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I investigate some properties of proposed definitions for subsystem/mixed state complexity and
uncomplexity. A very strong dependence arises on the density matrix’s degeneracy which gives a large
separation in the scaling of maximum subsystem complexity with number of qubits (linear compared to
exponential). I also investigate several cases where the uncomplexity of quantum states are superadditive
and present some challenges and progress in showing that the relation holds in complete generality.
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I. INTRODUCTION AND BACKGROUND

Quantum information has become increasingly impor-
tant in understanding gravity, which has been realized
in studying black hole information [1,2] and holography
[3–5]. Going beyond the connections between entangle-
ment and geometry probed by Von Neumann entropy,
interest in a much more fine grained quantity, quantum
complexity has grown. Quantum state complexity has been
conjectured to be dual to either the volume or action of a
black hole’s interior [6–8]. Complexity potentially also
plays an important role in resolving/understanding the
formation or lack of firewalls for black holes [9,10].
An interesting parallel to entropy is that complexity

seems to obey a second law [11] which suggests that
formulating some analog of thermodynamics may be
possible. The authors also point out that much like how
free energy acts as a resource to preform useful work [12],
uncomplexity (remaining complexity) may be a resource
for useful computations.
In the context described above, the typical definitions of

quantum complexity describe only unitary operations acting
on pure states. Many systems of interest are subsystems of a
larger pure state (e.g., evaporating black hole, half of the
thermofielddouble state), and these subsystemswill generally
be mixed. In the holographic context, mixed subsystems
would correspond to subregions. Subregion complexity has
been calculated relying on the proposed holographic duality
between complexity and volume [13,14]. For quantum
circuits, several possible definitions for mixed state/subsys-
temcomplexity havebeen recently proposed in [15].What the
authors define as purification complexity and basis complex-
ity will be the focus of the following work. The goal of this
paper is to better understand how the complexity of a system
and its constituents are related. In particular I will investigate
whether a superadditive property holds for uncomplexity.

II. COMPLEXITY DEFINITIONS

The definitions of complexity that will be used in this
paper will be built upon the typical definitions for pure state
complexity. In AdS/CFT, the quantum complexity that we
would want to describe would be for the state of the CFT.
There have been several proposals of how to define pure
state complexity in field theory [16,17]. Instead in this
paper, I will restrict to the context of quantum circuits with
qubits for simplicity. I will always be describing a system
of 2N qubits with N ≫ 1 and will divide this into
subsystem A and subsystem B which will each be com-
prised of N qubits and can be in mixed states. I will also
restrict the full AB system to always being in a pure state.
The definitions of complexity that I will utilize depend

on a universal set of elementary gates which can approxi-
mate unitary operations on our system. The arguments of
this paper will not depend on which universal set is used
although the actual values for the complexities slightly
depend on this choice. The definition of operator complex-
ity as defined in [18] is the minimum number of elementary
gates required to approximate a unitary operator. From this,
the complexity of a target quantum state can be defined:
state complexity is the minimal operator complexity of any
unitary operator that takes the system from some reference
state (typically the completely unentangled state, j0i⊗2N) to
the target state.
Note that operator complexity and state complexity,

although related are not exactly the same. In particular, a
unitary operator that will transform the reference state to
some target state is not always the most efficient one. The
maximum possible complexity1 of a pure state of N qubits
is 2N [19], while the maximum possible complexity of a 2N
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1I have dropped the dependence on ϵ, an error tolerance needed
in approximating the unitary transformations in order to keep the
complexities finite. I will drop the ϵ dependence throughout this
paper.
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by 2N unitary operation is 22N . This distinction between
operator and state complexity will be important when I
begin considering density matrices.
This definition for state complexity is only capable of

describing pure states. One of the leading candidates for
subsystem complexity proposed in [15] is what the authors
call purification complexity. Purification complexity for a
mixed state is defined as the pure state complexity of a
purified stateminimizing over all possible purifications.2 The
authors showed that this definition possibly has a good dual
holographic description. In the following work, CðρÞ will
refer to the purification complexity for a density matrix. The
unitary operations that are used to define, CðρAÞ and CðρBÞ
are done so in our pure AB system.
A notable difference that subsystem complexity has with

entropy, is that it does not obey a subadditive relationship.
For entropy, subadditivity is

