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Abstract
We investigate the properties of a Tonks–Girardeau gas in the presence of a one-dimensional lattice
potential. Such a system is known to exhibit a pinning transitionwhen the lattice is commensurate
with the particle density, leading to the formation of an insulating state even at infinitesimally small
lattice depths.Here we examine the properties of the gas at all lattices depths and, in addition to the
static properties, also consider the non-adiabatic dynamics induced by the suddenmotion of the
lattice potential with a constant speed. Ourwork provides a continuum counterpart to thework done
in discrete latticemodels.

1. Introduction

The versatility ofmodern ultracold atomic experiments has in recent years allowed for the realization of exotic
matter wave phases borne from the competition between different physical forces acting onmany-body systems
[1–3]. The paradigmatic example of this has been the observation of the superfluid-to-Mott-insulator phase
transition in ultracold gases confined in three-dimensional optical lattice potentials, which stems from the
interplay between the tunneling dynamics and the onsite interactions [4, 5]. In one-dimensional lattices and for
strong repulsive interactions it has been shown that the phases of a system are entirely controlled by the particle
filling statistics [6–10]. In this case, a commensurate particle density leads to an integer filling of each lattice site
and thus realizes an insulating pinned phasewhere dynamics is suppressed due to vanishing long range
coherence. For incommensurate particle densities each lattice site has a non-integer fillingwhich has the effect of
creating delocalizedmodeswhich can be considered as defects [11, 12]. These defects promote dynamics as they
preserve a degree of coherence and allow the system to attain superfluid-like properties. Quantumphase
transitions in these systems can be probed by switching the control parameter across a critical point [13–18].
Additionally, the transport properties of such systems can be linked to classicalmodels of frictionwhich describe
stick-slipmotion between two surfaces [19–23], an effect which has been recently observed [24–26]. In fact,
precise control of the competing length scales between the two surfaces can be used to effectively control the
amount of friction present [27] and can give insights into designing frictionless dynamical processes for
quantum systems.

In this workwe focus on describing the static and dynamical phases of an ultracold gas in an optical lattice
potential with periodic boundary conditions (PBCs) [28–30].We focus on theTonks–Girardeau (TG) limit in
one-dimension [31, 32], where the appearance of the pinned phase can be observed for particle numbers
commensurate with the underlying lattice, such that the systembecomes insulating even for very shallow lattice
depths. Suddenly setting the lattice potential intomotionwith a constant rotation speed allows us to probe the
dynamical response of the TG gas to a quench in the external potential and to study the relationship between
between friction and commensurability. The observed behavior is similar to a type of quantum sprocket, where
the rotating lattice will impartmaximumangularmomentum to the gas if the system is in the insulating phase,
while in the superfluid phase only reducedmomentum transfer is observed due to tunneling of the particles
between lattice sites. Ourwork is related to recent investigations of driven cold atom systems in the continuum
[33–38], and in the Bose–Hubbardmodel (BHM) [39–42], which is naturally connected to the continuous
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model in the limit of tight trapping. Another recent relatedwork has investigated the localization properties of a
TG gas in a continuumversion of theAubry–Andremodel (using a bi-chromatic lattice) [43]. In thismanuscript
we explore the phase diagram from shallow to deep lattices for commensurate and incommensurate fillings and
showhowdifferent phases can be characterized through the coherence and by direct observation of the
momentumdistribution.We also show that the dynamical response of the system to the driven lattice exhibits
stick-slipmotion and tunneling due to defect induced superfluidity.

Themansucript is organized as follows: in section 2we describe themodel we consider and in section 3we
discuss how to characterize the different phases in the system through calculations of the coherence, the
momentumdistribution and the spatial auto-correlation function. In section 4we discuss both the time
averaged and the instantaneous dynamics of the driven system and in section 5we conclude. Finally, in the
appendixwe provide an in depth explanation of the dynamics in the different phases.

2. Basicmodel

Weconsider a one-dimensional gas ofNneutral bosons ofmassmwhich are subject to an external potential
( )V xnext . TheHamiltonian is given by
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where the two-body interaction between the particles is described by a zero-range delta-function potential of
strength g [44].While exact solutions for thisHamiltonian exist in the absence of an external potential [45, 46],
only limiting cases can be solved in other situations.

One regime inwhich theHamiltonian (1) can be solved exactly is the strongly interacting TG limit. It
corresponds to setting = ¥g , which allows one to obtain an exact solution for arbitraryN by utilizing the
Bose–Fermimapping theorem [47]. The basic idea behind this theorem is to replace the interaction termby a
constraint on themany-bodywavefunction of the form

Y ¼ = - =( ) ∣ ∣ ( )x x x x, 0 if 0, 2N i j1

which is equivalent to enforcing the Pauli exclusion principle in position space. The strongly repulsive bosonic
system can therefore bemapped onto a gas of non-interacting, spinless fermions forwhich themany-body
wave-function can bewritten as a sumof single particle product states using the Slater determinant
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Here the y ( )xn are the eigenfunctions of the corresponding single-particleHamiltonian
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for which exact values can easily be obtained numerically usingfinite-difference diagonalization. The bosonic
many-bodywavefunction can then be obtained from the fermionic one by symmetrising with an anti-symmetric
unit function of the form  ¼ = P -<( ) ( )A x x x x, , sgnN i j N i j1 1 . This results in

Y ¼ = ¼ Y ¼( ) ( ) ( ) ( )x x A x x x x, , , , , , . 5B N N F N1 1 1

Wechose the external potential to be a periodic lattice of the form =( ) ( )V x V k xcosn l next 0
2 , whereV0 is the

lattice depth and kl thewavevector.We consider this trapping potential to possess PBCs such that it realizes a 1D
ring trap of length Lwith regular intensitymodulations and Y + = Y( ) ( )x L x... ... ... ...n n for any n. This allows
us towrite the lattice wavevector in terms of the number of wells in the lattice potentialM as p=k M Ll and

provides an energy scale for the system in terms of the recoil energy = pEr
M

mL2

2 2 2

2 . For consistencywewill use

systemswithM=50 lattice sites for all calculations shown in thismanuscript.
It is important to note that the requirement to have PBCs for the bosonic TG gasmeans that the fermionic

many-bodywavefunctionmust have PBCs for oddN and anti-periodic boundary conditions (A-PBCs) for even
N, as the anti-symmetric unit function leads to Y + = - Y-( ) ( ) ( )x L x... ... 1 ... ...F n

