di�erent values of K in the embedding Y K . We see that at about
20 samples Tpred reaches its maximum value, after which it gradually decreases. B.

Tpred in the SSA embedding at K = 20 for di�erent values of the embedding dimension
shows that a 3 dimensional embedding optimizes predictability of the Lorenz system.
It is notable that m = 2 also seems a good embedding. This is perhaps because even
though it takesm = 3 Euclidean dimensions to embed the Lorenz attractor, it is mostly
a 2D object. B. The attractor reconstruction for K = 20 and m = 3 shows a good
reconstruction, balanced between the e�ects of noise and strong curvature.
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Figure 2.14: Optimization of reconstruction parameters for the coupled Du�ng os-
cillators. A. Estimated Tpred for di�erent values of K in the embedding Y K suggests
that K between 40 to 60 samples would make an optimal embedding. B. Estimates
of Tpred as a function of embedding dimension show that m = 5 dimensions make an
optimal embedding. C,D. 2D projections of the reconstructed attractor with K = 40
and m = 5 (X5 is not shown).
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Figure 2.15: SSA embedding method approximates the linear normal modes for a
nonlinear system. A.,B. The reconstructed coordinates X1 and X3 compared with the
linear normal modes n1 = q1 + q3 and n2 = q1− q3. There is a strong linear correlation
between the two implying that SSA reconstruction approximate the linear modes of
a nonlinear dynamical system. C.,D. Comparison of the PSD of the reconstructed
coordinates X1 and X3 vs the linear normal modes. The relationship between SSA
reconstruction and linear modes is even more clearly visible here.





Chapter 3

Lyapunov Exponents: Theory and

Practice

Lyapunov exponents are a generalization of eigenvalues for non-linear dynamical sys-
tems. Unsurprisingly, they are as central to the study of non-linear dynamics as eigen-
values are for linear dynamical systems. As any central concept, Lyapunov exponents
can be motivated in several di�erent ways. A simple way of seeing where Lyapunov ex-
ponents come from is to ask, is the evolution law F in x(t+1) = F (x(t)) di�erentiable?
And if so what are its consequences? The most natural consequence of di�erentiable
dynamics is that no matter how complicated the nonlinearity in F , the dynamics in
any neighborhood of x(t) are described by a linear dynamical system described by
the derivative of F at x(t) given by the Jacobian matrix. As a consequence of chain
rule, as we move along the trajectory, each of the local Jacobians are multiplied, their
product describing the entire trajectory. This fact directly leads to two fundamental
questions: Can we de�ne a (geometric) average of the product of Jacobians? And, is
it well behaved, in particular, under what conditions does it converge as we consider
longer and longer trajectories? Answers to these questions lead to some deep insights,
and naturally de�ne the concept of Lyapunov exponents (among others). We will see
that the Lyapunov exponents reveal a lot more about the nature of the dynamics than
we could've asked for. They measure things like predictability time, entropy rate, di-
mension, dissipation rate, symmetry properties, ergodic properties, and a lot more. It
is somewhat of a miracle that something as simple as a di�erential structure on the
dynamics can give us so much! In the following I have tried to simplify the theory and
the algorithms to estimate Lyapunov exponents as much as possible.

In this chapter I will present the theory and practice of the estimation of Lyapunov
exponents. I will propose a new algorithm for stable estimation of all the exponents
and apply it to known systems.

3.1 Lyapunov Exponents: Theory

To start things simply, I will �rst present a geometric description of the Lyapunov
exponents and discuss the idea that they can be obtained from a geometric mean of
the derivatives of F along a trajectory. Next, I will show how in 1D this de�nition
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Figure 3.1: A unit ball gets sheared under the action of the linearization of F τ

leads to �rst converting the geometric average to an arithmetic average by application
of logarithms and then applying the additive ergodic theorem. In the section after that
I will show how to make the geometric mean work in dimensions more than 1, despite
the complications that arise due to the non-commuting nature of matrix multiplication.
The logical structure and organization of the following presentation here is mine, but
the details follow closely the review by Eckmann and Ruelle [46] which is still a standard
text in the �eld. The algorithmic details are integrated from [46], [47], [48] and [49].

3.1.1 Geometric de�nition

Consider an in�nitesimal ball of radius r01 = r02 = ε, centered at x0 as depicted schemat-
ically in Fig. 3.1 above. After one step, the ball gets distorted under the action of F .
However, if the ball is in�nitesimal, and the F is di�erentiable, then the distortion is
governed by the linearization (derivative/Jacobian) of F at x0. Consequently, under
the linear dynamics, the ball is distorted to an ellipsoid. Accordingly, it expands along
the long axes of the ellipsoid and contracts along the short axes. After τ steps, the
starting ball evolves into a longer and thinner ellipsoid. The per step change of the
lengths of the principle axes of the ellipsoid are called (local) Lyapunov exponents for
the trajectory starting at x0 and going for tau steps. They measure the average rates
of expansion or contraction along a trajectory.

For an m dimensional state space, there are clearly m exponents measuring the
rates of separation along m orthogonal directions, denoted by Λk(x0, τ) for 1 6 k 6 m.
There is a natural ordering to the exponents, such that the �rst exponent (k = 2)
corresponds to the longest principle axis of the �nal ellipsoid, i.e. direction along which
the separation between nearby points is the greatest. The second exponent (k = 1)
corresponds to the second longest principle axes and so on. The ordered collection
is known as a spectrum of local Lyapunov exponents, and each exponent is de�ned
according to

Λk(x0, τ) = lim
ε→0

1

τ
log

rτk
ε

(3.1)

The exponents above are de�ned locally, i.e. they depend on the state space point
x0, and the duration of the trajectory τ . When the system governed by F is stationary
on a limit set with an invariant measure, i.e. it has settled on an attractor, then the
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in�nite time limit

Λk = lim
τ→∞

lim
ε→0

1

τ
log

rτk
ε

(3.2)

exists [50], and is independent of the initial condition x0 on the attractor. It is im-
portant to note that this independence is with respect to the attractor, and not the
entire state space. Indeed, when there are several co-existing attractors in the same
state space, then generically speaking, each attractor has a di�erent set of Lyapunov
exponents. The limiting exponents Λk are known as global Lyapunov exponents. In
this way the Lyapunov exponents measure the long term expansion and contraction
rates of a dynamical system.

It is common to interpret the Lyapunov exponents as characterizing the stability of
the system. By stability, we usually mean the response of the system to an in�nites-
imal perturbation of size ε. When the Lyapunov exponent is positive in a particular
direction, it means that the system is unstable, causing any perturbations to grow
exponentially at the rate given by the maximum Lyapunov exponent. On the other
hand, a negative exponent means that the system is stable and perturbations decay.

Stability is not the only interpretation of Lyapunov exponents, as they are also
related to the average predictability of the system. If we consider the initial ball around
x0 in Fig. 3.1 as possible predictions for the initial state x0, with the size corresponding
to the initial error in prediction, then the rate of expansion and contraction is related
directly to how the error in our predictions change under the action of the dynamics.
When the dynamics are predictable, the sphere would either remain the same size as τ
increases (errors remain constant under the action of F ), or it will shrink (errors would
decrease with time, like in a limit cycle). However, for unpredictable systems, there will
at least be one direction along which the ellipse will expand, and the prediction errors
will get worse with time. It can be shown that the sum of all expansion rates (i.e. the
sum of positive Lyapunov exponents) is related to the entropy rate of the system which
measures the overall unpredictability. Another related quantity, the rate of dissipation
is given by the rate of change of phase space volume is given by the sum of all Lyapunov
exponents. The global Lyapunov exponents are also related to the dimension of the
attractor, which give information about the number of active degrees of freedom in the
physical system under study. Finally, the global Lyapunov exponents are independent
of the initial condition x0, and are also topological invariants. Meaning that they are
independent of any smooth coordinate transformation and can be measured in any
(smooth) coordinate transformation of the original dynamics.

In the next section, I will describe the ideas in more detail in the setting of a 1D
dynamical system where the concept is remarkably straightforward.

3.1.2 Lyapunov exponents in 1D

Dynamical systems in discrete time are known as maps, they are described by re-
currence relations of the form xt+1 = F (xt). This is in contrast to continuous time
dynamical systems, called �ows, which are described by ODEs or PDEs. A major
di�erence between �ows and maps is that unlike �ows which need a 3D state space to
show chaos, maps can be chaotic even in a 1D state space.
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Figure 3.2: A. Schematic of iterates of a chaotic dynamical system in a 1D state
space. B. One step evolution of the displacement between two neighbors in state
space.

Consider a 1D di�erentiable dynamical system in discrete time described by xt+1 =
F (xt) with state space being the real line bounded between some limits [a, b]. Example
iterations are of such a system are shown in Fig. 3.2.

When the system is chaotic, the points hop around in the 1D state space and never
repeat themselves as shown schematically in Fig. 3.2A. Now consider a point xt, and
another point, x̃t, in its neighborhood at a distance δxt, i.e. x̃t = xt + δxt (Fig. 3.2B).
The next iterate of x̃t is then given by

x̃t+1 = F (x̃t) = F (xt + δxt)

Since F is di�erentiable, we can perform a Taylor expansion of F (xt + δxt) about xt
as follows

x̃t+1 ≈ F (xt) + F ′(xt) δxt

x̃t+1 − xt+1 = F ′(xt) δxt

δxt+1 = F ′(xt) δxt

(3.3)

where F ′(xt) =
dF

dx

∣∣∣
xt
is the derivative of the map evaluated at xt. The �nal equation

of eqn 3.3 above says that the derivative of the map governs how small perturbations
in the neighborhood of xt change over time. Say we start from an initial condition x0
and a neighboring point x̃0 = x0 + δx0, then the displacement will grow as

δx1 = F ′(x0) δx0

δx2 = F ′(x1) δx1 = F ′(x1)F
′(x0) δx0

δx3 = F ′(x2) δx2 = F ′(x2)F
′(x1)F

′(x0) δx0
...

δxt = F ′(xt) δxt = F ′(xt−1)F
′(xt−1) . . . F

′(x0) δx0

=
t−1∏

k=0

F ′(xt) δx0

Thus, in order to study the properties of a long trajectory, it is necessary to study the

product of derivatives along the trajectory,
t−1∏

k=0

F ′(xt). Because of the multiplicative

structure, it is appropriate to consider the geometric mean of the magnitude of the
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derivatives along the trajectory. The geometric mean is called the local Lyapunov
number L(x0, t) of the trajectory and is de�ned as

L(x0, t) =

(
t−1∏

k=0

|F ′(xt)|
)1/t

(3.4)

The absolute value is taken because the derivatives can change sign along the trajectory,
however, we're only interested in their magnitude. The local Lyapunov exponents
λ(x0, t), are simply the logarithms of the Lyapunov numbers, i.e.