SðρABÞ ≤ SðρAÞ þ SðρBÞ ð1Þ

A simple example of complexity not obeying subadditivity
is a maximally complex state in the full AB system and
reduces to a maximally mixed state when tracing out either
subsystem A or B. The maximally complex state has
complexity 22N but each subsystem would only have
complexity equal to N. This example is explained in a
bit more detail in Sec. III.
When thinking about the analog of thermodynamics for

complexity, the more important quantity to consider may be
uncomplexity, ΔC, which is just defined as the separation
of complexity of the state from maximum complexity:

ΔC ¼ Cmax − C ð2Þ

The term, Cmax is just 2N for a pure state of N qubits. It may
not be obvious what to use for mixed states. The definition I
will use for CmaxðρAÞ will come from finding the density
matrix, ρA;max with the same eigenspectrum as ρA such that
CðρA;maxÞ is maximized.3 The justification for defining
maximum subsystem complexity in this way,4 is that sub-
system uncomplexity should be a measure of how compli-
cated remaining operations can be while limiting yourself to
acting on one system. Unitary operations acting on one
subsystem cannot change its density matrix eigenspectrum.
If uncomplexity could be understood as a resource to

perform useful computations then a good definition of
subsystem/mixed state uncomplexity should obey a super-
additive relation:

ΔCðρABÞ ≥ ΔCðρAÞ þ ΔCðρBÞ ð3Þ

If there were situations where this statement were not true,
then it would suggest the resources available to do useful
computations when restricted to only acting on each
subsystem separately is greater than the resources available
acting on the combined system. One goal in this paper is to
investigate when superadditivity of complexity seems to
hold. I will restrict to cases where system AB is pure
although ideally, the relation would hold more generally.
I will also reference basis complexity, CB and spectrum

complexity, CS which are also defined in [15]. These
quantities are related to purification complexity as follows:

CðρÞ ≤ CSðρÞ þ CBðρÞ ð4Þ

CðρÞ, the minimum number of gates required to prepare ρ
for any purification must be bound from above by the
number of gates required to prepare a density matrix with
the same eigenspectrum, CSðρÞ added to the number of
gates required to prepare the density matrix in the correct
basis, CBðρÞ.
I will sometimes focus on basis complexity, CB, by not

using the standard reference state (all qubits unentangled
and in the 0 state). To explain the prescription for choosing
the reference state, first consider the target state, jψ ti
written in the Schmidt basis:

jψ ti ¼
X

i

cijiAijiBi ð5Þ

The reduced density matrix for subsystem A, ρA will have
eigenvalues, λi ¼ jcij2 with the same being true for sub-
system B. Our nonstandard reference state will depend on
the coefficients in the Schmidt decomposition, ci. To be
specific, our chosen reference state, jψ ri will be

jψ ri ¼
X

ciji0Aiji0Bi ð6Þ

with orthonormal bases ji0Ai and ji0Bi chosen to minimize
the reference state’s complexity. To reiterate, jψ ri is the
state5 that has minimal complexity relative to the standard
reference state, j0i⊗2N for any state with Schmidt coef-
ficients, ci. I will use ΛA or ΛB to denote the reduced
density matrices from taking the partial trace of the
reference state. Complexity (and uncomplexity) found
using this reference state6 will always be denoted with a

2With minimal ancilla qubits used.
3Other obvious choices lead to superadditivity being violated

in most cases. I thank Adam Brown for suggesting this choice.
4[20] approaches defining mixed state uncomplexity differ-

ently. It is not obvious that their definition will always coincide
with what is used here but both capture a similar spirit, keeping
the eigenspectrum fixed.

5The complexity of these reference states is similar to what
[15] refers to as the spectrum complexity. Note that it is not
exactly the same since I am considering not just a state with the
same eigenspectrum, λi but the same Schmidt coefficients, ci
which has additional phase information.

