Adaptive Detrending to Accelerate Convolutional
Gated Recurrent Unit Training for Contextual Video
Recognition

Minju Jung®°, Haanvid LeeP, Jun Tani®*

2School of Electrical Engineering, Korea Advanced Institute of Science and Technology,
Daejeon, Korea
bSchool of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Korea
¢Cognitive Neurorobotics Research Unit, Okinawa Institute of Science and Technology
Graduate University, Okinawa, Japan

Abstract

Video image recognition has been extensively studied with rapid progress re-
cently. However, most methods focus on short-term rather than long-term
(contextual) video recognition. Convolutional recurrent neural networks (Con-
vRNNS) provide robust spatio-temporal information processing capabilities for
contextual video recognition, but require extensive computation that slows down
training. Inspired by normalization and detrending methods, in this paper we
propose “adaptive detrending” (AD) for temporal normalization in order to
accelerate the training of ConvRNNs, especially of convolutional gated recur-
rent unit (ConvGRU). For each neuron in a recurrent neural network (RNN),
AD identifies the trending change within a sequence and subtracts it, removing
the internal covariate shift. In experiments testing for contextual video recog-
nition with ConvGRU, results show that (1) ConvGRU clearly outperforms
feed-forward neural networks, (2) AD consistently and significantly accelerates
training and improves generalization, (3) performance is further improved when
AD is coupled with other normalization methods, and most importantly, (4) the
more long-term contextual information is required, the more AD outperforms

existing methods.

*Corresponding author
Email address: tani1216jp@gmail.com (Jun Tani)

Preprint submitted to Journal of BTEX Templates May 14, 2018

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
[pttp:77creativecommons.org/Ticensesby-nc-nd/4.0]|



http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

25

Keywords: Detrending, normalization, internal covariate shift, convolutional
neural networks (CNNs), recurrent neural networks (RNNs), convolutional

recurrent neural networks (ConvRNNs)

1. Introduction

Convolutional neural networks (CNNs) [1] show remarkable performance on
the ImageNet challenge dataset, consisting of 1000 classes and 1.2 million train-
ing images [2]. Encouraged by this success, several approaches exploit the spa-
tial processing capability of CNNs in video recognition tasks [3, 4]. Two-stream
CNNs [3] and convolutional 3D (C3D) networks [4] are the most commonly
used networks. Two-stream CNNs combine classification abilities of spatial-
and temporal-stream networks, being composed of a spatial-stream network that
processes individual RGB frames and a temporal-stream network that processes
stacked optical flow over several frames. C3D networks extend 2D convolution
to 3D convolution by adding time as a third dimension, processing stacked
consecutive RGB frames. However, both networks employ a stacking strategy
that utilizes only a limited number of temporal correlations between stacked
frames in order to recognize videos. Once the temporal window advances to
the next position, information from the previous stack is completely dropped.
This creates a problem of contextual recognition that requires the extraction of
long-range temporal correlations [5].

In this paper, we attempt to overcome this limitation using recently intro-
duced convolutional recurrent neural networks (ConvRNNs) that replace the
weight multiplication of RNNs with convolution in order to exploit spatial and
temporal information processing capabilities of CNNs and recurrent neural net-
works (RNNs), respectively [6, 7, 8]. By extracting spatio-temporal features
hierarchically, ConvRNNs handle complex problems in the space-time domain,
such as precipitation nowcasting [6], video recognition [7], and video predic-
tion [8]. Also, problems restricted to the spatial domain can be handled by

ConvRNNSs in an iterative manner [9]. For example, in instance segmentation,



30

35

40

45

50

55

ConvRNNSs sequentially segment one instance of an image at a time [9]. How-
ever, training ConvRNNs is painfully slower than training feed-forward CNNs,
which receive a single frame or stacked multiple frames for video recognition,
because recurrent connections require additional computation. Moreover, it is
hard to parallelize computation of ConvRNNs due to the sequential nature of
RNNs, which require computations from previous time steps in advance for
computing the current time step. Thus, finding a way to achieve faster learning
convergence has been a barrier to practical development of ConvRNNs.