λ(x0, t) = logL(x0, t)

=
1

t
log

t−1∏

k=0

|F ′(xt)|

=
1

t

t−1∑

k=0

log |F ′(xt)|

it can be easily veri�ed that

λ(x0, t) =
1

t
log

∣∣∣∣
δxt
δx0

∣∣∣∣

implying that |δxt| = |δx0| exp(tλ(x0, t)). Thus, the local Lyapunov exponents measure
the average rate of expansion along a trajectory starting at x0, and this de�nition is
consistent with the geometric de�nition given above.

As before we're also interested in the long term properties of the trajectory, so we
can consider the limit of λ(x0, t) as t → ∞, i.e. lim

t→∞
λ(x0, t). A natural question then

is when does this limit exist? This seemingly benign question is related to several deep
issues that lead to major developments in the theory of dynamical systems, and resulted
in the birth of at least two scienti�c disciplines, that of statistical mechanics in physics
and ergodic theory in mathematics. The short answer that is relevant here comes
from GD Birkho�'s celebrated ergodic theorem (also called additive ergodic theorem)
[51, 52] which asserts that when x(t) is a stationary process, i.e. the dynamics settle
on an invariant set as t → ∞, with an invariant probability distribution; then not
only does the limit exists, but it can be replaced by an average over the probability
distribution on the invariant set (so called invariant measure), i.e.

λ = lim
t→∞

1

t

t−1∑

k=0

log |F ′(xt)| = 〈log |F ′(x)|〉

where the expectation is taken over the invariant measure. In this way the additive er-
godic theorem generalizes the (strong) law of large numbers for non i.i.d. (independent
and identically distributed) random numbers. One of the remarkable consequences
of above is that the global Lyapunov exponent λ is a topological invariant, meaning
that it does not depend on our choice of coordinate system and is available from an
experimental reconstruction of the dynamical system.
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3.1.3 Lyapunov exponents in higher dimensions

The basic idea of Lyapunov exponents in higher dimensions is the same as in 1D:
they are related to the multiplicative average of the derivatives along a trajectory.
However, there are several di�culties before we can make this idea workable. For a
multidimensional system, xt+1 = F (xt), derivatives are matrices containing all the
partial derivatives of each component of F with respect to each component of xt. As
a result of matrix multiplication being non-commuting, the straightforward arguments
employed above to de�ne the Lyapunov exponent in 1D cannot be used directly. Sub-
stantial amount of work is required �rst to de�ne multivariate Lyapunov exponents
and then prove that they are well de�ned as an in�nite time average is taken. Addi-
tional mathematical machinery is then required to develop an algorithm to estimate
them from known dynamical systems, and �nally, even more work is needed to esti-
mate them in a reconstructed state space from experimental data. In the following,
I will go over the de�nitions of local and global Lyapunov exponents in more than 1
dimensions, describe their properties (with proofs wherever possible), and �nally detail
the algorithms for computing them from data.

As an example to help illustrate the ideas, consider a 2D state space with the

current state xt =

(
ut
vt

)
and the evolution law as F (xt) =

(
f(ut, vt)
g(ut, vt)

)
. The next state

is then determined by,
xt+1 = F (xt)(
ut+1

vt+1

)
=

(
f(ut, vt)
g(ut, vt)

)

Consider now a point in the neighborhood of xt, x̃t = xt + δxt =

(
ut + δut
vt + δvt

)
, where

δxt =

(
δut
δvt

)
is a displacement vector, more commonly known as a tangent vector at

xt. The space of all possible in�nitesimal displacements is called the tangent space xt.
The next iterate of the neighboring statex̃t is

x̃t+1 = F (x̃t) = F (xt + δxt)(
ut+1 + δut+1

vt+1 + δvt+1

)
=

(
f(ut + δut, vt + δvt)
g(ut + δut, vt + δvt)

)

performing a Taylor expansion as before

(
ut+1 + δut+1

vt+1 + δvt+1

)
=



f(ut, vt) + ∂f

∂u

∣∣∣
xt

δut + ∂f
∂v

∣∣∣
xt

δvt

g(ut, vt) + ∂g
∂u

∣∣∣
xt

δut + ∂g
∂v

∣∣∣
xt

δvt




(
ut+1 + δut+1

vt+1 + δvt+1

)
=

(
ut+1

vt+1

)
+

[
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

]

xt

(
δut
δvt

)

(
δut+1

δvt+1

)
=

[
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

]

xt

(
δut
δvt

)

δxt+1 = J(xt)δxt

(3.5)
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δxt+1

xt

xt+1

δxt

Figure 3.3: A. Schematic showing the evolution of a tangent vector under the action
of linear dynamics around xt.

, where J(xt) is the matrix of all partial derivatives evaluated at xt, and is known as
the Jacobian matrix it is synonymous with the derivative for multivariate functions.
The last equation of eqn 3.5 although derived for 2D is valid in any dimensions, and is
known as the tangent space dynamics (see Fig. 3.3). From here on we will leave the 2D
example and work in an m dimensional state space. The tangent space dynamics in
eqn above describes how small displacements, or tangent vectors at xt evolve under the
action of the Jacobian at xt. When the equations of motion are known, the Jacobian is
easily estimated from the partial derivatives of F . When we do not know the dynamics,
it can be estimated by inverting the equation above as we will discuss later.

Just as derivatives along a trajectory in 1D had multiplicative structure, the Jaco-
bians along a trajectory in higher dimensions also have a multiplicative structure. To
see this, we start with a tangent vector δ0 separating x0 and a neighboring point x̃0.
Following the tangent space dynamics, we have,

δ1 = J(x0)δ0

δ2 = J(x1)δ1 = J(x1)J(x0)δ0

δ3 = J(x2)δ2 = J(x2)J (x1) J(x0)δ0
...

δt = J(xt−1)δt−1 = J(xt−1)J (xt−2) . . .J(x0)δ0

=
t−1∏

i=0

J(xi)δ0

= Jt(x0)δ0

, where we have denoted by Jt(x0), the product of local Jacobians along the trajectory
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starting from x0 and going for t steps in future. In case of 1D, the sign of the displace-
ment δt changed irregularly, and we considered its absolute value. Similarly, in higher
dimensions, the direction of the displacement vector δt changes irregularly under the
action of the local Jacobian, so we need to consider its magnitude given by the squared
length of the vector δt, i.e.

‖δτ‖2 = δTτ ·
[
Jt(x0)

]T · Jt(x0) · δt
where [·]T denotes matrix transpose. The key object that governs the magnitude of

displacement is the matrix
[
Jt(x0)

]T · Jt(x0), which encodes the correlations of the
derivatives along a trajectory in phase space. We can now de�ne the following geometric
mean composed of a product of 2t matrices, to study the average per-step change in
the magnitude along a trajectory,

OSL(x0, t) =
([

Jt(x0)
]T · Jt(x0)

) 1
2t

In an m dimensional state space, OSL(x0, t) has m positive eigenvalues Li(x0, t) for
1 6 i 6 m, and are called the local Lyapunov numbers of the trajectory. The logarithms
of the Lyapunov numbers,

Λi(x0, t) = logLi(x0, t)

are known as the local Lyapunov exponents and their ordered set, Λ1(x0, t) > Λ2(x0, t) >
. . .Λm(x0, t) is called the local Lyapunov spectrum. Note that this de�nition corre-
sponds exactly to the geometric de�nition of the stretching rate, as the eigenvalues of

the matrix
[
Jt(x0)

]T ·Jt(x0) are the singular values of J
t(x0), and measure the lengths

of the principle axis of the ellipsoid described by the action of Jt(x0) on a unit sphere.
To make the transition from a local to a global description, we need to consider the

in�nite time limit of OSL(x0, t), i.e.

lim
t→∞

OSL(x0, t) = lim
t→∞

([
Jt(x0)

]T · Jt(x0)
) 1

2t

In 1D, derivatives are scalar, and we dealt with a product of real numbers by apply-
ing logarithms turn into a sum. Consequently, the geometric mean was replaced by an
arithmetic mean of the logarithms of the derivatives along a trajectory. As a result, we
were able to apply Birkho�'s additive ergodic theorem, which under the condition of
stationary dynamics ensured that the in�nite time average was well de�ned and equals
the average over the probability distribution in state space. Unfortunately, the non-
commutativity of matrix multiplication means that we can't use logarithms to turn
the product into a sum in the equation above. Accordingly, Birkho�'s additive ergodic
theorem cannot be applied, and we have no obvious way of knowing the properties of
the in�nite time average in the product above.

The situation concerning the product in equation above was resolved by Russian
mathematician Valery Oseledets, who in mid 1960s was the �rst one to de�ne the
matrix OSL(x0, t), and studied its asymptotic properties (the matrix OSL stands for
Oseledets matrix). He proved a seminal theorem now known as Oseledets multiplicative
ergodic theorem which states that the limit

lim
t→∞

OSL(x0, t) = P
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exists for a stationary process evolving on an invariant set with an invariant proba-
bility distribution, and is independent of the initial condition x0 for (almost) all x0

on the attractor. Consequently, the m global Lyapunov exponents λk obtained by the
logarithms of the eigenvalues of P are well de�ned quantities for stationary dynamics
on an invariant set. The theorem also proved that the ordered set of global Lyapunov
exponents λ1 > λ2 > . . . > λm, called the global Lyapunov spectrum is a topological
invariant of the system on account of P being independent of x and t. Referring to our
previous example, the multiplicative ergodic theorem is a generalization of the law of
large numbers to a multiplicative average. Unlike the 1D case however, the multiplica-
tive ergodic theorem doesn't allow us to represent the in�nite time average in eqn 3.1.3
by an average over the state space probability distribution (in a straightforward way).
A practical consequence of this is that most algorithms for estimating the Lyapunov
spectrum have to deal with an in�nitely long product leading to obvious numerical
di�culties (more on this later). Irrespective of this fact however, the multiplicative
ergodic theorem has led to a lot of progress in the ergodic theory of multiplicative
processes. [50, 53].

3.2 Properties of Lyapunov Exponents

The Lyapunov exponents of a deterministic system allow quantifying not only its stabil-
ity but also the predictability of the resulting dynamics, and other important properties
such as the fractal dimension of the underlying attractor, its dynamical entropy, the
rate at which volumes in state space dissipate, and symmetry properties associated with
the evolution law F . The local Lyapunov exponents also carry substantial information
about the time and state dependence of the dynamics.

3.2.1 Predictability and Entropy

One important notion should emerge from these examples: We are really concerned
with changes in entropy, not in the entropy value itself. For example, if we choose a
set of initial conditions in two cells and if the motion is regular, then the entropy value
would not be 0, but it would remain constant as the system evolves. The change in
entropy is characterized by the Kolmogorov-Sinai entropy rate (sometimes called the
KS entropy), which describes the rate of change of entropy as the system evolves. First
we shall give a rough de�nition of the K-S entropy (rate).