6From a holographic perspective, an entangled reference state
like this might be a natural choice. Such as using the thermofield
double state for a two-sided black hole in AdS/CFT.
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tilde, written as C̃ otherwise the standard reference state
will be used. This reference state can be used to describe the
complexity of pure states in the full AB system, as well as
find the complexities for the subsystems.
This choice of reference state is done to ignore the

difficulty of preparing the correct spectrum of eigenvalues.
Relative to this reference, finding subsystem complexity,
C̃ðρAÞ is then the minimal number of gates in the minimal
unitary transformation, acting only on subsystem A to go
from the density matrix, ΛA to ρA. This is the same as what
[15] calls basis complexity.
There are some important features to note in this

definition and properties of the density matrix, ρA. Every
unitary operation on the state, ΨAB that does not change the
eigenspectrum of the reduced states, ρA and ρB can be
decomposed into some UA ⊗ UB. However, these oper-
ations UA and UB are not always the same as the operators
used in finding the complexities of the reduced density
matrices ρA and ρB. As is noted in [20], there will be
operations on either subsystem A or B that do not change
the density matrix and therefore should not count toward
changing its complexity. I will refer to those operations as
undetectable by either A or B. In other words, undetectable
unitary operations are ones that rotate within the degenerate
eigenspace of an eigenvalue and do not change the density
matrix. A density matrix’s complexity cannot be sensitive
to undetectable operations.

III. THE ROLE OF DEGENERACY

The degeneracies of density matrices play a surprising
role in mixed state complexity. The distinction between
detectable and undetectable operations makes maximum
subsystem complexity strongly dependent on how degen-
erate the density matrix is. First consider constructing a
very complex ½Oð22NÞ� state for AB. Any state can be
constructed with a circuit as shown in Fig. 1. This circuit is
made up of three unitaries: US, which prepares the correct
eigenspectrum for the density matrices7 and UA and UB
which transforms to the correct bases for subsystems A and
B in the Schmidt decomposition. This circuit is not
necessarily the most efficient one to prepare this state,
but from the definition of complexity the combined number
of elementary gates inUS,UA, andUB must be greater than
or equal to the state’s complexity, ðOð22NÞÞ.

CðUSÞ þ CðUAÞ þ CðUBÞ ≥ Oð22NÞ ð7Þ

The spectrum complexity and the complexity of US in
Fig. 1 cannot be greater than Oð2NÞ. To see this, consider
the circuit in Fig. 2 that can be used to construct any density

matrix eigenspectrum. This circuit first prepares the desired
Schmidt components of the final state in the AB system as
the coefficients in the computational basis for a pure state in
just the A subsystem. This operation is at most of
complexity Oð2NÞ. Then using N CNOT gates, the desired
eigenspectrum is achieved. This must mean that the
combined UA and UB transformations must have had
complexity ðOð22NÞÞ. The complexities of these operations
restricted to acting only on a single subsystem can be very
complex, but will not always be relevant for the subsys-
tem’s complexity depending on degeneracy.
Very complex states for system AB are expected to

reduce to very mixed density matrices for A and B [21].
However, as long as the subsystem entropy is nearly
maximal, I do not have reason to expect breaking exact
degeneracy in the norm of the Schmidt coefficients pre-
vents the AB state from having complexity Oð22NÞ. The
degeneracy is relevant to the subsystem complexity because
of the distinction between detectable and undetectable
operations, but these operators do not have this distinction
for the full AB system.

FIG. 1. Any state ψAB can be prepared with this circuit.
Although this may generally be far from the most efficient
circuit, the fact it can always be done places an upper bound on
the complexity.

FIG. 2. The eigenspectrum of any density matrix, ρA can be
prepared with this circuit. This particular circuit only prepares
density matrices diagonal in the computational basis and its
complexity is bounded from above by 2N þ N gates.