N
F n

1 . Since the single-particle
eigenfunctions,ψn(x), form an orthogonal basis, the Slater determinant obeys these boundary conditions if

y y= - -( ) ( ) ( ) ( )L 1 0 . 6n
N

n
1

In free space the single-particle solutions are given by y =( )x en L
k x1 i n , with

=En
k

m2
n

2 2

. For PBC

(corresponding to an odd number of particles)we therefore have p=k n L2n with =   { }n 0, 1, 2, 3 ... .
In this case the ground-state is non-degenerate, while all excited states -E E,n n are two-fold degenerate. For
A-PBC (corresponding to an even number of particles) all states are two-fold degenerate as
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=   { }n 1, 2, 3 ... . The effect of the lattice is to introduce energy gaps into the single particle spectrum (see
figure 1), andwhile the free space degeneracy structure remains for a large range of lattice depths, this gap can
break the degeneracy between the two states closest to the gap. For example, for an even number of sites this will
be the case in the PBC spectrum, but not in the A-PBC spectrum. Amore detailed discussion of this odd–even
effect is given in section 4, where it becomes physically relevant. In the deep lattice limit the eigenstates become
M-fold degenerate as individual lattice sites effectively decouple. To avoid numerical issues and have a clearly-
defined ground-state Slater determinant, we avoid this limit and staywithin a range of lattice depths (0 to 20Er)
for which thefirstM states are not yet completely degenerate.

3. Statics of the TG gas

In the followingwewillfirst discuss the ground state properties of the TG gas in the presence of a lattice.

3.1. The pinned and the superfluid phase
TheHamiltonian (1) is known to possesses two distinct ground-state phases in the TG limit, which appear as a
function of the ratio of number of bosons to lattice sites

= ( )F
N

M
. 7

For incommensurate fillings ( ¹F , with  a positive integer) in shallow lattices the systemhas superfluid-
like characteristics with long-range coherence and good conductivity due to the delocalization of the
wavefunction overmany lattice sites.However for commensurate filling ( =F ), the bosons becomes localized
at individual lattice sites and the total systembecomes pinned to the lattice. This pinned phase has no coherence,
behaves as an insulator and is the hard-core continuumanalog of theMott-insulator phase in the BHM. In the
continuumTGmodel the pinning happens at infinitesimally small lattice depths for F=1. It was first
theoretically proposed by Büchler et al [6] and has been experimentally observed in numerous cold atom
experiments [7, 10].

The degree of coherence is a good property to characterize the two different phases of the system. It can be
obtained from the off-diagonal elements of the reduced single-particle densitymatrix (RSPDM)

r y y= áY Y ñ( ) ∣ ˆ ( ) ˆ ( )∣ ( )†
x y x y, , 8B B1

which describes the spatial auto-correlation of a single particle, giving the probability that a particle is at y
immediately after it has beenmeasured at x. For classical particles and for non-interacting fermions, the RSPDM
will always be diagonal, however for a Bose gas the off-diagonal elements play a prominent role. Efficient
algorithms to numerically calculate the RSPDM in the TG regime exist [48], which are tractable even for large
numbers of particles andwhichwe have used in our calculations.

Diagonalising the RSPDM leads to a set of eigenstatesfi(x), known as the natural orbitals, with the
corresponding eigenvaluesλi giving the respective occupation numbers

*år l f f=( ) ( ) ( ) ( )x y x y, , 9
i

i i i1

Figure 1. Lowest lying 150 single-particle eigenenergies as a function of lattice depth forM=50.
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where lå = Ni . For a non-interacting Bose gas at zero temperature only the lowest lying orbital is occupied,
λ0=N, which corresponds to a completely coherent and superfluid system.Conversely, a ground state
wavefunctionwithλ0=1 corresponds to a completely incoherent gas where theN lowest orbitals are equally
occupied. The occupation number of the lowest lying eigenstate of the RSPDMcan therefore be used as a
measure of the coherence of the system. In fact, for a TG gas in free space it is known that the lowest lying orbital
has an occupation proportional to N , while the occupation of orbitals with i?N tends to zero [49, 50].
Clearly such a state is not strictly superfluid, however it is also not completely incoherent, asλ0 is of the order

N . It therefore does possess some superfluid properties. For simplicity, wewill refer to phases displayingfinite
coherence as superfluid in the rest of thismanuscript. In the pinned phase, however, each particle is highly
localizedwhich destroys the coherence between individual wells once tunneling is sufficiently suppressed. The
system is therefore reduced toNnon-interacting particles with coherenceλi=1 for theN lowest lying orbitals.

Even though the coherence can be used to identify different regimes of the system, it is not easy tomeasure it
in a direct way.However, it is closely linked to themomentumdistribution, which can be readily observed
through time-of-flight experiments and calculated from the Fourier transformof ρ1(x, y) as

ò r= - -( ) ( ) ( )( )n k x y x yd d , e . 10k x y
1

i

This can be recast in terms of the Fourier transformof the eigenstates of the RSPDM, f
~( )ki , using the same

occupation numbers

*å l f f=
~ ~( ) ( ) ( ) ( )n k k k . 11

i
i i i

It is therefore clear that themomentumdistribution depends directly on the distinct characteristics of the
coherence and long-range order (LRO) of the system.