Loffe and Szegedy [10] argue that internal covariate shift is responsible for the
increased training time in feed-forward neural networks, including multi-layer
perceptrons (MLPs) and CNNs, and they suggest batch normalization (BN) to
normalize the input distribution of a neuron for each mini-batch, as a way to
reduce training time. BN successfully removes internal covariate shift, thereby
significantly accelerating training with improved generalization, and this tech-
nique has become standard for training feed-forward neural networks. Some
studies use BN with RNNs because unrolled RNNs over time can be seen as
deep neural networks in terms of time as well as depth [11, 12]. However, BN
is incompatible with RNNs, regardless of computing global statistics along the
time domain [11] or local statistics at each time step [12]. Use of global statis-
tics ignores statistics at each time step, but uses of local statistics does not
accommodate training sequences of variable lengths. As an alternative, layer
normalization (LN) [13] eliminates dependencies between mini-batch samples
that obviate the use of BN with RNNs. LN computes statistics over all neu-
rons in each layer and accelerates training of RNNs and MLPs, but not CNNs.
Neither BN nor LN is generally applied to ConvRNNs.

The current paper focuses on the time domain in order to accelerate training
of ConvRNNs. Much of time series analysis and many forecasting methods can
be applied only to stationary time series. Detrending transforms non-stationary
time series to stationary series by identifying the change as a trend and removing

it. This method is straightforward, and is illustrated in the context of the



60

65

160

- Input

1404 — Trend
= Detrended Output

120}

100

80+

GDP

601

40

201

Mmr\/\r‘\r\mmr\mfm
AAAMERAR ULARES
50 ll\[;(::)nth 150 200

o

=20

Figure 1: Example of conventional detrending with Brazilian GDP. The detrended output
is obtained by subtracting the trend from the original input. In this example, we use an

exponential moving average (EMA) with a fixed decay factor of 0.95 to define the trend.

Brazilian gross domestic product! in Fig. 1. The current rescarch applics this
method to normalize sequences of neurons in RNNs. Our key insight here is
that the hidden state of a gated recurrent unit (GRU) [14] can be considered as
a trend that can be approximated by the form of an exponential moving average
with an adaptively changing decay factor. Based on this insight, we propose a
novel temporal normalization method, “adaptive detrending” (AD), for use with
GRU and convolutional gated recurrent unit (ConvGRU), which is a variant of

ConvRNNs extended from GRU. The implications of AD are fourfold:

e AD is easy to implement, reducing computational cost and consuming less

memory than competing methods.
e AD eliminates temporal internal covariate shift.

e AD controls the degree of detrending (or normalization) through decay

factor adaptability.

Thttp://www2.stat.duke.cdu/~mw /data-sets/ts_data/brazil_ccon



70

75

80

85

e AD is fully compatible with existing normalization methods.

2. Background

2.1. Batch Normalization

Internal covariate shift slows training of deep neural networks, because the
distribution of layer inputs changes continuously as lower layer parameters are
updated. Batch normalization (BN) [10] has recently been proposed to reduce

internal covariate shift by normalizing network activation as follows:

1 X
U:aiﬂxi (1)
0= L% oy e
i1
_ Xi—H
Xi— O'2+ (3)
Yi = YXi +B (4)

where X is the activations of a neuron in a mini-batch of size m, 4 and 0? are
the mean and variance of a mini-batch, respectively, X is normalized input,
is an infinitesimal constant for numerical stability, and Yy is an affine transfor-
mation of normalized inputs X. During training, the input distribution to a
layer is transformed to a fixed distribution with a zero mean and unit variance,
regardless of the change in parameters of lower layers. Additionally, an affine
transformation with two learnable parameters y and 8 follows normalization in
order to recover the original activation when required. BN accelerates training
and improves generalization of CNNs on ImageNet classification tasks.

Due to its success in feed-forward neural networks, BN has been applied
to RNNs to speed training and improve generalization [11, 12]. In [11], BN
is applied only to vertical (input-to-hidden) and not to horizontal (hidden-to-

hidden) connections because the repeated rescaling of horizontal connections



90

95

100

105

110

115

induces vanishing and exploding gradient problems. Also, the mean and vari-
ance for BN are computed by averaging along not only the mini-batch axis
but also the time axis, which is called “sequence-wise normalization.” On the
other hand, Cooijmans et al. [12] develop “step-wise normalization” and show
that (1) applying BN to horizontal as well as vertical connections is possible
by properly initializing y of an affine transformation and beneficial for reducing
temporal internal covarite shift, and (2) using statistics for each time step sepa-
rately preserves initial transient phase information. However, with this method,
estimation of statistics at each time step degrades along the time axis due to
variation in length of training and test sequences. During training, mini-batch
configuration involves the use of zero, or last frame padding for shorter se-
quences. Furthermore, statistics for each time step are estimated only up to the
length of the longest training sequence Tmax. After training, accurate statistics
for test sequences longer than the longest training sequence Tmax cannot be

generated. Due to these factors, performance suffers.