7I have made the choice to include phase information present
in the Schmidt coefficients that the density matrices are not
sensitive to.
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For highly complex AB states, if the density matrices for
A and B have no degeneracy, then there are no degenerate
subspaces and no undetectable operations. The transfor-
mations UA and UB will be the minimally complex trans-
formations to prepare the proper basis and the basis
complexity of at least one of the density matrices will
be ðOð22NÞÞ. Compare that to the maximally mixed state
which is very easy to construct in the full AB system.
Preparing N bell pairs and assigning each half of the Bell
pair to either subsystem A or B, leads to a maximally
entangled state. Each Bell pair is prepared with a single
Hadamard gate and a single CNOT gate, making the
complexity of this full operation, 2N. It seems surprising
that there can be such a large difference in the subsystem
complexity (Oð22NÞ compared toOðNÞ) based on breaking
exact degeneracy when the full system’s pure state com-
plexity would not have to be much different.

IV. SUPERADDITIVITY

In this section, I will investigate if the following super-
additivity relation holds:

ΔCðΨABÞ ≥ ΔCðρAÞ þ ΔCðρBÞ ð8Þ

A. Case 1: A and B unentangled

Superadditivity easily holds in this case because keeping
subsystems A and B unentangled and pure, severely limits
the complexity of the overall state in AB. The complexity
of such a state can be at most the sum of the maximal
complexities of states in A and states in B (each 2N).
Maximal complexity grows multiplicatively, not additively,
so the maximal complexity of the total system (AB) will
always be far larger. Cmax;AB − CAB ≫ Cmax;A þ Cmax;B.

B. Case 1A: Many of the eigenvalues are zero

This is similar to case 1, where A and B are unentangled.
In this case, the complexity of the full AB state is limited by
the average basis complexities of A and B. Let nS be the
Schmidt number (the number of nonzero eigenvalues) of
the density matrix, ρA. The Schmidt decomposition of the
state will be:

ΨAB ¼
XnS

i¼1

cijiAi ⊗ jiBi ð9Þ

with the terms in the sum being cut off at the Schmidt
number. Making use of a superposition property of com-
plexity which will be described in Sec. IV D, the complex-
ity of the AB state is bounded from above:

CðΨABÞ ≤
XnS

i¼1

CðjiAiÞ þ CðjiBiÞ ≤ 2nS � 2N ð10Þ

ΔCðΨABÞ ≥ 22N − 2nS � 2N ð11Þ

As long as nS ≪ 2N , this is essentially the same as the
unentangled case. The uncomplexities of subsystems A and
B will be limited to being OðnS � 2NÞ but the full AB
system will have uncomplexity Oð22NÞ.

C. Case 2: A and B maximally mixed

Unlike the previous cases, these AB states are capable of
being maximally complex, 22N . As was noted in the
previous section, the subsystem complexity for maximally
mixed ρA and ρB is very low, CðρAÞ ¼ CðρBÞ ¼ N. This
might seem problematic since ΔCðΨABÞ can now be 0. But
from the definition of CmaxðρÞ:

ΔCðρAÞ ¼ ΔCðρBÞ ¼ 0 ð12Þ

This case becomes trivial because ρA and ρB are propor-
tional to the identity and are therefore diagonal in any basis.
Any unitary transformation of the identity matrix will keep
it diagonal and are therefore undetectable. The complexity
of the density matrix cannot change from a unitary
operation only acting on one subsystem (just A or B),
so the maximally mixed density matrices are already in
their maximally complex state.
Superadditivity is trivially easy to verify in the cases so

far, but it provides hints on how to approach the problem
more generally. As the density matrix becomes increasingly
mixed, the full AB system is capable of being more
complex but as the density matrix gains degenerate eigen-
spaces, the set of detectable operations in only A or only B
decreases and therefore the complexity of ρA and ρA
become more limited. The next extreme to consider is a
state that is highly entangled state with no eigenspace
degeneracy.