The key property that governs the rate at which chaotic systems become unpre-
dictable is the Kolmogorov-Sinai entropy (KS entropy), also known as metric entropy
[44, 54]. The KS entropy measures the rate of change of entropy as a dynamical system
evolves. Thus, it's technically an entropy rate [55].

Like the Lyapunov exponents, the KS entropy is a topological invariant. In fact,
KS entropy is intimately connected to Lyapunov exponents, as it can be shown that it
measures the growth rate of the number of di�erent trajectories that can be generated
by a dynamical system [56, 57]. Although, the precise nature of the relationship be-
tween Lyapunov exponents and KS entropy isn't generally known. It is known that the
KS entropy is bounded by the sum of positive exponents [57, 58], and in special cases
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it is exactly equal to the sum of positive Lyapunov exponents, a fact known as Pesin's
theorem [56]. For convenience it is common to assume Pesin theorem holds, so that the
sum of positive exponents form a �rst estimate of the KS entropy ĥµ. KS entropy de-
termines the total predictability time, or the duration for which our predictions remain
valid. Consequently, a positive KS entropy implies chaotic dynamics.

3.2.2 Volume Contraction Rate

The sum Sm =
m∑

i=1

λi of all Lyapunov exponents of an m-dimensional system measures

the contraction rate of volumes in the state space on the invariant set and gives a
measure of the overall dissipation rate. For mechanical systems this quantity is closely
connected to the rate of change of thermodynamic entropy. We will see in chapter 5,
that under some conditions, the sum of local Lyapunov exponents can also be used to
estimate the e�ective control signal to a system.

3.2.3 Symmetries and Zero Exponents

It shouldn't be surprising that if there are underlying symmetries and conservation laws
in the evolution law, then they play an important role in determining the spectrum of
Lyapunov exponents. For example, it can be shown that all continuous symmetries lead
to zero exponents [59]. The most common of which is the time translation symmetry,
which states that the evolution law is invariant under the substitution t→ t+ τ . This
result provides us a handy way to verify time translation invariance in data. When the
underlying dynamics are a result of a di�erential or partial di�erential equation then
there must be at least one zero exponent [60]. There is a simple idea for why this must
be true: The substitution t→ t+ τ corresponds to a perturbation along the trajectory
in state space where it can neither shrink or expand for a system with time translation
invariance.

Hamiltonian systems are another source of a large number of zeros and symmetries.
First, every integral of motion in a Hamiltonian system corresponds to a zero Lyapunov
exponent. Another interesting property of a Hamiltonian system is that because of
their time-reversal invariance (a discrete symmetry related to the change of sign, i.e.
t→ −t) the Lyapunov exponents come in conjugate pairs that sum to zero. Even more
interestingly, this symmetry is only slightly changed when the Hamiltonian structure
is destroyed by the addition of viscous damping [61, 62]. Speci�cally, if a Hamiltonian
system is subjected to a damping α, then the Lyapunov exponents still show conjugate
pairing, but instead sum to −α, i.e. λi + λm−i+1 = −α.

3.2.4 Local Exponents

Global Lyapunov exponents characterize the dynamics on the attractor as a whole.
However, the �uctuations in the exponents over time and in the state space are im-
portant. They can allow us to measure state dependent predictability, i.e., how well
can can predict t steps ahead of the current state. For example, the Lorenz system is
di�cult to predict near the transition region [63]. Clearly, characterizing this state and
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time-dependent variation in predictability is important. It can reveal long time-scale
changes over which the probability density on the attractor is likely not invariant. Re-
lated quantities such as local entropy rate, and local volume contraction rate also can
prove useful in measuring local variations in the dynamics [64].

Finally, local Lyapunov exponents can be used to map out geometrical structures
that shape the geometry of the state space, such as stable/unstable manifolds, and other
general kinds of coherent structures [65]. These objects too have direct implications
regarding control, e.g. many nonlinear (chaos) control algorithms operate by putting
the system near the stable manifold of an unstable periodic orbit [66].

3.3 Numerical Estimation

The determination of the eigenvalues of the matrixOSL(x0, t) is not numerically trivial
even in low dimensional dynamics when the equations of motion are known in advance.
This is a key reason why estimation of the entire spectrum is typically avoided. The
biggest di�culty is that the product that determines OSL(x0, t) gets ill conditioned
rapidly as t increases [63]. The condition number, which is the ratio of the largest
to the smallest singular values, and measures how ill conditioned a transformation
is grows exponentially as to et(λ1−λm) [63]. Geometrically speaking, the ellipsoids in
Fig. 3.1 get thinner and thinner under the action of the local Jacobians until they
collapse onto a line eventually, losing numerical resolution. To see this, consider two
orthogonal vectors forming the basis of the tangent space at x0 shown in Fig. 3.4A. In
general, the local Jacobian J(x0) will rotate and stretch the orthogonal basis vectors
to a non-orthogonal set of tangent vectors at x1. In the next step J2(x0) will shear
the original basis vectors even more. As we continue this, and build up the product,
the basis vectors will collapse onto the direction corresponding the maximal exponent
leading to an ill conditioned behavior of the product Jt(x0).

To get around this issue, the method of recursive QR decomposition was proposed
by Eckmann and Ruelle [46] based on previous work by Johnson et al who used it
in a simpli�ed proof of the multiplicative ergodic theorem [67]. The key idea behind
recursive QR decomposition is to decompose each matrix A featuring in the product
inside OSL(x0, t) into A = Q · R, where Q is an orthogonal m × m matrix, and
R is an m × m upper triangular matrix with non-negative diagonal elements. The
main advantage is that even when A is ill conditioned, the individual upper-triangular
factors in recursive QR decomposition are well behaved and not badly conditioned.
Geometrically, as shown in Fig. 3.4B, this corresponds to performing a Gram-Schmidt
orthogonalization at each step and keeping track of the R matrices, the diagonals
of which are non-negative and correspond to the lengths of the principle axes of the
ellipsoid Jt(x0). The method of QR factorization is slightly di�erent for global and
local exponents as we detail below.
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Figure 3.4: A. Two orthogonal vectors get closer and closer together as the number of
steps increases until they get identi�ed. This means that the long product of matrices
is ill-conditioned B. The geometric idea behind recursive QR decomposition.
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3.3.1 Recursive QR decomposition for global Lyapunov Expo-

nents

As described above, the matrix OSL(x0, t) is a product of 2t matrices, to declutter the
notation we denote them as following: A(2t).A(2t − 1) · · ·A(1). The idea is to start
with the m×m identity matrix Q(0) = Im, and decompose each A(j) ·Q(j − 1) as

A(j) ·Q(j − 1) = Q(j) ·R(j)

If we expand this out, we get

A(1) = Q(1) ·R(1)

A(2) ·Q(1) = Q(2) ·R(2)

the orthogonality means that Q−1(1) = QT (1) allows us to write

A(2) = Q(2) ·R(2) ·QT (1)

if we now consider the product we get

A(2) ·A(1) = Q(2) ·R(2) ·QT (1) ·Q(1) ·R(1)

= Q(2) ·R(2) ·R(1)

where we have used the orthogonality of Q again in the last equation. Continuing like
this the next step will give us

A(3) ·A(2) ·A(1) = Q(3) ·R(3) ·R(2) ·R(1)

and the full product of 2t matrices will be

A(2t) ·A(2t− 1) · · ·A(1) = Q(2t) ·R(2t) ·R(2t− 1) · · ·R(1)

This can be easily diagonalized, as the product of upper right triangular matrices as
an upper right triangular matrix, and the eigenvalues of such a matrix are numbers
along the diagonal. The Lyapunov exponents are then simply

λi = lim
t→∞

1

2t

2t∑

τ=1

log [Rii(τ)]

where Rii(τ) is the ith diagonal entry of R(τ). Intuitively, the repeated use of orthog-
onalization procedure has resulted in a sequence of bases for the tangent spaces such
that the action of DF on a general delta can be represented as an action on a set of
independent scalar quantities - the projections of delta onto the basis vectors. As a
consequence the limit above has the form of an additive average and thus Birkho�'s
theorem guarantees the above limit when the dynamics are stationary.
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3.3.2 Iterated Recursive QR decomposition for Local Lyapunov

exponents

In the case treated above, the limit t → ∞ makes the average converge, importantly
the Q matrices which describe the orientation of the axes after each iteration settle
down to the Lyapunov vectors and thus Q(t) tends to the identity matrix Im for long
t. This means that the eigenvalues all lie in the product of the upper triangular R
matrices. However, same cannot be said about the �nite time product, speci�cally, the
eigenvalues of the matrix Q(2t) accounts for some contribution, if Q(2t) was identity,
then we would be okay. Abarbanel et al. used a result from numerical linear algebra
to provide an iterative scheme to address this issue and estimate the eigenvalues [49].
The idea is to start with the matrix

M1 = Q1(2t) ·R1(2t) ·R1(2t− 1) · · ·R1(1)

and move Q1(2t) to the right giving us the matrix (the reason to subscripts will become
clear shortly)

M2 = R1(2t) ·R1(2t− 1) · · ·R1(1) ·Q1(2t)

It is easy to see from above that

M2 = QT
1 (2t) ·M1 ·Q(2t)

and because of the orthogonality, M1 and M2 both have the same eigenvalues. Next,
we perform QR decomposition of M2

M2 = Q2(2t) ·R2(2t) ·R2(2t− 1) · · ·R2(1)

and shift Q2(2t) to the right again to de�ne M3 as

M3 = R2(2t) ·R2(2t− 1) · · ·R2(1) ·Q2(2t)

performing QR decomposition of M3 and continuing the sequence for K steps we have

MK = QK(2t) ·RK(2t) ·RK(2t− 1) · · ·RK(1)

A theorem from numerical linear algebra guarantees that QK(2t) tends to the identity
matrix as K increases. In practice, QK(2t) coverages rapidly and it is not required to
take K past double digits. Once QK(2t) is su�ciently close to identity, then the local
Lyapunov exponents are determined by eigenvalues of MK (which are the same as M1)
and can be estimated from the diagonal elements of RK as follows

Λi(x0, τ) =
1

2t

2t∑

τ=1

log [RK(τ)ii]

3.3.3 Lyapunov Spectrum Estimation of Model Systems Using

Analytical Jacobians

When we have access to the underlying equations of motion, we can use them to esti-
mate the Jacobian matrices J(xt) at each point xt along the trajectory, and perform
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Figure 3.5: Running average of the three Lyapunov exponents for the Lorenz system
estimated using analytical Jacobians.

recursive QR decomposition as described above. In this section I show the estima-
tion of Lyapunov spectrum for the Lorenz and Du�ng oscillator systems using their
analytical Jacobians. The running average of the Lyapunov spectrum for the Lorenz
system is shown in Fig. 3.5. The estimated values are close to the reported values
of (0.906, 0,−14.572) in literature [68]. However, there are still errors in estimation
even though I am using the analytical Jacobians for the system. Notably, λ2 should be
identically equal to zero but my estimates show λ2 = −0.02± 0.003. These estimates
do get better with longer runs, but converge very slowly.