2.2. Layer Normalization

Ba et al. [13] introduce “layer normalization” (LN) to overcome the limita-
tions of BN when applied to RNNs. LN has the same form as that of Cooijmans
et al.’s [12] step-wise normalization, with the difference that LN normalizes over
the spatial axis rather than by mini-batch. The assumption underlying LN is
that changes in output from one layer correlate highly with changes in summed
inputs of the next layer. Hence, LN estimates statistics for data from a single
training session using all activations in each layer. By estimating statistics over
layers instead of mini-batches, LN properly estimates statistics at each time
step, regardless of mini-batch sequence length variability. In experiments with
RNNSs, LN achieves faster convergence and better generalization than baseline
and other normalization methods, especially for long sequences and small mini-
batches.

However, LN does not perform well with CNNs. The authors report that
LN is better than the baseline without normalization, but not better than BN.



120

125

They hypothesize that neurons in a layer have different statistics due to the
spatial topology of feature maps, so that the central assumption of LN cannot
be supported for CNNs. We agree that normalizing all neurons in a layer with
the same statistics is not the best method for normalizing CNNs. However,
because BN works successfully for CNNs by estimating statistics of each feature
map, LN’s shortcomings with CNNs might reflect different statistics between

feature maps, and not within a feature map.

3. Model

8.1. Gated Recurrent Unit

Standard recurrent neural networks (RNNs) have greater utility than feed-
forward networks because they add a recurrent connection to handle sequential
data. RNNs consist of three layers: an input layer x, a hidden layer h, and an
output layer y. RNNs are able to handle sequential data because the hidden
layer receives both current input from the input layer as well as information

about its own previous state through a recurrent connection as follows:

ht = g(WhXt + Upht_; + bh) (5)

yt =f (Wyht + by) (6)

where g(+) and f () are element-wise non-linear activation functions for the
hidden and output layers, respectively, and W, U, and b represent the learnable
parameters of RNNs: forward connection weights, recurrent connection weights,
and biases, respectively.

However, standard RNNs do not capture long-term dependencies well be-
cause of vanishing and exploding gradient problems [15, 16]. The gated recur-
rent unit (GRU) was proposed by Cho et al. [14] to overcome the vanishing
gradient problem. It employs the same gating mechanism as long short-term
memory (LSTM) [17], but employs a simpler architecture by eliminating the
output gate and modifying some other parts of LSTM. Specifically, GRU has



130

two gating units, called a reset gate r and an update gate z. The hidden state
h: at each time step t is calculated using a leaky integrator with an adaptive
time constant determined by the update gate z. In other words, the hidden
state ht is a linear interpolation between the previous hidden state hy_; and
the candidate hidden state hy as weighted by the update gate z, and is defined

as follows:

hy =z Lhy + (1—z) [, (7)

Zt = O(WZXt +Uzhe_; + bz) (8)

where 0(+) is a sigmoid function and [“s an clement-wise multiplication.

The candidate hidden state hy at each time step t is calculated similarly
to that of the hidden layer in standard RNNs (5). However, unlike standard
RNNs, the reset gate r determines how much the previous hidden state hi_;

affects the candidate hidden state flt as follows:

he = tanh(Whxt + 1t hht—1 + bp) 9)

Ty = O'(WrXt + Urht—l + bh) (10)

8.2. Gated Recurrent Unit Normalization in the Spatial Domain

Following Ba et al. [13], in this paper we apply recurrent batch normalization
(recurrent BN) [12] and layer normalization (LN) [13] to GRU. We refer to
recurrent BN and LN as “spatial” normalization methods to differentiate the
present approach from normalization in the time domain reviewed above. The

following equations represent GRU normalization in the spatial domain:

re = O(Ny g (Wrxt) + Ny (Urht_1)) (11)
zt = O(Ny g (Wzxt) + Ny (Uzht—1)) (12)
B = tanh(Ny g(Whxt) + re LNy (Uphe 1)) (13)