3.2. Coherence andmomentumdistribution
The lowest eigenvalue of the RSPDM,λ0, and the peak-value of themomentumdistribution, n(k=0), are
shown infigure 2 as a function of thefilling ratio and the lattice depth. One can immediately see that the
coherence decreases quickly for unitfilling, F=1, eventually reaching the value ofλ0=1 corresponding to the
pinned phase. For double filling, F=2, afinite lattice depth is required before this transition can happen, as the
lattice needs to be deep enough to overcome the repulsive two-body interactions at each site. For
incommensurate fillings a slow decrease of the coherence with increasing lattice depth can be seen. This
behavior is qualitativelymirrored in themagnitude of themomentumdistribution at k=0 and in the deep
lattice limit ( =V E20 r0 ), both quantities display an oscillating dependence on the filling ratio F, as can be seen in
the insets offigure 2. This is similar to the behavior known for the superfluid fraction in the hard-core BHM [51].

The distinct characteristics of the pinned phase and the superfluid phase alsomanifest themselves in the full
momentumdistribution. In order to characterize the incommensurate phase we show themomentum
distribution for =F 2

5
as a function of the lattice depth infigure 3(a) andwith a comparison to the

commensurate case infigure 3(b). In free space (V0=0) the TG gas is delocalized in position space and
therefore localizes around a single, central peak inmomentum space (black solid line infigure 3(b)), whereas for
V0=20 in the pinned phase (F= 1) the gas is localized in position space and is therefore delocalized in

Figure 2. (a)Coherence l0 and (b) height of the central peak of themomentumdistribution =( )n k 0 as a function of thefilling ratio
F and the lattice depthV0 (in units ofEr). The number of lattice wells isfixed atM=50. The insets shows the coherence and the zero
momentumpeak as a function of F for =V E20 r0 .
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momentum-space (magenta line). In the incommensurate phase =( )F 2

5
themomentumdistribution can be

seen to display additional back-scattering peaks atmultiples of 2kl, the number of which and their intensity
increases with the lattice depth. The gas in this phase therefore represents amomentumdelocalized superfluid
that exhibits some of the distinct characteristics of both the superfluid and the pinned phase. The observed
momentumdistribution is similar to themomentumdistributions found in supersolids [52] and it has recently
been suggested that the incommensurate phase of the TG gas in deep lattices is similar to a defect-induced
superfluid phase and can be utilized to investigate the Andreev–Lifschitz–Chestermechanism [12, 53].

It is instructive to consider twodistinct defect regimesof the incommensurate phase. If the deviation fromthe
commensurate phase atF=1 ismicroscopic, such thatN=M±1, the phasebecomes gaplesswith aquadratic
dispersion relation.On theother hand, for amacroscopic number of defects, such asN=M±M/2, the phase is
also gapless, butwith a linear dispersion relation [12]. These regimes are, however, continuously connectedwhich can
be seen infigure 4(a), where themomentumdistribution as a functionofF is plotted for a constant depth =V E20 r0 .
Far fromcommensurate values, i.e.for amacroscopic numberof defects, themultiple peaks stemming from the
delocalized superfluid are thedominant contribution to themomentumdistribution (seefigure 4(b)), but as F 1a
Gaussian contribution corresponding to thepinnedphasemomentumdistributionbecomesmoredominant (see
figure 4(c)). In fact, for amicroscopicnumbers of defects, such as forN=M±1, themomentumdistribution
essentially corresponds to that of the delocalizedpinnedphase, butwith additional small peaks on topof it. Beyond
unitfilling theGaussian contributionof thefirstN=Mparticles remains,while the additional particles lead to a
multi-peak structure on topof it. Thismeans that thefirstN=Mparticles are effectivelyfilling the lowest energy-
band,while the superfluidphysics happens in the secondband.

3.3. Spatial auto-correlations
Themulti-peak structure observed in themomentumdistribution of the incommensurate TG gas is a clear
indicator that off-diagonal LRO (ODLRO) and density LRO exist in the gas. To confirm this we calculate the

Figure 3. (a)Normalizedmomentumdistribution for an incommensurate state with =F 2

5
as a function of lattice depth.

(b)Normalizedmomentumdistribution in a deep lattice ( =V E20 r0 ) for the incommensurate =( )F , red dashed line2

5
and the

commensurate (F = 1, fullmagenta line) case. For comparison the black line corresponds to the case where no lattice is present.

Figure 4. (a)Normalizedmomentumdistribution as a function of thefilling factor. (b)Momentumdistribution forfilling factors
F=1 (magenta line), =F 2

5
(dashed red line) and =F 7

5
(black line). (c)Momentumdistribution for filling factors F=1 (magenta

line) and =F 49

50
(dashed black line). All plots in thisfigure are for a lattice depth of =V E20 r0 .
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spatial auto-correlations, whichwe define at a distance r as the average of the RSPDM-values at (x, y), i.e.

òr r d= - -( ) ( ) (∣ ∣ ) ( )r
L

x y x y x y r
1

d d , . 121 2 1

This function then explicitly quantifies the LROof the system andwe display it for different regimes in
figure 5.One can see that for no external lattice (red curve in panel (a)), the correlations decay according to the
well-known -r

1
2 power law behavior of a free TG gas [54]. In the presence of a lattice for incommensurate

particle density (such as =F 2

5
) an exponential decay is observed at small r followed by a power-law decay. This

demonstrates quasi-off-diagonal long range order (QODLRO) in the gas for theHamiltonian (1) andmimics the
behavior of the hard-core BHM [55]. In the continuous case, however, the power-law decay has an additional,
very intuitive super-structure: the auto-correlations aremodulatedwith the lattice periodicity. This corresponds
to the fact that the atoms are preferably located at the latticeminima and their probability to be at a lattice
maximum is significantly decreased. In fact, if the auto-correlations at these distances are going to zero, the
systemwill enter a regime inwhich the tight-binding approximationworkswell. Once the second energy-band
is occupied a deeper lattice is required to createmodulations in the auto-correlations (compare =F 7

5
in (a) and

(b)). For F=1 the pinned phase leads to an exponential decay of correlations, with no correlations surviving at

distances longer than one lattice site forV0=20. In the case of amicroscopic number of defects =( )F 48

50
the

initial exponential decay ismuch faster than for amacroscopic number of defects =( )F 2

5
. In fact it is similar to

the one found in the pinned phase, but unlike the pinned phase it shows small revivals at subsequent lattice sites.
Themagnitude of these revivals decays slightly, but it is difficult to ascertain the precise nature of this small
decay, as we are restricted to a periodic 50-site lattice.