Next, in Fig. 3.6 I show estimates of the Lyapunov spectrum for the coupled Du�ng
oscillators for di�erent values of the drive coupling f . The di�culty of estimation here
is even more pronounced as can be seen by the noisy structure of the estimates. In
addition to previously mentioned di�culties in estimation, here we also have issues
arising due to additional symmetries in the equations of motion. Speci�cally, there
are up to three zero exponents for this system. Several di�erent zero exponents, and
degeneracies in general lead to di�culty in estimation. Regardless, we can see in
Fig. 3.6, that the Lyapunov spectrum is symmetric about −0.1. This symmetry results
from the damped driven Hamiltonian structure of this system.
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Figure 3.6: Lyapunov exponents estimated from analytical Jacobian of damped driven
coupled Du�ng oscillators. The spectrum shows a symmetry about a point related to
the overall damping.

3.3.4 Background to Estimation of Jacobians from experimen-

tal data

The task of Lyapunov spectrum estimation becomes signi�cantly more challenging in
a reconstructed state space when we do not have access to the equations, or perhaps
are not even sure whether the dynamics are described by a di�erentiable function! In
such a case we have to estimate the Jacobian matrices by modeling the dynamics in the
embedding coordinates. If we're successful then it is safe to assume that the dynamics
are di�erentiable and we can use the estimated matrices to estimate the local and
global Lyapunov exponents.

We can either use a global model where we �t a single nonlinear predictive model for
all the data and then di�erentiate it to estimate J(xt), or we can use local models where
we estimate di�erent models for each neighborhood of the state space. We already saw
an example of local modeling when we used the nearest neighbor predictor to optimize
the embedding parameters. In this case however, we are interested in estimating local
derivatives, accordingly, it is appropriate to consider local linear models. Speci�cally,
we begin with an approximation to the tangent space dynamics in eqn 3.5

δxt+1 ≈ J(xt) δxt

where δxt now is an estimate of the tangent vector at xt. It is obtained by �nding
another state space point xt′ in the neighborhood of xt and forming the di�erence
vector δxt = xt′ − xt. The di�erence vector τ steps ahead δxt+1 = xt′+1 − xt+1 is a
tangent vector at xt+1 and approximates the image of δxt under the action of J(xt).
Thus, our goal is to invert equation above to estimate the Jacobian matrix at xt, J(xt).
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Clearly the equation above is under-determined, we therefore consider a collection of
nearest neighbors of xt. This can be done by either picking a �xed number of Nb

neighbors xt′ , for each xt. Or by choosing all points within a �xed distance ε of xt,
i.e. by picking all xt′ , such that‖ xt′ − xt ‖6 ε for some �xed ε. In the former case Nb

is a parameter and the size of each neighborhood changes ε for each state space point
considered. While in the latter case, the size of the neighborhood ε is a parameter and
number of neighbors Nb changes for each state space point. In all the analysis in this
thesis, we choose the �rst approach and �x the number of neighbors. After choosing the
neighbors, we form all the Nb displacement vectors δxt and stack them into a Nb ×m
neighborhood matrix Bxt . Next, we calculate the displacement vectors δxt+1 at the
next time step and stack them into the evolved neighborhood matrix B1

xt
, also of size

Nb ×m. For a small neighborhood, if the underlying dynamics are di�erentiable, then
the two neighborhood matrices are related by the following set of linear equations [48]

B1
xt

= Bxt · J(xt) (3.6)

the usual way of solving the inverse problem in eqn 3.6 is to use the Moore-Penrose
pseudo-inverse of Bxt , which is denoted by B†xt

, and is a d×Nb matrix calculated from
the SVD of Bxt . The estimated 1-step Jacobian matrix is then given by

J(xt) = B†xt
·B1

xt
(3.7)

Repeating the �tting process for all xt gives us a collection of estimated Jacobian
matrices at each point in state space. The recursive QR procedure described above
can now be used to estimate the local or global Lyapunov exponents for the dynamics.

3.3.5 A New Algorithm for Estimation of Jacobians from ex-

perimental data

Unsurprisingly, the procedure described above doesn't always work. In particular, the
algorithm is extremely sensitive to the geometry of the reconstructed attractor. When
there are sharp twists and high-curvature regions in the original attractor, the density
of local neighborhood keeps changing meaning that the distance threshold ε is not a
constant but can vary signi�cantly over the attractor. I propose a method inspired by a
somewhat old prediction schemed proposed in [69] to account for this variation of local
attractor geometry. The basic idea is to use weighted linear regression by assigning
greater weight to points on the attractor that are near the current state xt. The exact
weight given to an observation is given by

wt′ = exp
−θ‖xt′ − xt‖

r

where r is the average distance between all neighbors,i.e.

r =
1

n

Nb∑

t′

‖xt′ − xt‖

.
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Thus, we still solve the least square problem in eqn 3.6. The only di�erence is that
each entry in the matrices Bxt and B1

xt
is multiplied by the corresponding weight wt′ .

The scale parameter θ ≥ 0 determines how strongly the regression is localized in
the neighborhood of each state point xt. For θ = 0, we're essentially �tting a global
linear model to the dynamics. As θ increases the regression gets increasingly local,
until in the extreme case most of the weight is given to only the current state xt and
is therefore more sensitive to noise. Optimal values of θ lead to stable estimates of
the Jacobian J(xt) and correspond to small prediction errors. Next, I will use this
algorithm to estimate the Lyapunov exponents of Lorenz and Du�ng systems.

Estimating Lyapunov Spectrum for Model Systems Using Estimated Jaco-

bians

First I attempt to estimate the Lyapunov spectrum of the Lorenz system, which is
shown in Fig. 3.7. In Fig. 3.7A (left), we see the dependence of the exponents on
the scale parameter θ. As can be seen that both λ1 and λ2 are relatively stable, but
the negative exponent λ3 is only available accurately for a narrow range of θ. The
range of θ for which accurate estimates are available correspond to the minimum of
the mean squared error in estimating the system in eqn 3.6, as is shown in Fig. 3.7A
(right). The running average of the Lyapunov spectrum estimates for θ = 9 is plotted
in Fig. 3.7B and shows that the exponents converge to stable values over time. Finally,
in Fig. 3.7C, I test the robustness of the algorithm developed here as a function of noise
amplitude. The algorithm is remarkably robust against observation noise. The only
problem occurs at extremely low values of noise for which the negative exponent isn't
accurate. This presumably happens of collinearity in least square problem and can be
easily removed by using a regularized least square. Adding noise essentially serves as
a good regularizer and that is why the estimates actually get better as I increase the
noise.

Next, I estimate the spectrum of the more challenging case of coupled Du�ng
oscillators in a 5D embedding built in the previous chapter. The results are shown in
Fig. 3.8. We can see that despite the challenging nature of this problem, we recover
all the exponents approximately correctly Fig. 3.8C. The variation due to the scale
parameter is strong for this case, as seen in Fig. 3.8A, but the mean squared error plot
can be used to pick the scale parameter θ, Fig. 3.8B. Finally, in Fig. 3.8D, we are also
able to recover the fact that the symmetry of the Lyapunov spectrum con�rming that
the coupled oscillator system is a damped driven Hamiltonian system.

3.4 Conclusion

In this chapter I reviewed the mathematical ideas behind Lyapunov exponents and their
estimation. I discussed the several useful insights we can derive from a calculation of
all the exponents. Next, I elaborated on the numerous di�culties with the estimation
of Lyapunov exponents from observations and proposed a new algorithm which is more
robust to noise and e�ects of attractor geometry. Finally, I applied the proposed
algorithm to model systems and veri�ed its applicability. In chapter 5 I will apply
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Figure 3.7: Lyapunov exponents estimation using learned Jacobians for the Lorenz
system. A. Exponents plotted as a function of the scale parameter θ (left), and MSE
also plotted as a function of θ (right). B. Running average of the estimated exponents
shows that they converge to stable values. C. Estimated Lyapunov exponents plotted
as a function of observation noise shows that the algorithm is robust to a wide range
of noise amplitude.
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Figure 3.8: Lyapunov exponents of the coupled du�ng oscillators from Jacobians
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for θ = 3. C. Sum of the conjugate exponents shows that we can also recover the
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these ideas to estimate the entire spectrum of Lyapunov exponents for the movement
of C. elegans.





Chapter 4

Phase Space Reconstruction for C.

elegans Behavioral Dynamics

4.1 Introduction

In this chapter I will list the results of applying the reconstruction pipeline developed
in chapter 2 to the study of worm's locomotory dynamics. As we will see, mapping the
complexity of C. elegans locomotion onto a geometric structure, even a high dimen-
sional one, has the e�ect of making it more approachable and amenable to di�erent
kinds of analysis.

4.2 Experimental Details and Preprocessing

I analyze three datasets of worm locomotion. The �rst one is composed of N = 12 L4
stage N2 worms foraging freely on a 2D agar plate. It was �rst published in [70] and has
been since made publicly available by [71]. Brie�y, the foraging dataset is recorded at
32 Hz with high resolution tracking microscopy. For the analysis it was downsampled
to a frame rate of 16Hz. Worms were cultivated under standard conditions at 20◦C [72].
Before beginning the assay, worms were rinsed o� E.coli bacteria by making them swim
in NGM bu�er for 1 minute, they were then placed on a 9.1cm assay plate (Petri-Dish)
with a 5cm copper ring pressed into the agar surface to prevent them from climbing
the edge. The assay started 5 minutes after the transfer and lasted 35 minutes.

In the second dataset, I analyze the C.elegans escape response described �rst in
[73], and also made publicly available by [71]. In these experiments, N = 92 worms
were targeted on the head with a 100ms, 75mA IR laser pulse from a diode laser
(λ = 1440nm). Images were recorded at 20Hz for 30s (10s before stimulation and
20s after stimulation). To prevent adaptation each worm was only assayed once. I
downsampled the data to 16Hz (after interpolation), so that it can be easily compared
with the foraging dataset.

Finally, the third dataset is composed of N = 30 adult N2 worms swimming in
M9 bu�er solution. This dataset was requested from David A. Gagnon and Paulo E.
Arratia of University of Pennsylvania, and was �rst published in [74]. Each recording
here consists of 6-12 cycles of forward movement.