D. Case 3: All nonzero eigenvalues
and no degeneracy

In this situation, the entropy can be arbitrarily close to
maximal, but all unitary operations on A are classified as
detectable since there are no degenerate eigenspaces.
Because of this property, there is a direct connection
between the minimal unitary to construct jΨABi and the
minimal unitaries to construct ρA and ρB.
To show this, I will make use of our modified definition

of complexity, C̃. From our modified reference state, call
the minimal unitary operations to prepare ρA and ρB, U0

A
and U0

B respectively. Normally, there would be many
jΨABi’s that could reduce to ρA and ρB after taking the
appropriate partial trace. In this case of complete lack of
degeneracy however, jΨABi is uniquely picked out (once
the phase information in each Schmidt coefficient is
included which is contained in the modified reference
state). All gates used to prepare jΨABi are detectable by A
or B since there are no degenerate subspaces. The minimal
unitary transformation to prepare jΨABi is then just
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U0
A ⊗ U0

B sincewe donot need to prepare the spectrum.This
is illustrated in the circuit shown in Fig. 3. The complexities
of the subsystems and the full system are then additive:

C̃ðρAÞ þ C̃ðρBÞ ¼ C̃ðΨABÞ ð13Þ

C̃ðρA;maxÞ þ C̃ðρB;maxÞ ¼ C̃ðΨAB;maxÞ ð14Þ

The superadditivity inequality is saturated here using the
modified reference state which means it holds for basis
complexity. Note that the same may not always be true for
purification complexity.
An interesting point to note is that the distinction

between circuit complexity and state complexity disappears
when there is no degeneracy. When considering mapping a
single pure state to another pure state, there will be a wide
range of nonequal unitaries that can accomplish this goal.
For example, transforming from the usual reference state,
only a single row of the unitary matrix (written in the
computational basis) is needed to specify this particular
mapping which is why many different unitary operations
can accomplish the same task. So when defining pure state
complexity, specifically the minimal unitary operation
needs to be considered. When transforming density matri-
ces with high nondegeneracy and high Schmidt number
however, then how a space of states is being mapped is
being specified, not just the transformation of a single state.
Starting from the modified reference state, finding the basis
complexity of a completely nondegenerate density matrix
with all nonzero eigenvalues involves specifying how every
basis vector in the Hilbert space is being mapped by the
unitary transformation which uniquely determines the
unitary transformation.
These are the only cases where I have been able to show

superadditivity. I will end with some comments on how to
approach the remaining case, when there are some zero
eigenvalues and not complete degeneracy:

E. Case 4: Some degeneracy

The difficulty here that was not present in the non-
degenerate case is that the minimal unitary operations to
prepare the reduced states ρA and ρB are not necessarily the
same operators used to prepare the full AB state, ΨAB. The
degeneracy in ρA and ρB leads to ambiguity in determining
the full state. Because of this, directly comparing complex-
ities CAB and CA þ CB is difficult. I will motivate a new
quantity called average basis complexity as a tool to place
bounds on subsystem complexity.
A useful property of complexity referenced in [22] is

how it behaves under superposition.8 Consider a state, ψ
which is in the superposition of some set of orthogonal
states, fϕ1;…;ϕmg:

hϕijϕji ¼ δij ð15Þ

jψi ¼
X

i

cijϕii ð16Þ

then ψ’s complexity will be bounded from above by the
sum of complexities of those orthogonal states:

CðjψiÞ ≤
X

i

CðϕiÞ ð17Þ

I make use of this property to examine the basis in which
the density matrices are diagonalized. Consider an ortho-
normal basis, fjiig for the Hilbert space, H. I define the
average basis complexity to be the complexity averaged
over the pure basis states:

CavgðfjiigÞ ¼
1

dimðHÞ
X

i∈fjiig
CðjiiÞ: ð18Þ

First consider applying this to a pure state in the full AB
system written in the Schmidt decomposition:

XnS

i¼1

cijiAi ⊗ jiiB: ð19Þ

I can place a bound on the complexity of the state in the AB
system based on the average basis complexities in the
subsystems A and B:

CðjΨABiÞ ≤ nS � ðCavgðfjiAigÞ þ ðCavgðfjiBigÞÞ ð20Þ

therefore, very complex states in the AB system, must have
a Schmidt decomposition with high combined average
basis complexities for subsystems A and B.
I can also apply this to the density matrices for

subsystems A and B. The bases of interest are the bases

FIG. 3. In the no-degeneracy case: This is the minimum unitary
operations to prepare a state jΨABi starting from the modified
reference state. The circuit separates into two disjoint pieces,
acting on systems A and B separately.