Since themodulations in the correlation-function stem from the off-diagonal terms in the RSPDM, they
relate directly to the peaks that appear in themomentumdistribution and therefore to the superfluid properties
of the system. The external lattice breaks the continuous spatial symmetry and imposes discrete spatial
symmetry, that is LRO (crystaline order), while the incommensurability between the number of lattice sites and
particles allows for a superfluid flow giving rise toQODLRO. This results in numerous peaks atmultiples of k2 l

with a structure that is dependent on the lattice depth and particle-to-site ratio F. Contrarily, in the hard-core
BHM for incommensurate lattice-sites and particle numbers, themomentumdistribution shows only a single
peak at k=0 associatedwith superfluidity. This is due to the spatial symmetry not being brokenwithin the
model.We note that a similarmulti-peak structure for incommensurate systems is also obtainedwhen a super-
lattice is imposed on the BHM, as this also breaks the spatial symmetry and introduces oscillations in the
correlation function [56].

4. Probing phaseswith a driven lattice

Sudden perturbations are a powerfulmethod for studyingmany-body effects in quantum systems, and for TG
gases notable examples that have been investigated in recent years include the orthogonality catastrophe and

Figure 5.Auto-correlation functions as a function of r for different filling factors and for a lattice depth of (a) =V E5 r0 (except the red
line) and (b) =V E20 r0 . The dashed lines correspond to a -r

1
2 decay and are displayed for =V 00 and =F ,2

5

7

5
.
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decay [57–62], persistent currents and probing superfluidity [33–38, 41, 42]. Such exploration of the non-
equilibriumdynamics can be used to further characterize the different phases we have examined in the static
model, and quenches can be used to detect phase transitions due to the creation of non-trivial dynamics induced
by large quantumfluctuations at criticality [13–17].

Here we quench by assuming that at t=0 our system is in an eigenstate at a given lattice depth and then
suddenly rotating the external lattice potential atfinite speed v, so that for t>0we have

- = -( ) ( ( ))V x vt V k x vtcosn l next 0
2 . The time-dependentmany-bodywavefunction after the quench can still

be calculated via the Bose–Fermimapping theorem, so that we only need to evolve the initial non-rotating single
particle states according to the time-dependent Schrödinger equation

 
y y¶ = -

¶
¶

+ -
⎛
⎝⎜

⎞
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V x vt x ti ,

2
, . 13t n n
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2 ext

The time-dependent solutions canbe found exactly in termsof the eigenfunctions y ( )x, 0n of the initial
Hamiltonian and the eigenfunctions y ( )xj q, and eigenvalues Ej q, of theHamiltonian in the co-rotating frame as [36]
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where


=q mv . The eigenfunctions in the co-rotating frame are a solution to the Schrödinger equation
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obeying the twisted boundary conditions y y+ = -( ) ( )x L xej q
qL

j q,
i

, . The coefficients cjn then contain all the
information about the initial state of the system and are defined as
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The applied rotationwill lead to transport of particles with respect to the lab frame and the average flowof
particles can be quantified by calculating the averagemomentum ò=( ) ( )K t n k t k k, d .While calculating the
fullmomentumdistribution is a numerically demanding process for large particle numbers, the average
momentum can be calculated efficiently as it is related to the probability current density of the system as

ò=( ) ( )K t j x t x, d
L

1 . For a TG gas, the probability current density is identical to that of the free Fermi-gas and

is simply given as the sumof the single-particle currents corresponding to the occupied energy levels
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For the time-dependent wavefunction given in equation (14), the explicit formof the averagemomentum can
therefore be calculated as

*
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where

*ò y y= - ¶ -( ) ( ) ( ) ( )F t x x vt x vtd . 19jk j q x k q, ,

The elements Fjj are independent of time in all cases we consider, as the two eigenfunctions are the same, which
means that the time-dependence just shifts the integrand. For ¹j k, however, the two eigenfunctions are
different and the time-dependence of the integrand is thereforemore complicated and does affect the value of
the integral. The averagemomentum therefore has a time-independent partK0 consisting of thefirst two terms
in equation (18) and a time-dependent partKt(t)which consists of the last term.

The effect of the underlyingmany-body phase of the TG gas on the average transport in the system should be
reflected in the averagemomentum and equation (18) allows us to explain the observed behavior in some
mathematical detail. Furthermore, the same behavior appears for a spin-polarized Fermi gas, even though its
momentumdistribution is entirely different. This is because the expectation value of themomentumoperator is
the same for the Fermi andTG gas, whichmeans that the averagemomentum alone is insufficient for fully
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characterizing the dynamics of the differentmany-body bosonic phases.Wewill therefore investigate and
compare the averagemomentum, the coherence and themomentumdistribution.

4.1. Preliminary consideration—rotation speed
It was shownby Schenke et al [36] that persistent currents can be created in a TG gas by driving it with a rotating
delta-barrier. If the drivingmomentum is hp=q L, where η is an integer, this yieldsmaxima in the time-
averaged averagemomentumper particle á ñK N , while outside these values it stays essentially zero. A similar
resonant behavior is also present in our systemwhen rotating the lattice potential at small lattice depths and for
incommensurate filling (see black curve in figure 6), however, themomentumno longer vanishes away from the
resonance values. In fact it oscillates between positive and negativemomentumwith a small amplitude. In order
to simplify the discussion in this sectionwe define the scaled drivingmomentum pW = qL . For F=1 the

values of á ñK N around hW = +2 1become large, while the same behavior can be seen for =F 49

50
around

Ω=2η. This can be understood by looking at the single-particle spectrum for odd particle numbers (with PBC)
and for even particle numbers (with A-PBC) as a function of q, which is plotted infigure 7 forM=4 and

=V E0.06 r0 . Note that these numbers are chosen for visual simplicity, and the structure is exactly the same for
M=50 andV0=0.02 (with a slightly smaller gap). The structure of the two spectra reflects the difference in the
averagemomentum, that is the spectrum for odd particle numbers close toΩ=2η+1 looks similar to the one
for even particle numbers close toΩ=2η. The reason for this difference is that the ground-state is non-
degenerate in the initial state for an odd number of particles, while it is two-fold degenerate in the initial state for

Figure 6. á ñK N as a function of q for different filling ratios and depths. In (a) the black line corresponds to =F 2

5
and =V E0.02 r0 ,

while the red line corresponds to =F 2

5
and =V E20 r0 . In (b) the black line corresponds to =F 49

50
and =V E0.02 r0 , while the red

line corresponds to F=1 and =V E0.02 r0 . The dashed black line indicates á ñ =K N 0.