79
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4.2.1 Image Analysis and Posture Space Estimation

The tracking and posture space estimation pipeline is identical to the one in [71].
Brie�y, we parameterize the shape of a worm by tangent angles calculated at 100
points along its backbone. This gives us a matrix θ ∈ RT×100, containing the shape
information for each uncrossed frame where the worm's body doesn't intersect itself.
Next, a 5 dimensional approximation of the 100 dimensional time series is calculated
by projecting the elements of θ onto the basis given by the �rst 5 singular vectors (or
eigenworms) of θ. To process frames where a worm's body crosses itself, we use the
inverse tracking algorithm [71] which searches the 5 dimensional shape space for a point
p which generates a frame image that best matches the actual worm image in a given
crossed frame. The search is done by optimizing an error function ferr which quanti�es
the similarity between a reconstructed worm image W̃ (p) and the movie frame image
W . At the end of the optimization we get a T × 5 vector time series A = [a1:T1:5 ], where
T is the total number of frames.

4.3 Results

A 6D Embedding Captures Worm Locomotory Dynamics

In the lab, worms move in a 2D environment by propagating sinusoidal body bends
along their body. Their behavior can be broadly categorized into three categories,
forward movement, backward movement, and turns which come in two types, gradual
shallow turns, or sharp turns resulting from deep body bends [75, 76]. It was previously
shown that almost all the postures that worms make on a 2D plate can be obtained
by combining four basic shapes called eigenworms in di�erent amounts [77] Fig. 4.1A.
The coe�cients of the eigenworms describe only the shape of the worm at an instant,
not its dynamics. However the authors in [77] used the fact that the coe�cients var-
ied continuously in time to estimate the derivatives of the eigenworm coe�cients and
approximate the postural dynamics of forward and backward crawling.

To reconstruct the dynamics I use the concepts and pipeline developed in chapter
1. First, I construct the delay matrix Y by stacking delayed copies of the eigenmode
projections upto some time K, which is shown schematically in Fig. 4.1B. Next, For
a range of values of K, I estimate the predictability time Tpred and pick K such that
predictability time is maximized. As a reminder, for complex dynamics the prediction
error grows with time until it saturates when the errors reach the size of the attractor.
Tpred is the average time required for the error to grow to the size of the attractor.

There is a large degree of variability in Tpred across di�erent worms, so I center them
by removing the mean 〈Tpred〉 for each worm. These Tpred−〈Tpred〉 plots averaged over
all N = 12 di�erent worms are shown in Fig. 4.1C. The plot shows that predictability,
time averaged over all worms in the dataset is maximized between K = 5 and K = 11.
In general, larger values of K have an e�ect of smoothing the data, while smaller values
of K lead to more noisy looking reconstructions. Thus, although in principle, any value
of K between K = 5 and K = 11 is valid in terms of predictability, I choose the upper
limit of the range, i.e. K = 11, because it results in smoother trajectories without
a�ecting the predictability. This choice of K corresponds to 0.7s or about a quarter of



4.3 Results 81

the body wave.

Once the choice of K is �xed, the next step is to perform a singular value decom-
position on the resulting T ×KD matrix and �nd the smallest number of basis vectors
m that result in a good embedding. This is done by evaluating Tpred as a function of
m. In Fig. 4.1D we can see the Tpred − 〈Tpred〉 values plotted for di�erent embedding
dimensions. The predictability rises gradually until 6 dimensions after which it roughly
stays constant. We can conclude from this, that the 6 dimensional phase space, almost
completely captures the dynamics of C. elegans movement. An example of the error
curves used to estimate K and m is shown in supplementary �gure 4.11.

The Reconstructed Phase Space Decomposes Worm Locomotion

into Three Behavioral Modes

Next, I perform a singular value decomposition of Y for K = 11, followed by inde-
pendent component analysis of the �rst m = 6 right singular vectors. This results
in a 6-dimensional state space which decomposes C. elegans behavioral dynamics into
linear combinations of 6 independent posture sequences, each of length K = 11 frames.

The resulting six components are surprisingly interpretable and come in three pairs,
each pair corresponding to forward, backward or turning locomotion Fig. 4.2. It should
be emphasized that this happens in an entirely unsupervised manner, as the input to
the pipeline doesn't contain any information about the global organization of worm
behavior into discrete categories. In analogy to normal modes for linear dynamical
systems I call these three pairs behavioral modes.

Left column of Fig. 4.2A shows the curvature kymograph of the forward mode
components Γf1 and Γf2, which are composed of two waves in quadrature going from
the head to tail. They represent the ventrally and dorsally initiated anterior-posterior
body waves that worms make during forward locomotion. Middle column shows the
curvature kymographs for the reversal mode components. Γr1 corresponds to the initial
part of the backward movement where worms swing their head backwards, as suggested
in [78]. while Γr2 captures the subsequent posterior-anterior body waves as the animal
moves backwards. Finally, the turning mode components Γt1 and Γt2 correspond to
the beginning and end of the deep body bends such as omega and delta turns worms
use to rapidly change direction during navigation.

The geometry and topology of trajectory in behavioral phase space contains im-
portant qualitative and quantitative information about worm's behavior. An example
trajectory corresponding to 15 minutes, or N = 14400 samples is visualized in Fig. 4.2B
as planar projections onto three mode combinations. For the forward and backward
modes, the projections are color-coded by the tangential velocity of the centroid, which
is negative when the worm is moving backward and positive for forward locomotion.
While, for the turning mode, the trajectory is color coded by the turning rate. Glob-
ally, the state space is composed of three qualitatively distinct sets of cyclic trajectories
corresponding to the di�erent body waves generated during forward, backward and
turning locomotion. Locally, however, the trajectories are bundled together according
to the continuous behavioral measures of worm's speed and turning rate. Thus, the
reconstructed phase space naturally captures both discrete and continuous C. elegans
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(T −K+ 1×5K). C. Predictability as a function of K. Error bars show bootstrapped
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behaviors.

Normalized Mode Energies Allow a Simple Way to Categorize

Worm Behavior

In principle, the state space trajectories represent the instantaneous state of worm loco-
motion. However, the trajectories in Fig. 4.2B also capture longer time-scale behavior
such as discrete behavioral states. This suggests that we can use the state space to
categorize worm behavior into distinct behavioral categories.

I introduce following quantities, which are normalized mode energies as
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(4.1)

The mode energies range from 0 to 1 and measure the activity balance of di�erent
modes. For example when Er is close to 1 for a duration of time, it means that
the reversal modes are active, while the others suppressed. In general a stereotyped
behavior leads to most of the energy being concentrated in that mode. While behaviors
that cannot be neatly categorized into forward, reversal or turn are ones where energy
is shared roughly equally amongst the three modes. These behaviors are labeled as
transient behaviors.

Fig. 4.3A shows the normalized mode energies for a duration of 30 seconds. We
can see for the �rst few seconds Er is close to 1, meaning that most of the energy is
concentrated in the reversal modes. The energy then transfers to the turning modes,
followed by a brief transient period where it is shared roughly equally between the
three modes. Another transient period happens at around 13 seconds.

The normalized mode energies provide a natural way to categorize worm's behavior
into discrete categories. If for a duration, a single mode accounts for more than 55% of
the total energy, then I label that behavioral sequence by the behavior corresponding
to that mode. In addition, the sequences where the energy is shared roughly equally
between all modes are labeled as transient behaviors as they cannot be neatly char-
acterized into forward, backward or turn. An example ethogram corresponding to the
behavioral sequence in Fig. 4.3A is shown in Fig. 4.3B.

It is also possible to order the state space trajectories into distinct categories.
Fig. 4.3C shows 3D projections of the two forward and one of the reversal coordi-
nates color coded according to the inferred behavioral states. We can see that the
energy based discretization neatly orders trajectories into coherent bundles. Addition-
ally, it shows that trajectories corresponding to forward and reversal are orthogonal
cycles implying that forward and reversals can be treated as independent behaviors.
Next, Fig. 4.3D shows color coded 3D projections of the reversal and turning planes.
We can see that that many reversal trajectories are connected to deep body bends
seen as a large excitation in the Xt2 axis. This is consistent with the well observed
phenomenon that reversals and deep body bends such as omega turns are sequentially
linked [79, 80]. Interestingly, most transient states occur during transition behaviors,
especially the transition between reversal and turning.

Based on the discretization proposed above we can estimate various statistics of the
behavioral states. First I �nd that foraging worms spend about half the time in the
forward state, while the remaining is split equally between reversal, turn and transient
states Fig. 4.4A. I can also estimate the average duration of each behavioral bout, the
distributions of which are shown in Fig. 4.4B. I estimate the average forward duration
to be 1.84(1.79, 1.90)s. The average reversal duration to be 1.35(1.30, 1.39)s, average
turn duration as 1.22(1.18, 1.26)s and the average duration of transient behaviors as



4.3 Results 85

0 15 30
0

0.5

1

-2
0

2
-2 0 2

-6

0

6

-5

0

5 -6

0

6

-5

0

5

C

A

D

B

Forward

Reversal

Turn

Transient

0 15 30
Time (s)

tE
rE
fE

Time (s)

N
or

m
al

iz
ed

 E
ne

rg
y

1rX

2tX

2fX

1fX

2rX

2rX
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Figure 4.4: A. Fraction of total time spent in di�erent behaviors. B. Distribution of
the duration of each behavioral bout.

0.332(0.326, 0.338)s. The parenthesis are bootstrapped 95% upper and lower con�-
dence intervals. These estimates are broadly consistent with those previously reported
in literature [81, 82, 83]. The main di�erence is in the estimates of the average dura-
tion of forward behavior, which appears to be much smaller here. The estimates in the
literature range from 5 to 35 seconds [70, 81, 83, 84, 85]. A possibility for this large
discrepancy is the di�culty of de�ning the forward state and distinguishing it from
turning and transient behaviors. Indeed, if I rede�ne the forward state as being com-
posed of turning and transient behaviors then the revised estimate of average forward
bout duration is 7.30(6.94, 7.66)s, well within the range reported in literature so far.

Finally, easy access to transient behaviors is an interesting outcome of state space
based discretization of behavior, as they're usually di�cult to isolate. An analysis
of distribution of transient states shows that the transient states are not randomly
placed on the attractor but form a geometrically coherent structure. In Fig. 4.5 I
compare the density of states of forward and transient behaviors estimated using a 2d
kernel density estimate. As can be seen in Fig. 4.5B, states corresponding to forward
behavior are mostly concentrated near zero in the turning and reversal projections,
and concentrated strongly on a periodic orbit in the forward projection. On the other
hand states corresponding to transient behaviors in Fig. 4.5A do not have a zero value
in any of the projections. Importantly, they form a regular geometric structures in all
projections, orbits in forward and turning plane, and two symmetrically placed points
in the reversal plane. This is reminiscent of invariant manifolds such homoclinic orbits
and coherent structures from the theory of dynamical systems which connect di�erent
dynamically distinct regions together [66]. Additionally, the transient behaviors show
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increased density at the transition regions between behaviors instead of being di�use
over a region in phase space. Consequently, they allow a window into how worms
transition between di�erent behaviors. I conjecture that the these transition regions
are indeed coherent structures in the form of homoclinic or heteroclinic orbits. Based
on this it is suitable to hypothesize that at least in principle some of the behavioral
transitions can take place spontaneously. without any outside in�uence. At the very
least the topology of these structures means that the e�ort required to transition is
small.