8The reference shows this for the superposition of two
orthogonal states, but it is easily extended to more than two states.
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in which the density matrix is diagonal. If a mixed state in
subsystem A is diagonal in the orthonormal basis, jiAi, then
a possible purification is given by:

XnS

i¼1

cijiAi ⊗ jxiiB ð21Þ

The simple states jxiiB can all be chosen to have complex-
ity OðNÞ. Since ρA’s complexity must be less than this
purification, then:

CðρAÞ ≤ nS � ðOðNÞ þ CavgðfjiAigÞÞ ð22Þ

Unlike the Schmidt decomposition which uniquely picks
out bases for A and B, the density matrices for A and B may
be diagonal in multiple bases. So the complexity of a
density matrix is always limited by its least complex
diagonal basis. If the degeneracy of a density matrix allows
for a diagonal basis with low average basis complexity,
then the complexity of the density matrix cannot be large.
In the completely degenerate case, there is a diagonalizing
basis with the average basis complexity equal to OðNÞ.
In highly degenerate density matrices, bases with most
eigenvectors having low complexity should be easy to find.
Next consider the other extreme, a maximally non-

degenerate density matrix. From Sec. III, I argued these
density matrices can reach Oð22NÞ complexity. In order to
have such high complexities, the basis in which the density
matrix is diagonalized must have average basis complexity
of Oð2NÞ. For density matrices with low degeneracy,
sometimes only high complexity bases may be possible.
Next I will look at how the average basis complexity of a

given Hilbert space can differ for different basis choices.9

Consider two arbitrary orthonormal bases, fvig and fwig
both spanning, H. Since they span the same space, any
vector from one basis can be written as a linear combination
of states from the other. Using the superposition property of
complexity:

CðjwjiÞ ≤
X

i

CðjviiÞ ∀ j ð23Þ

Then averaging over all wj’s, gives a relationship between
the average basis complexities for the two different bases:

CavgðfjwjigÞ ≤ dimðHÞ � CavgðfjviigÞ ð24Þ

with the same being true substituting w for v and v for w. If
fvig is the basis of minimal average basis complexity and
fwig is the basis of maximal basis complexity for this
Hilbert space, then this shows that any basis can have

average basis complexity at most dimðHÞ times larger than
any other basis choice.
Applying this property to a density matrix with degen-

erate eigenspaces with multiplicities, fmjg, further limits
can be placed on how much the average basis complexities
can vary for two different bases, (fvj;ig and fwj;ig) in
which the density matrix is diagonal. In this notation, the j
index enumerates the eigenspace of the jth eigenvalue and
the i indexes basis vectors spanning the mj dimensional
subspace. First I will write the average basis complexity of
the entire Hilbert space, H for basis, fvj;ig in terms of the
average basis complexities of each of the degenerate
eigenspaces:

Cavgðfvj;igÞ ¼
1

dimðHÞ �
X

k

mk � Cavgðfvj¼k;igÞ ð25Þ

In this expression, fvj¼k;ig is the set of v basis vectors
indexed by i for the kth eigenspace. Next, applying Eq. (24)
to each eigenspace, the relationship between average basis
complexities for the two different bases becomes:

Cavgðfvj;igÞ ≤
1

dimðHÞ �
X

k

m2
k � Cavgðfwj¼k;igÞ ð26Þ

This is consistent with what is known about the most
extreme cases. With no degeneracy, the basis is fixed and
therefore average basis complexity cannot be changed at
all. With complete degeneracy, every basis diagonalizes the
density matrix and the average basis complexity can range
from OðNÞ to 2N .
Since a density matrix will have its complexity limited

by every basis in which it is diagonal, very degenerate
density matrices will generally not be able to reach high
complexity as long as a low complexity basis exists. For
density matrices with low degeneracy, Oð22NÞ complexity
is achievable, and therefore these matrices must be
forced to be diagonalized in a high average complexity
basis, Oð2NÞ.
To compare the subsystem complexities to the full

system’s, consider e.g., if fjj; iiAg and fjj; iiBg are the
bases with minimal average basis complexity that ρA and
ρB are diagonal in. Then the Schmidt basis of the full AB
system can have average basis complexity of at most,
1
nS
� P

k m
2
k � ðCavgðfjj ¼ k; iiAgÞ þ Cavgðfjj ¼ k; iiBgÞ.