Figure 7. (a) Single-particle energy spectrum for PBC (odd number of particles) and (b)A-PBC (even number of particles), plotted as a
function of the drivingmomentum q forM=4 and =V E0.06 r0 .
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an even number of particles. A latticewith an even number of sites therefore forces a splitting of theM,M+1
degenerate states for odd particle numbers, but there is no splitting for even particle numbers. An odd number of
sites switches around the behavior for odd and even particle numbers, but the explanation is analogous. For
deeper lattices we see that á ñK N grows linearly with q even for incommensurate particle densities. A detailed
explanation of the behavior in the different regimes shown in figure 6 can be found in the appendix.

4.2.Many-body phases in the driven system
Aswe are interested in using the driven lattice to probe the phases of the system, we restrict our simulations to
small values of the rotation speed, namely q=2.9π/L, which is off resonant so that the rotation does not excite
the particles into higher bands. This therefore allows for a clear distinction between the dynamics of the
superfluid and insulating phases in the system. In order to understand the nature of the bosonic phases, we
investigate the coherence and themomentumdistribution in addition to the averagemomentum.

4.2.1. Time-averaged dynamics
Infigure 8we show the time-averaged averagemomentum á ñK N and the time averaged coherence lá ñ0 as a
function of thefilling ratio, F, and the lattice depth,V0. For lá ñ0 one can see qualitatively the same behavior as for
the static coherence shown infigure 2(a), although for lá ñ0 after the quench an odd–even effect is present near
commensurability in shallow lattices (see the inset infigure 8(b)). The same odd–even effect is present for
á ñK N , as discussed in section 4.1, and forwhich a detailed explanation of the origin can be found in the
appendix. Theminimum in the coherence obtained for F=1 indicates the presence of the pinned phase and the
maximum in á ñK N at F=1 (and F= 2) can therefore be attributed to this state, which restricts tunneling
between the sites resulting in the gas beingmoved alongwith the lattice. For incommensurate values of F, the
relatively large degree of coherence indicates the presence of a superfluid phase (as does the small value of
á ñK N ), where particles can freely tunnel through the lattice as it rotates through the gas.

For deep lattices ( >V E10 r0 )wefind pá ñ »K N qL for both commensurate and incommensurate fillings
and this quantity thus no longer distinguishes between the commensurate insulating and the incommensurate
supersolid-like phases. The time-averaged coherence, however, clearly distinguishes between these phases
which implies that the time-averaged fullmomentumdistributionmust contain information about their
dynamical properties as well. For F=1 the pinned phaseGaussian-likemomentumdistribution is slightly
asymmetrical, leading to the overall transport observed, while themomentumdistribution in the frictionless
superfluid phase (for V Er0 and ¹F ) has a single, symmetrical superfluid peak centered at k=0, even
when rotation is applied. As this is difficult to visually distinguishwe do not plot the time-averagedmomentum
distributions in these cases. However, the time-averagedmomentumdistributions after a quench for =F 2

5
and

=F 7

5
are shown in figure 9. For =F 2

5
, corresponding to amacroscopic number of defects, the transport is

obtained due to an asymmetry in the population of the back-scatteringmomentumpeaks, with the peaks at
positivemomenta having a higher probability than the peaks at negativemomenta. For =F 7

5
a combination of

an asymmetrical Gaussian shape (for thefirst 50 pinned particles) and the asymmetrical back-scattering
momentumpeaks (for the remaining 20) is responsible for the transport. In the case of amicroscopic number of
defects the bulk of the transport is due to the pinned phase, but a small part is contributed from the asymmetry
between the population of the back-scatteringmomentumpeaks, similar towhat is seen for amacroscopic

Figure 8. (a)Time-averaged averagemomentum and (b) time-averaged coherence as a function of the lattice depthV0 and thefilling
ratio F. The insets shows the same near F=1 for a lattice depth of =V E0.1 r0 . These plots are based on calculations forM=50 and
with the time-average taken over the interval 0 to 10t0.
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number of defects infigure 9. So although á ñK N is the same for the pinned phase and the supersolid-like phase
at different filling ratios in the deep lattice, the time-averagedmomentumdistributions and the type of transport
is very different, reflecting the different natures of the twomany-body phases.

4.2.2. Instantaneous dynamics
The time-averaged variables only give a partial picture of the dynamics and a fuller understanding can be gained
by considering the instantaneous properties of the averagemomentum and coherence. For this we plot the
standard deviation of the averagemomentum and coherence infigure 10 (based on the same calculation as the
time averages reported in figure 8). These can be seen to be essentially zero in the superfluid phase for shallow
lattices (incommensurate particle numbers), while they become large as F approaches integer values. For deeper
lattices the standard deviation of the coherence stays zero, while the standard deviation of the average
momentumbecomes larger. To understand the physics under-lying thesefluctuations inmore detail, wewill
next consider the instantaneous properties of the coherence and averagemomentum at some representative
values of the depth and filling ratio.