Time Averaged Mode Energies AllowMeasurement of Long Timescale

Behaviors

Freely foraging worms show a long term behavior lasting up to 15− 20 minutes where
after leaving a food �lled plate they search an area densely, increasing their frequency of
reversals and omega turns [86]. Over time there is a transition to making fewer reversals
and turns, and increased forward movement leading to a more ballistic search. In some
sense then, the average bout duration estimated above is arguably not the complete
picture, as the bout durations are themselves changing slowly over time. A natural
question then is can we get to these long timescale behaviors lasting minutes, or possibly
longer. To capture long timescale behavior, I de�ne a running time average of the mode
energies as follows

Ei(T ) =
1

T

∫ T

0

Ei(t)dt (4.2)

Where i can be f for forward, r for reversal and t for turning mode. The time aver-
aged energies average over small scale �uctuations in mode energies seen in Fig. 4.3A,
but preserve long time scale structure. In Fig. 4.6 I plot the time averaged normal-
ized energy of di�erent modes against each other. We see that between 5-10 minutes,
during the area restricted search phase, all modes have equal energy. Thus, it appears
that equipartition of average energy in state space corresponds to a a di�usive search
which high frequencies of reversals and turning. Over time we can see that the energy
balance shifts such that forward mode is mostly active after about 15 minutes, leading
to the ballistic search part of the search strategy.

The datasets I analyzed do not have truly long time scale behavior, such as roaming
dwelling, or aging related behaviors and thus do not allow a proper test of this method.
Nevertheless, the ability show long term patterns illuminating search behaviors in for-
aging worms gives me con�dence that the basic idea should work for arbitrarily long
time scale behaviors.

Embedding of Escape Behaviors is Similar to Foraging Worms

Next, I attempt to form an embedding of the escape response dataset. This dataset
is qualitatively di�erent from the foraging dataset. First, the behaviors are di�erent.
Unlike escape behavior, foraging isn't driven by a direct sensory stimulus. Second,
instead of one long recording in the case of foraging, for escape sequence we have
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Figure 4.6: The time average of the normalized mode energies captures the long time
scale non-stationaries of foraging worms. Shown here is an example trace of a worm
for a 30 minute recording. We �rst see that the contribution of di�erent modes is not
static but keeps changing over the time-scale of minutes. In this example The forward
mode dominates for the �rst 3-4 minutes, after which all modes have roughly equal
energy. This equipartition phase corresponds to the area restricted search behavior
which makes the initial part of their search strategy. After about 15 minutes, the
forward mode again dominates as worms transition to a more ballistic search strategy.

N = 92 short recordings. This means that the variability we are sampling in the escape
response dataset is over the population of N2 worms, while the variability in foraging
dataset comes from a single worm's behavior over time. Given these di�erences, we do
not expect a strong relationship between the two embeddings. Surprisingly, however,
the reconstructed state space for escape response dynamics is nearly identical to that
of foraging worms.

Fig. 4.7 shows the reconstruction for the escape response dataset. Similar to crawl-
ing we �nd that an embedding window between K = 10 to K = 15 maximize pre-
dictability, Fig. 4.7A. I choose K = 11 so that the results are comparable to crawling
dataset. The embedding dimension is also equal to m = 6, as beyond m = 6, there
is no signi�cant gain in predictability Fig. 4.7B. The state space trajectories with a
sample escape sequence overlayed is shown in Fig. 4.7C. The state space trajectories
are nearly identical to the ones constructed from foraging behavior in Fig. 4.2B. These
observations suggest that the embedding constructed by the pipeline described in this
chapter is capturing essential aspects of worm's locomotion that are the same across
di�erent experimental conditions and across di�erent worms.

We can also estimate normalize mode energies averaged over all the N = 92 worms.
This is shown in Fig. 4.8. The mode energies allow us to clearly see the dynamics
involved during an escape response. The initiation of an escape response involves a
simultaneous excitation of reversal modes, and a suppression of turning modes. They
essentially mirror each other, suggesting a common mechanism underlying the excita-
tion of reversal and suppression of body bending. This is followed by a slow decay of
reversal modes to baseline, while the turning modes rise until they peak at about 8
seconds, which corresponds to the turning part of the response. Finally, after about
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Figure 4.7: Embedding of Escape Response A. Predictability time Tpred plotted as
a function of window length K for the escape response dataset. The trend is broadly
similar to the crawling dataset, with an optimum window between K = 10 and K = 15
frames. I choose K = 11 so that the embeddings are comparable to the crawling
dataset. B. Tpred plotted as a function of embedding dimension. Similar to crawling
we see that the predictive performance saturates after m = 6 dimensions. C. State
space trajectories of a single escape event. The reconstructed state space is similar to
the one constructed from foraging dataset.
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Figure 4.8: Normalized mode energies for the escape response averaged across all
N = 92 worms.

16 seconds, the worms resume forward movement in the opposite direction.

Embedding of Swimming Gait is a Regular Oscillation with Odd

Harmonics

The swimming gait of C. elegans is strikingly di�erent from the crawling gait. Worms
make faster, long wavelength C-shaped body bends when swimming in a low viscosity
medium. This is shown schematically in Fig. 4.9A. The predictability time Tpred varies
sinusoidally as a function of K (Fig. 4.9B), peaking at exactly one full period, which
happens at K = 50 corresponding to an oscillation frequency of 2.5 Hz. Once again,
we see that Tpred as a function of embedding dimension stops increasing after m = 6,
implying that 6D are enough to capture the dynamics of swimming gait. In Fig. 4.9C,
I plot the three dimensional reconstruction of the swimming state space, color coded
by the 4 dimension. They phase space is essentially a thick bundle of periodic orbits.
Frequency analysis reveals more information about the 6 components. The PSD of all
the 6 components is plotted in Fig. 4.9D, and shows that the �rst two components (top
panel) oscillate at a frequency of 2.5Hz. The 3rd and 4th components (middle panel)
show a mixture of the primary frequency and it's third harmonic equal to 7.5 Hz. The
remaining components (bottom panel) show a peak only at the 3rd harmonic.

It is not clear in advance why the second harmonic is absent from the swimming
gait. In the �nal chapter I put forward a qualitative hypothesis that a feedback control
signal which keeps the average mode energies constant, can lead to oscillations without
even harmonics in the normal modes.
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Figure 4.9: Embedding of a swimming worm A. A schematic of a swimming gait,
which is di�erent from the crawling gait. B. Tpred varies sinusoidally as a function of K,
peaking at exactly one full period, which happens here at K = 50 corresponding to an
oscillation frequency of 2.5Hz. Bottom panel shows Tpred as a function of embedding
dimension. Once again we see that predictability stops increasing after m = 6. C.

Three dimensional reconstruction of the swimming state space, with color being the 4
the dimension. D. PSD of all the 6 components shows that the �rst two components
(top panel) oscillate at a frequency of 2.5Hz. The 3rd and 4th components (middle
panel) show a mixture of the primary frequency and it's third harmonic equal to 7.5
Hz. The remaining components (bottom panel) show a peak only at the 3rd harmonic.
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4.4 Conclusion

In this chapter I have described a new method of analyzing C. elegans behavior. The re-
constructed state space is highly interpretable, and allows us to capture behavior across
di�erent time-scales, from instantaneous posture dynamics, to discrete behavioral cat-
egories over time-scale of a body wave, and to even longer time-scales of minutes to
hours. Additionally, the state space trajectories allow a deeper look into how worms
transition to di�erent behaviors, a process that is usually di�cult to study because of
the lack of a clear de�nition of a "transient behavior".

The ability of the proposed framework to capture detailed continuous dynamics
will be important for interpreting neuroimaging data. Typically, continuous time neu-
ral activities are correlated with discrete, coarse grained behavioral measures such as
centroid velocity, or transition rates [87]. However, postural dynamics are more closely
related to neural activities. Indeed, a recent study correlated whole brain neural ac-
tivities to postural dynamics obtained from phase velocity in the (a1, a2) eigenworm
planes. They showed that direct connections between continuous time postural dynam-
ics and neural activities [88]. The framework proposed in this thesis is ideally suited
for interpreting neural recordings. Mutant analysis meant to understand the genetic
correlates of worm behavior as done in [89, 90], has also mostly focused on discrete
time postural representations. A continuous time framework like the one proposed in
this thesis will also be bene�cial for such questions.

4.5 Supplementary Images

Fig. 4.10 shows the temporal sequence of modes for the crawling dataset.
Fig. 4.11 shows prediction error E(τ) for di�erent embedding dimensions.
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.





Chapter 5

Estimation of Lyapunov Exponents for

C. elegans Behavioral Dynamics

5.1 Introduction

In this chapter I will utilize all the methods developed in this thesis thus far to esti-
mate the spectrum of all six Lyapunov exponents. The estimated exponents allow an
unprecedented look into the complexity of natural behavior in C. elegans. Local Lya-
punov exponents allow a measurement of instantaneous variability of worm behavior.
While global exponents allow a characterization of average variability along with im-
portant symmetries and invariances involved with worm locomotion. The key �nding
is an observation that the Lyapunov spectrum of worm behavior belongs to the class
of damped driven Hamiltonian dynamics, such as the damped driven Du�ng oscilla-
tor discussed in chapter 3. The damped driven Hamiltonian nature, allows a natural
decomposition of the equations of motion into worm's biomechanics, environmental
e�ects and neuromuscular control. In the �nal section of this chapter I exploit the
damped driven Hamiltonian structure to propose a way to measure e�ective control
signals from behavioral measurements alone. Based on these estimates, I put forward
a conjecture that part of the feedback control signal in the worm serves to keep the
average mode energies constant.

5.2 Measurement of the Lyapunov Spectrum of C.

elegans Locomotory Dynamics

As we saw in chapter 3, chaotic dynamics are characterized by the fact that on average,
the distance between any two neighboring points, δt grows exponentially with time as
δt = δ0e

(λ1t), where λ1, or the maximal Lyapunov exponent (MLE) is the average rate
of exponential separation. Positive MLE is a signature of chaotic dynamics and is
known to underlie the exponential loss of predictability in chaotic systems [44, 69].
More generally, points in a local neighborhood of a chaotic phase space are sheared by
the �ow, and get simultaneously stretched and squeezed along di�erent directions in
phase space. Which means that for a complete characterization of an m dimensional

97
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chaotic phase space, we need the spectrum of m Lyapunov exponents, λi, 1 ≤ i ≤ m
measuring the rates of separation along the m orthogonal dimensions.