Applying these as bounds to the complexities gives:

CðρAÞ ≤ nS � ðOðNÞ þ Cavgðfjj; kiAgÞÞ ð27Þ

CðρBÞ ≤ nS � ðOðNÞ þ Cavgðfjj; kiBgÞÞ ð28Þ

CðΨABÞ ≤
X

k

m2
k ð29Þ

�ðCavgðfjj ¼ k; iiAgÞ þ Cavgðfjj ¼ k; iiBgÞ ð30Þ
9There is qualitative similarity to [23] which also argues for

basis dependent complexity. Their reasoning and conclusions
however are much different.
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To be clear, I have shown how much average basis
complexity can differ but have not completely laid out what
are the necessary and sufficient conditions for low/high
average basis complexities bases to exist. I would like to
understand when a low average complexity basis for some
subspace is not possible.
Furthermore, it would be nice to be able to give a more

precise statement comparing the complexities of the full
system to its subsystems. The average basis complexities
restrict the possible values for both system and subsystem
complexities. But to really prove superadditivity generally,
how CðΨABÞ − CðρAÞ − CðρBÞ varies amongst states of a
particular eigenspectrum would need to be known.

V. DISCUSSION

In this paper I have investigated properties of a few
proposed definitions of subsystem/mixed state complexity:
purification and basis complexity. This led to arguments
that show the importance of degeneracy of eigenstates of a
density matrix for these complexity definitions. The dis-
tinction between exact degeneracy and broken degeneracy
is surprisingly important and greatly affect how large the
complexity of the density matrix can be [OðNÞ compared to
Oð22NÞ]. A density matrix can be thought of as giving a
probabilistic combination of pure states. In the case of a
maximally degenerate density matrix, there is no inherently
preferred basis, which allows for a description made up
entirely out of simple (low complexity) states. When little
to no degeneracy exists then the density matrix can be
forced into a description of a probabilistic mixture of high
complexity states. This distinction is closely related to the
non-linear nature of complexity for a superposition of states
[10,19]. A basis of low complexity states can be trans-
formed into a basis of high complexity states and vice-versa
with either description (high or low complexity) spanning
the same Hilbert space.
The large separation in complexity scales due to break-

ing degeneracy reveals a large separation in complexity

scales for maximum spectrum and basis complexity. For a
2N dimensional Hilbert space, spectrum complexity must
be less thanOð2NÞ but basis complexity can reachOð22NÞ.
In other words, states with high uncomplexity have most of
the remaining complexity coming from basis complexity.
The full state’s complexity has dependence on the

average basis complexity in the Schmidt decomposition
but there does not seem to be reason to believe that the full
state’s complexity is sensitive to the difference between
exact and non-exact degeneracy of its reduced density
matrices. I would like to better understand how a sub-
system’s complexity is related to the full system’s and if it is
possible to show superadditivity in complete generality.
Understanding this relationship would help in developing a
thermodynamic-like description of complexity.
If uncomplexity plays an important role in the formation/

existence of black hole firewalls, then understanding
subsystem complexity should be required since composite
systems are used to describe black holes as they evaporate
or as new things fall past the horizon. When adding a single
pure qubit to a large pure system, the maximum possible
complexity doubles leading to greatly increased uncom-
plexity [11]. While maximum pure state complexity and
maximum complexity of very nondegenerate mixed states
grow exponentially with number of qubits, highly degen-
erate density matrices’ maximum complexities only grow
linearly. An interesting question is if these properties say
anything about black hole information or firewalls.
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