The dynamics of the coherence, l ( )t N0 ,and of the averagemomentum,K(t),after the quench are shown in
the shallow lattice limit infigure 11. In the commensurate case (red line) the gas exhibits collectivemany-body
oscillations between the coherent superfluid and a somewhat less coherent insulating phase with a periodicity
~ = ( )t L Mv0 . The same behavior appears for F=2 (black line),but the frequency of the oscillation has
roughly doubled. The averagemomentum in the insulating phase ismuch higher than the superfluid phase,
whichmeans that the transport is very similar to classical stick-slipmotion described by the Frenkel–Kontorova
model [20]. The periodicity of these oscillations is derived in the appendix and shown to be related to the discrete
time-symmetry of theHamiltonian for the averagemomentum. This type of collective oscillation is present for

Figure 9.Time-averagedmomentumdistribution (black line) after a rotational quench for =F 2

5
(a) and =F 7

5
(b). The dashed

black lines indicate the asymmetries between positive and negativemomentumoccupations.

Figure 10. Standard deviation of (a) the averagemomentum and (b) the time-averaged coherence as a function of the lattice depth and
the filling ratio. The insets shows the same near F=1 for a lattice depth of =V E0.1 r0 . These plots are based on calculations for
M=50 andwith the time-average taken over the interval 0 to 10t0.
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both the coherence (amany-bodymeasure) and the averagemomentum (single-particlemeasure),whereby the
momentumdynamics is clearly a reflection of the oscillation betweenmany-body phases as implied by the
coherence. For =F 2

5
,where amacroscopic number of defects exist,time-fluctuations in any of the parameters

are essentially absent and the gas is always in the coherent superfluid phase which corresponds to the average
momentumbeing small and slightly negative,due to our choice of q (see sections 4.1 and the appendix) at all
times. The existence of the superfluid phase thus results in essentially frictionless dynamics,in which particles
simply tunnel through the shallow barriers without responding to them. In shallow lattices,for both
commensuratefillings (F=1) andmicroscopic numbers of defects,there exist regular oscillations of the
coherence and averagemomentum. As the depth is increased,but still within the region of non-zero fluctuations
of the coherence (see figure 10(b)), the stick-slipmotion becomes less regular. The collectivemany-body
fluctuations around F=1 in shallow lattices is suggestive as this region corresponds to the critical region for the
commensurate-incommensurate pinning transition. The largefluctuations observed in the coherence,which is
an order parameter that distuingushes the pinned and superfluid phases,is therefore amanifestation of the
underlying incommensurate–commensurate transition. This aligns our results with other indications that
critical points and regions introduce largefluctuations in the dynamics of order-parameters [2, 8, 15, 16, 63–65].

For deeper lattices thefluctuations in the coherence are small (see figure 10(b)) and the instantaneous
coherence is therefore not expected to contain any information that cannot be understood from the average
coherence, althoughwe plot it for completeness infigure 12(a). Indeed, one can see that there are only small
fluctuations and that the coherence is close to 1 in the commensurate pinned phase, while the gas is slightlymore

coherent in the presence of amicroscopic number of defects =( )F 49

50
and approaches a N degree of

Figure 11. (a)Coherenceλ0/N and (b) averagemomentumper particle as a function of time after a quench. The red lines correspond
to =V E0.02 r0 and F=1, while the blue lines correspond to =V E0.02 r0 and =F 2

5
. The black lines correspond to =V E0.8 r0 and

F=2.

Figure 12. (a)Coherenceλ0/N and (b)–(d) averagemomentumper particle as a function of time for =V E20 r0 . The red lines
correspond to F=1, while the blue lines correspond to =F 2

5
and the black lines correspond to =F 49

50
.
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coherence for amacroscopic number of defects =( )F 2

5
. This directly reflects the results shown infigure 8(b).

For the averagemomentum, however,figure 12(b) shows that largefluctuations are still present in deep lattices.
As thesefluctuations are only present for the averagemomentum they do not correspond to oscillations between
many-body phases as was the case for the shallow lattice oscillations. In this deep lattice limit particles are
transported alongwith the lattice on averagewith pá ñ =K qL and the short-time oscillations with period

~ p
-+E E

2

M M1
correspond to particles being excited to higher bands at each lattice site, creating on-site dynamics

due to thefinite width of the continuum lattice (see the appendix). These types offluctuations are clearly distinct
from the fluctuations betweenmany-body phases observed in shallow lattices. Additionally they are present for
both commensurate and incommensurate particle densities. The instantaneous averagemomentum is therefore
not a useful way to distinguish between the pinned phase and the supersolid-like phase in the deep lattice limit.
For that information an investigation of the fullmomentumdistribution is required. As can be understood from
the coherence, however, the time fluctuations of the fullmomentumdistribution are not particularly
interesting: the time-averagedmomentumdistribution, whichwe discussed in section 4.2.1, already contains all
the relevant information.

5. Conclusion

Utilizing the Bose–Fermimapping theorem and studying the reduced single-particle densitymatrix we have
investigated the phases of the TG gas in a continuumoptical latticemodel for commensurate and
incommensurate particle densities. For shallow lattices we reproduce thewell-known results, namely the
existence of a pinned insulating phase for commensurate particle densities and a superfluid-like phase for
incommensurate particle densities which possesses a similar degree of coherence as the free TG gas. The
momentumdistribution reflects these phases; in the pinned insulating phase it is Gaussian-like and delocalized,
while it is centered around a single peak at k=0 for incommensurate particle numbers. For deeper lattices, we
find that a supersolid-like phase emerges for incommensurate particle numbers. This defect-induced superfluid
phase is well-characterized by themomentumdistribution, which shows amulti-peaked structure reflecting
spatialmodulations in the auto-correlation in the presence of an optical lattice due to the breaking of the
continuous spatial symmetry.