In the absence of equations of motions, the Lyapunov exponents carry invaluable
information about the dynamics of a system. In particular, the sum of all the exponents
measures the average dissipation rate of a dynamical system, being zero for systems
that conserve energy and negative for systems with dissipation. Then, the sum of the
positive exponents gives the average rate of information generation in a dynamical
system, also known as the Kolmogorov-Sinai (KS) entropy and is a measure of the
unpredictability or complexity of the dynamics (it is what determines Tpred). Another
measure of dynamical complexity, the dimension of the manifold on which the phase
space trajectories lie can be estimated from the Lyapunov exponents as per the Kaplan-
Yorke relation. And �nally, the Lyapunov exponents can be very useful in determining
the underlying symmetries of the dynamical system.

To estimate the Lyapunov spectrum from data, I follow the algorithm developed in
chapter 3. Brie�y, I �rst approximate the local Jacobians, J(xt) by a weighted least
square �t to the local dynamics. The weighting parameter θ is such that nearby points
are given a larger weight compared to far away points. The Lyapunov exponents are
then obtained by the long time average of the logarithm of eigenvalues of the product
of the J(xt)

TJ(xt) matrices, which for the reasons of numerical stability are estimated
by a repeated orthonormalization of the J(xt) matrices done using a recursive QR
decomposition. I also estimate the local Lyapunov spectrum, by taking the logarithm
of the square root of the eigenvalues of individual J(xt)

TJ(xt) matrices for each point
in the phase space. These local exponents carry important information about the
�uctuations in local predictability of the dynamics. In particular, the local KS entropy
estimated from the sum of the positive local Lyapunov exponents correlates well with
the complexity of the centroid track made by foraging worms on the agar plate, Fig. 5.1.
It is maximum when the worms are being unpredictable, for instance when they make
a complicated sequence of sharp turns, while it's minimum when worms are engaged
in highly stereotyped behaviors such as simple straight line motion. Thus the local KS
entropy forms a principled measure of instantaneous variability and unpredictability of
worm behavior.

A bootstrap estimate of the probability distributions of the global Lyapunov ex-
ponents from worm's behavioral phase space are shown in Fig. 5.2A. I �nd that there
are two positive exponents implying that there are two directions in phase space
along which points in a neighborhood get stretched (λ1 = 0.64 (0.61, 0.68)s−1 and
λ2 = 0.21 (0.19, 0.23)s−1). Where the numbers in parenthesis indicate bootstrap es-
timates for 95% CI lower and upper bounds. The sum of positive exponents which
bounds the KS entropy was estimated to be ĥµ = 0.86 (0.8, 0.92)s−1. Thus, the posi-
tive exponents set the predictability time scale at about 3/4th a body wave.

Next, I �nd that λ3 = −0.02(−0.04, 0)s−1, and can be treated as being equal to
zero within the estimation error. As mentioned earlier zero exponents usually signal
the presence of continuous symmetries in the underlying equations of motion and it can
be shown that all systems resulting from continuous (deterministic) dynamical systems
must have at least one zero exponent corresponding to the time translation invariance
[60]. In these systems the zero exponent corresponds to the direction of �ow in phase
space, along which no stretching or expansion can take place [60]. This again suggests



5.2 Measurement of the Lyapunov Spectrum of C. elegans Locomotory

Dynamics 99

0

4

8

12

16

20

y
(m

m
)

-12 -8 -4 0 4 8
(mm)x

start
end

1.1

0.9

0.7

0.8

1

0.6

(     )
s −

1
µ

ĥ

Figure 5.1: Local KS entropy ĥµ estimated from local Lyapunov exponents show
signi�cant variation across the worm's foraging behavior that correlates with the com-
plexity of the track.

that worm behavior is governed by underlying set of deterministic di�erential equa-
tions. The remaining exponents are all negative (λ4 = −0.24(−0.26,−0.22)s−1, λ5 =
−0.50(−0.54,−0.47)s−1 and λ6 = −0.94(−1.00,−0.88)s−1). These exponents counter
the expansion by the positive exponents.

I also �nd that the sum of all the Lyapunov exponents, which is equal to the volume
expansion rate in phase space is negative, implying that worm dynamics are dissipative
on average. This means that even though trajectory bundles expand locally in phase
space, the dissipation causes the phase volumes to contract as a whole and relax to an
attracting set. These con�icting requirements of local expansion and global contraction
are essence of behavioral complexity and cause the attractor to have a complex fractal
structure with a non-integer dimension (also known as a strange attractor). I estimate
the fractal dimension of the attractor by the KY relation to be DKY = 5.1(5.04, 5.25),
which is only slightly less than the dimension of the full phase.

Curiously, I observe observe a striking symmetry in the Lyapunov spectrum, such
that the exponents come in conjugate pairs that sum to the same number
α = −0.28 (−0.3,−0.26)s−1 Fig. 5.2B,C. This results in a striking symmetry of the en-

tire spectrum about
α

2
, Fig. 5.2A,B. Lyapunov spectra that are symmetric about zero,

such that conjugate pairs sum to α = 0 are a hallmark of conservative or Hamiltonian
dynamical systems. In these systems the stretching in phase space is exactly balanced
by shrinking resulting in the sum of the exponents being zero, as a consequence the
phase space volume remains constant. This pairing of exponents, also known as the
symplectic structure of the phase space is preserved when a viscous damping term is
added to the system, but instead of summing to zero, the exponents sum to a constant
value equal to the coe�cient of damping α. Such a symmetry has been previously
observed in two classes of systems, both derived from Hamiltonian dynamics. Coupled
oscillators with viscous damping where α is simply the dissipation per degree of free-
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Figure 5.2: The Lyapunov spectrum for the reconstructed phase space of foraging
worms. A. A bootstrapped probability distribution across all N = 12 worms is shown
here. There are two positive exponents, one zero exponent indicating the direction of
continuous �ow and three negative (dissipative) exponents. The spectrum is symmetric
about the point α/2 and this symmetry is an indication of an underlying Hamiltonian
structure in the dynamics. The small negative value of α indicates that worm's dy-
namics are surprisingly only mildly dissipative. B. A more direct measurement of the
symmetry of the spectrum shown by plotting λi and −α− λm−i+1 against each other.
Their equality is shown by the fact they cluster around the x = y line. C. Distribution
of the dissipation constant α. D. Distribution of the sum of positive exponents which
estimate the Kolmogorov-Sinai entropy ĥµ.
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Figure 5.3: Lyapunov Spectrum for escape response dataset is nearly identical to
that of foraging worms. A. Bootstrapped probability distribution across all N = 92
worms. B. Conjugate exponents plotted against each other to measure the symmetry.
C. Distribution of the dissipation constant α. D. Distribution of the sum of positive
exponents estimating the Kolmogorov-Sinai entropy ĥµ.

dom [61], and thermostatted molecular dynamic simulations where the α is a feedback
friction force that acts to maintain a dynamic equilibrium by either keeping the total
internal energy or the kinetic energy of the particles constant [62]. In either case these
observations lead us to conclude that worm dynamics belong the family of damped
driven Hamiltonian systems.

A natural question is whether the damped driven Hamiltonian structure we observe
is speci�c to the crawling worm or does it generalize across worm behaviors. To test, I
repeat the analysis pipeline �rst on worms executing an escape response Fig. 5.3, and
worms swimming in a liquid Fig. 5.4. Escaping worms test whether the symmetry is a
consequence of stationary motion in the absence of direct sensory stimulation. While
swimming worms are an important test case because of their qualitatively di�erent
gait. In both cases we observe that the estimated Lyapunov spectrum has the same
qualitative structure with 2 positive exponents, one zero and three negative with the
sum being negative. We again see a symmetric Lyapunov spectrum in both cases,
suggesting that the damped driven Hamiltonian structure we observe is not speci�c to
the crawling gait and might be a general feature of worm behavior.
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Figure 5.4: Lyapunov Spectrum for swimming dataset is quantitatively di�erent
but qualitatively similar. A. Bootstrapped probability distribution across all N = 30
worms in the swimming dataset. B. Conjugate exponents plotted against each other to
measure the symmetry. C. Distribution of the dissipation constant α. D. Distribution
of the sum of positive exponents estimating the Kolmogorov-Sinai entropy ĥµ.
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Estimating the E�ective Control Signal Using Local

Lyapunov Exponents

The �nding that damped driven Hamiltonian dynamics underlie worm locomotion al-
lows to interpret the normal modes as coupled damped driven Hamiltonian oscillators.
Furthermore, we can propose that the three oscillators obey the following equations of
motion,

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi
− ηpi + fiΩi(t) + C(pi, y(t))

(5.1)

Where (qi, pi) are coordinates for ith oscillator. The function H(qi, pi) is the total
energy of the oscillators, η is the environmental damping, fiΩi(t) is the oscillatory
driving force to each oscillator and C(pi, y(t)) is the neuromuscular feedback signal
which depends on the sensory stimuli y(t) and momentum variable pi. The above
equation enables a decomposition of worm behavior into biomechanics of worm's body,
dissipative forces in the environment and neuromuscular feedback control forces due to
neural processing of various sensory stimuli.

A potentially useful consequence of damped driven Hamiltonian dynamics is that it
allows us to measure parts of the control signal of the worm from behavior alone. The
sum of the Lyapunov exponents, which is equal to the total volume dissipation rate of
the dynamics is formally given by the divergence of eqn 5.1, as follows

6∑

i

λi ≈ ∇.V = −3η +
3∑

i

∂C(pi, y(t))

∂pi
(5.2)

Thus, remarkably, the local Lyapunov exponents can be used to extract information
about the control signal in the worm from behavioral measurements alone!

Energy Based Feedback Control

To test the hypothesis mentioned above, I estimated the sum of local Lyapunov expo-
nents for swimming data �rst. A short sequence is shown in Fig. 5.5A. The estimated
signal is noisy, but it has a clear oscillatory structure. The PSD of the sum of Lya-
punov exponents shown in Fig. 5.5B, shows that it has a peak at about 5Hz, or double
oscillation frequency of swimming worms which was estimated in Fig. 4.9D.

This is an interesting observation because as we saw in Fig. 4.9D, swimming worms
only displayed odd harmonics. Therefore it is not immediately clear why the sum of
local Lyapunov exponents would show a peak at double the oscillation frequency. A
possibility inspired by energy based control in thermostatted systems [62], is that at
least part of the feedback signal C(pi, y(t)) acts to keep the energy of worm's move-
ment constant. The simplest form of such an energy based control involves setting
C(pi, y(t)) = −γ(p2i − E0)pi [91]. This means that the feedback is proportional to
di�erence between the energy of a mode measured by p2i and some reference energy
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E0. The control gain γ parameterizes the strength of the feedback. Substituting this
feedback term into eqn 5.1 we obtain

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi
− αpi + fiΩi(t)− γ(p2i − E0)pi

(5.3)

If we had a system in the form of eqn 5.3, then we would expect the sum of the
Lyapunov exponents (or the divergence of the equation of motion) to be,

6∑

i

λi ≈ ∇.V = −3η + γE0 − γp2i (5.4)

There are two things to note about the terms on the RHS of eqn 5.4. First the
dissipation from the environment η is being countered by a positive term γE0. This
shows one possible way in which a feedback can counter the e�ects of environmental
forces. Second, there is a term proportional to p2i . In the case of a sinusoidal motion,
if pi oscillates at frequency f , then p2i oscillates at 2f , i.e. at precisely double the
frequency. Thus, a possible explanation of the doubling of frequency in PSD of sum
of local Lyapunov exponents is that the signal shown in Fig. 5.5A is proportional to
the square of at least some of the components. To see if this is the case, I also plotted
the PSD of X2

1 and X2
2 in Fig. 5.5B. It can be clearly seen that there is a close match

between the PSD of X2
1 and X2

2 , and that of the sum of Lyapunov exponents.
The observations in Fig. 5.5 are consistent with the hypothesis that at least part

of the feedback signal is proportional to the square (or the amplitude) of the modes.
To see if we recover these observations in a known system, I simulated �rst the linear
coupled oscillators described in eqn 1.3, with the energy based feedback as follows

q̇1 = p1

ṗ1 = −2q1 + q2 − γ(p21 − E0)p1

q̇2 = p2

ṗ2 = q1 − 2q2 − γ(p22 − E0)p2

(5.5)

The results of this simulation (with E0 = 0.6 and γ = 0.5 set arbitrarily) are
shown in Fig. 5.6A-D. The simulations show several interesting outcomes. First giving
a feedback term to keep the energy constant results in mode 1 completely dissipating
away as seen in Fig. 5.6A, while mode 2 remains active Fig. 5.6C. In this way, even
though we are in principle dealing with a 4D coupled oscillator system, the actual
dynamics are only 2D because mode 1 contains negligible energy compared to the
second mode n2. Thus, there is a natural reduction in the dimensionality of the system.
Second, the PSD of mode 2 oscillations shows odd harmonics as seen in Fig. 5.6D.
This is reminiscent of the odd harmonics oscillations we observed in swimming modes
(Fig. 4.9D). Finally, in Fig. 5.6B, we see that PSD of the divergence of eqn 5.5 also
shows a peak at double the frequency of mode 2 oscillations (Fig. 5.6D).

Thus a simple model of linear coupled oscillators is consistent with several non-
trivial observations. Namely, we observe that the model dynamics become e�ectively
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Figure 5.6: A.,C. First mode of the simulated systems shows rapidly decaying oscil-
lations. While the second mode remains active. B. PSD of the divergence term in eqn
5.4. D. PSD of the mode 2 oscillations. The peak frequency is half the frequency of
the divergence signal in eqn 5.4

low dimensional. The feedback results in oscillations containing odd harmonics, and
�nally the oscillations of the divergence of the equation of motion happen at double the
frequency of mode observations. Additionally, we also know from published literature
that an energy based feedback can result in a symmetric Lyapunov spectrum.

Goal Driven Control

To test if I can also study goal driven behavior by using the sum of local Lyapunov
exponents as a proxy for control signal I considered the transition between forward and
reversals during spontaneous locomotion and during an escape response. Worms make
a forward to reversal transition as part of the escape behavior when they receive an
aversive stimulus, but foraging worms can also make the same transition spontaneously
without an apparent sensory stimulus. I expect that only for the case of the escape
reversal, control signal estimated by sum of Lyapunov exponents will show a sharp
impulsive rise as the worm rapidly changes course from its current state to a reversal
on the onset of an aversive stimulus. On the other hand, I do not expect a strong phase
locking of the sum of Lyapunov exponents to the onset of spontaneous reversals.

To test these predictions, I compared the sum of local Lyapunov exponents for
spontaneous reversals extracted and aligned from the foraging dataset and a set of
escape reversals from the escape response dataset. As shown in Fig. 5.7, the sum of
Lyapunov exponents for escape reversals shows a strong impulse post stimulus onset,
after which it gradually saturates to baseline over the course of next 2-3 seconds. It is
worth noting that the actual escape sequence is much longer and lasts for more than 10
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Figure 5.7: Estimated sum of all local Lyapunov exponents for aligned escape (red)
and spontaneous reversals (blue).

seconds. Spontaneous reversals on the other hand do not show a signi�cant deviation
from baseline in this signal, which again aligns with our expectations and suggests that
spontaneous reversals do not necessarily need a strong driving signal.

The observations and experiments in this section not only display the utility of
local Lyapunov exponents in studying the control logic of the worm, but also suggest
a possibility that worms might keep their movement relatively steady as a result of a
feedback that keeps their energy constant. The results are preliminary, but suggest
intriguing avenues for further research on account of being consistent with several
di�erent observations.

5.3 Discussion

In this chapter I used the methods developed in chapter 3 for robust estimation of
local and global Lyapunov exponents to estimate these quantities for all the three
datasets, crawling, escape response, and swimming. Global Lyapunov exponents allow
us to extract the symmetries of the equations of motion governing C. elegans loco-
motion. The zero Lyapunov exponent suggests that the equations of motion have
are time-translation invariant, strengthening the interpretation that the dynamics are
mostly deterministic. Surprisingly, I also observe another symmetry which suggests
that worm's locomotion is closely related to Hamiltonian dynamics. Speci�cally, the
symmetry is such that the 6 lyapunov exponents come in 3 conjugate pairs that sum
to a small negative value. This implies that C. elegans locomotory dynamics can be
considered as a damped driven Hamiltonian system.
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Next, I suggest a useful consequence of the Hamiltonian structure is that the sum
of local Lyapunov exponents re�ect the non-autonomous terms, and therefore contain
information about the control neuromuscular control signals. I then estimate the sum
of local Lyapunov exponents for swimming worms, which show an oscillatory structure
with double the frequency of the body wave. Implying that the control signal has
a frequency that is double the body wave frequency. This can be explained if we
assume that part of the control signal is forcing the dynamics so that the average
mode energies are constant. I also use sum of local Lyapunov exponents to study the
di�erence between spontaneous reversals and stimulus induced escape reversals. Here,
I �nd that during spontaneous reversals the sum of the local Lyapunov exponents is
roughly constant suggesting that they don't require a strong control input. On the
other hand, escape reversals show a strong peak brie�y after the moment of impulse,
re�ecting a controlled behavior.

Estimation Issues

In this section I discuss the robustness of the estimate as a function of the scale pa-
rameter θ in Fig. 5.8. Most exponents grow as a function of scale, except λ3 which
remains stable around zero Fig. 5.8A. This increases our con�dence in the fact that
worm dynamics are governed by a deterministic dynamical system. I utilize di�erent
measures to judge the quality of Jacobian estimates, as shown in Fig. 5.8A. First, the
mean squared error of the prediction of a linear model parameterized by θ is plotted
as a function of θ. The values of θ for which the prediction error takes a small value
correspond to Jacobian estimates that can be trusted. As can be seen in Fig. 5.8B,
there is narrow range of θ where local Jacobians are correctly estimated. The same
values of θ also correspond to where λ3 reaches a value closest to zero (Fig. 5.8B middle
panel), and the conjugate exponents sum to the same value implying that the spectrum
is symmetric (Fig. 5.8B lower panel). These observations serve to signi�cantly increase
the con�dence of Jacobian estimates. Finally, there is a question about whether the
Lyapunov exponents converge to a stable value, or do they keep changing over time?
In Fig. 5.8C I have plotted the running average of various exponents as a function of
time. It can be seen that the estimates are quite stable.
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Conclusion

In this thesis I have made an attempt to build a framework to capture the nonlinear
dynamics of animal behavior in a model independent manner, and in as much details
as possible. At the most basic level, the construction of this framework required non-
trivial contributions to the �eld of nonlinear time-series analysis, in the form of robust
estimation of embedding parameters, and local Jacobians.

Using the framework developed in this thesis. The �rst contribution is a new
behavioral analysis pipeline which allows one to go from videos of freely moving worms
to a phase space of their body wave dynamics. The phase space maps almost all
the information about C. elegans locomotion onto highly interpretable geometrical
representation. In particular, it organizes C. elegans behavior as a hierarchical set of
cycles or periodic orbits. Globally, on large scales, we see three sets of periodic orbits,
corresponding the three broadest classes of C. elegans behavior, forward crawling,
backward crawling and turning. However, within each of these classes of stereotyped
behaviors there is tremendous variability. The variability is such that it isn't possible
to predict worm behavior too far in the future.

The next contribution is an unprecedented characterization of the observed behav-
ioral variability. I use the local Jacobian estimates to estimate the spectrum of local
and global Lyapunov exponents which measure the rates of expansion and contraction
along di�erent directions in state space. Along with positive exponents, which signify
chaotic dynamics, I �nd surprisingly, that the spectrum of Lyapunov exponents is sym-
metric. In particular, the 6 exponents come in 3 pairs that sum to a constant negative
value. This structure is a hallmark of damped driven Hamiltonian dynamics suggesting
that worm locomotion can be decomposed into coupled damped driven Hamiltonian
oscillators.

The �nal contribution is the observation that the damped driven Hamiltonian struc-
ture can be exploited to extract information about the neuromuscular control signals
by estimating the sum of local Lyapunov exponents. Remarkably, this is possible from
behavioral observations alone, without measuring any neural activity! As a prelimi-
nary test of this idea, I show that the sum of local Lyapunov exponents is oscillatory
with a frequency which is double the frequency of the body wave. This observation
is consistent with the hypothesis that the equations governing worm locomotion have
a feedback that maintains the average mode energies constant. Next, I study the
di�erence between spontaneous and stimulus driven transitions between forward and
backward motion in the worm. Remarkably, the sum of local Lyapunov exponents show
a clear distinction between spontaneous and stimulus driven reversals. This suggests
that spontaneous reversals can be executed without a strong neuromuscular control
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input, while stimulus induced reversals occur by means of a neuromuscular input.
The signi�cance of these results comes from the fact that they characterize the

complex, nonlinear dynamics of animal behavior in unprecedented detail. This detailed
characterization of behavioral dynamics will be crucial in interpreting large scale neural
recordings that are starting to become feasible [87, 92, 93]. The continuous nature of
these recordings means that discrete behavioral representations will not be able to
capture all the information in the neural signals. On the other hand an interpretable
continuous representation can be directly correlated with the neural signals. Genetic
perturbations will bene�t from this characterization as its possible to measure subtle
properties of the dynamics, such as unpredictability as measured by local and KS
entropy, or aspects of control input as measured by local Lyapunov exponents.

Finally, although, most of the tools are applied to C. elegans, they are not speci�c
to it. The framework and tools developed in this thesis are broadly applicable.
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