Themomentumdistribution depends sensitively on the filling ratio and it is useful to consider two distinct,
but continuously connected regimes; amicroscopic number of defects wherewe have shown that the
momentumdistribution corresponds to a large number of pinned particles, with a few superfluid particles (or
holes) on top and amacroscopic number of defects, where themulti-peak structure is dominant. Additionally
we have shown that dynamically rotating the lattice allows one to probe the structure of the phases. The average
momentum,whichmeasures the degree of transport in the system, clearly reflects the shallow lattice phase
diagramwithmaximum transport obtained for commensurate particle densities due to the pinned phase.
Additionally a collectivemany-body stick-slip-like behavior is observed for particle numbers close to
commensurability where the gas oscillates between the pinned and superfluid phases with a periodT≈t0. On
the other hand, in deeper lattices, despite the supersolid-like phase retaining some coherence, the average
particle transport is very similar to the pinned phase, as the particles are transported alongwith the lattice on
average. The averagemomentumhas short time-scale oscillations in this regime corresponding to on-site
dynamics induced by on-site particle excitations in the lattice. These oscillations are therefore very different
from themany-body phase oscillation observed for shallow lattices. Investigating the fullmomentum
distribution, however, shows that the underlying physics of the transport is very different for commensurate and
incommensurate particle densities, the former is the result of an asymmetric Gaussian-like shape, while the
latter is the result of an asymmetry between the occupation of the positive and negative back-scattering
momentum side-peaks.

Our approach is experimentally realizable as ring lattice potentials have been created using spatial light
modulators [66, 67], and alternative possible setups include optical nanofibers [68] and rapidlymoving lasers
that can ‘paint’ arbitrary optical trap shapes [69]. Another possibility is using an optical lattice in a long one-
dimensional box trap. Theoretically, the calculation of such dynamics for a TG-gas on a lattice confined by a
squarewell is feasible and an obvious future extension of thework presented in this paper. Another natural
extension is to consider finite interactions, rather than the TG limit. This would allow for an investigation of the
interplay between interactions and commensurability, similar to the results presented in [29], but in the
presence of amoving lattice. Solving the dynamics of such systems is feasible for small particle numbers, for
example by utilizing the exact diagonalization scheme outlined in [70].
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Appendix. Detailed explanation of the averagemomentumbehavior after a quench

In this appendixwe present a detailed analysis of equation (18) in the different regimes of interest, whichwill
allow for amathematical explanation and clarification of the observed behavior of the averagemomentum. This
in turn helps clarify the physical properties and processes responsible for this behavior. The appendix is
structured as follows: Thefirst section explains the incommensurate behavior in the shallow lattice as a function
of the drivingmomentum q, by considering the free spacewavefunctions analytically. The second section
contains a numeric investigation of the important quantities in equation (18) in the presence of a lattice
potential.

A.1. Free space analysis
The incommensurate gas in shallow lattices can be qualitatively understood by evaluating the expression for the
averagemomentumgiven in equation (18) for plane-waves, assuming that the lattice only leads to a small
perturbation. In free space andwith PBC (the analysis for A-PBC for even particle numbers is similar)we can
therefore assume thewavefunctions to be given by

y y= =p p
W

W+( ) ( ) ( )( )x
L

x
L

, 0
1

e ,
1

e , A.1l
l x L

j
j x Li2

,
i 2

where =   { }l j, 0, 1, 2, 3 ... . The energies in the rotating frame are therefore given by
= W +p ( )E j2j mL2

2
2 2

2 . The pointsΩ=κ (whereκ is an integer) are special as the rotational eigenstates y k ( )xj,

and y k¢ ( )xj , are degenerate for k¢ = - -j j . Forκ=2ηwehave ¢ =j j with j=−η, therefore the lowest
energy state will be unpaired, seefigure 7(a). Thismeans that almost all eigensfunctions of the system can be
expressed alternatively as entirely real or imaginary linear combinations of the j and ¢j eigenstates of the form

f p k= +k+ ( ) ( ( ) )x j x Lcos 2j L,
2 and f p k= +k- ( ) ( ( ) )x i j x Lsin 2j L,

2 . This then leads to

=( ( ))F tIm 0jj , whichmeans that
= +( ) ( )K t K t

N q

mL t . The time-dependent-part of the averagemomentum
creates oscillations around the time-independent part, whichmatches exactly the average visible infigure 6.

For values kW ¹ wefind

p
p

=
-W - +
-W - +

( [ ]))
( )

( )c
j l

j l

sin
, A.2jl

p d= W + p -( ) [ ] ( )( )F t k Li 2 e , A.3jk
j k vt L

jk
i2

whichmeans that there is no time-dependence of the averagemomentumwithin this approximation. This is
shown to be approximately true infigure 11 for the shallow lattice limit as well. For valuesΩ=κ/2 , we find

= ¢∣ ∣ ∣ ∣c cjl j l
2 2 when ¢ = - -j l n j2 , which can be used to evaluate the averagemomentum analytically as

  å å p= + +
=- -

-
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( )

( )
K t

N q

mL mL
c q j L2 A.4

l N

N

j
jl

1 2

1 2
2

  å å p= + -
=- -

-

∣ ∣ [ ] ( )
( )

( )N q

mL mL
c l n

2

2
2 2 A.5

l N

N

j
jl2

1 2

1 2
2

   p
= +

-
= - = ( )N q

mL

N n

mL

N q

mL

N q

mL

2 2

2

2 2
0. A.6

2

This corresponds to the average valuewe obtain for the full numerical calculations shown infigure 6. For
κ<Ω< κ/2we have å å <=- -

-∣ ∣ ∣ [ ]∣( )
( ) c F NqIm
l N
N

j jn jj1 2
1 2 2 , while forκ/2<Ω< κwefind

å å >=- -
-∣ ∣ ∣ [ ]∣( )

( ) c F NqIm
l N
N

j jn jj1 2
1 2 2 . This gives rise to the regions of negative averagemomentumvisible in

figure 6, inwhich particles rotate in the direction opposite to the lattice. AsΩ=κ is approached the average
momentum tends towards zero, before the discontinuous jump to

á ñ =( )K t
N q

mL
at the point where the energy

spectrumbecomes degenerate.
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A.2. Numeric analysis for the lattice
To explain the behavior close to commensurability and for deeper lattices, we use the numeric wavefunctions
obtained by finite difference diagonalization. The introduction of the energy gap changes the relative amplitude
between the real and imaginary parts of y - W( )xM d, ( =d 0, 1 ...), with an opposite shift in y + + W( )xM d1 , close to
Ω=2η for odd particle numbers. Similar shifts are observed close toΩ=2η+1, but they are negligible for
very small gaps ( =V E0.02 r0 ), although the difference becomes less pronounced as the gap size is increased. As
expected, the opposite behavior with respect toΩ is observed for the systemswith even particle numbers.

In the free space analysis =( )F t 0jk for ¹j k, which is still approximately true once the lattice is
introduced, but as a consequence of the change in thewave-functions the terms

= ¹- + + + + -( ) ( )( )( ) ( )( )F t F t 0M d M d M d M d1 1 contribute significantly to the time-oscillating part of the average
momentum. - + + ( )( )( )F tM d M d1 generally oscillates with a periodicity related to = ( )t L Mv0 as the discrete time
symmetry of the systemmeans that the single-particle wave functions obey the relation
y y- = - +W W( ) ( ( ))x vt x v t tj j, , 0 . The size of the >d 0 contributions aremuch smaller than the d=0
contribution for shallow lattices, but as the lattice depth increases so does the size of - + +( )( )F M d M d1 .

A.2.1.Commensurable particle numbers in the shallow lattice. For very small gaps =( )V E0.02 r0 only thed=0
contributionsmatter andwewill consider this case in somedetail inorder to explain thebehavior close to
commensurability. This contribution is only importantwhen * ¹+( )c c 0Mn M n1 , that iswhen theoverlapbetween the
initial state and theM and +M 1 rotating states are comparatively large. ForA-PBC (evenparticle numbers) a
significant overlapwith theM and +M 1 rotating states is onlyobtained for = - + +{ }n M M M M1, , 1, 2
states,with * *» -- + - + + +( ) ( )( ) ( ) ( )( )c c c cM M M M M M M M1 1 1 2 1 2 and * *» -+ + + +( ) ( ) ( )( )c c c cMM M M M M M M1 1 1 1 . Therewill
thereforebe a significant contribution to the time-dependentoscillation forN=M. For = +N M 2 andhigher
particle numbers the time-dependentoscillationbecomes small again as the contributions fromthe = -{ }n M M1,
termsare canceledoutby the contributions fromthe = + +{ }n M M1, 2 terms. ForPBC (oddparticlenumbers)
only the states = - - + +{ }n M M M M2, 1, 2, 3 have significantoverlapwith the theM and +M 1 rotating
states,with * *» -- + - + + +( ) ( )( ) ( ) ( )( )c c c cM M M M M M M M2 1 2 2 1 2 and * *» -- + - + + +( ) ( )( ) ( ) ( )( )c c c cM M M M M M M M1 1 1 3 1 3 . This
means that therewill be a significant contribution for = -N M 1and = +N M 1. For = +N M 3 andhigher
particle numbers the time-dependentoscillationbecomes small again as the contributions from = -{n M 2,

- }M 1 and = + +{ }n M M2, 3 cancel out.Theanalysis for states close to M2 is exactly the same, that is only
= ¹+ +( ) ( )( ) ( )F t F t 0M M M M2 2 1 2 1 2 are important and they contribute in the samepattern.However, in this case a

deeper lattice ( »V E0.8 r0 ) is required for significant gaps tobe introduced.The largefinite valuesof the average
momentumfor commensurateparticle numbers visible infigure6 are therefore entirelydue to a time-dependent
oscillation inducedwhenquenching to the rotating lattice system.The time-dependenceof + ( )( )( )F tM M 1 is periodic

with t0,while + ( )( )( )F tM M2 2 1 is periodicwith t1

2 0. The latter periodicity is because the relevant SPeigenfunctions from

which + ( )( )( )F tM M2 2 1 is obtainedare alsoperiodicwith  y y- » - +W W( ) ( ( ))x vt x v t tj M j M2 , 2 ,
1

2 0 . In these

cases theperiodicity associatedwith the gap energy,  = p p
- -+ +

T ,
E E E E

2 2

M M M M1 2 1 2
is very large, as thegap is very small (see

figure 7). This long time scale oscillation is thereforeobscuredby themore important short time scale oscillation, see
figure 11.

For slightly deeper lattices ( < <E V E0.02 1.5r r0 ), the >d 0 contributions start to become important and
multiple frequency contributions are themain source of thefinitemomentumwe see close to commensurability
infigure 8. The difference between the odd and even particle number spectra close to hW = +2 1and hW = 2
also becomes smaller as the gap between the statesM−d and + +M d1 increases and the energy states within
each bandmove closer to each other. The odd–even effect therefore eventually disappears.

A.2.2. Intermediate and deep lattices. For a lattice of intermediate depth < <E V E1.5 10r r0 thefinite
momentumobserved close to commensurability infigure 8 stemsmostly from the time-independent part of the
averagemomentum. In these intermediate lattices the terms in the sum å å( ∣ ∣ [ ])c FImn j jn jj

2 are finite, but
negative for small values of <n M and positive as n gets close toM, whichmeans that the resulting sum is close

to zero, leading to
= +( ) ( )K t K t

N q

mL t , only when »N M . Aswe go towards the deep lattice limit ( >V E10 r0 )

the states in each each band become almost degenerate which results in »F 0jj leading to
= +( ) ( )K t K t

N q

mL t ,

which explains the linear increase with q, even for incommensurate particle numbers, observed infigure 6 for
=V E20 r0 . For deep lattices, - + + ( )( )( )F tM d M d1 is quite large for all possible values of d and despite the small

overlaps > <( )( )c j M n M the sumof these contributions gives rise to quite large oscillations. All of themhave a

similar periodicity corresponding to the band gap energy = p
+ -+

( )TM M E E1
2

M M1
. As the gap energy is large, these

are rapid oscillations on short timescales and they therefore dominate compared to the t0 periodicity for

- + + ( )( )( )F tM d M d1 , although this periodicity can still be observed in the instantaneous averagemomentum. The
oscillations correspond to the excitation of particles to higher energy-bandswithin each site, due to the rotation
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of the lattice. So although the particles are transported alongwith the lattice on average, these on-site excitations
leads to time-dependent dynamics within each site, as these have afinite width due to the continuumnature of
the lattice. This type of oscillation is observed infigure 12.
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