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Abstract
We study a two-level impurity coupled locally to a quantumgas on an optical lattice. For state-
dependent interactions between the impurity and the gas, we show that its evolution encodes
information on the local excitation spectrumof the gas at the coupling site. Based on this, we design a
nondestructivemethod to probe the system’s excitations in a broad range of energies bymeasuring the
state of the probe using standard atomopticsmethods.We illustrate ourfindingswith numerical
simulations for quantum lattice systems, including realistic dephasing noise on the quantumprobe,
and discuss practical limits on the probe dephasing rate to fully resolve both regular and chaotic
spectra.

1. Introduction

Atomic gases trapped in optical lattices offer unique opportunities for quantum simulation of strongly-
correlated phases ofmatter [1, 2] as recently demonstratedwith the observation of antiferromagnetic
correlations in the ground state ofHubbard-model quantum simulators [3–8]. A powerful tool to study these
systems are quantumgasmicroscopes [3–10], that permit high-fidelity control andmeasurement of atomswith
single-site resolutionwith laser fields by implementing high-resolution optical imaging systems. A
complementary experimental approach especially suitable to study transport properties is the scanning gate
microscope recently developed at ETH [11]. Still, in analogy to thewide variety of experimental techniques
available to study condensedmatter systems, it is necessary to develop a range of techniques to characterise a
quantum simulator, probing for instance its density,multi-particle correlations, temperature, or excitation
spectrum.

Most tools currently available for these tasks rely either on the interactionof the trapped atomswith laserfields
or ondensitymeasurements after a periodof expansion.As a classical exampleof a light-based technique, Bragg
spectroscopywasdeveloped in early cold atoms experiments to observe the low-energy excitation spectrumof
atomic gases [12–15], amethodmore recently employed tomap the band structure of bosonic superfluids inoptical
lattices [16]. The excitation spectrumof atomic gases has also beenprobedby stimulatedRaman spectroscopy
[17–19], which is akin to angle-resolvedphotoemission spectroscopy in condensedmatter physics [20].
Nondestructive probing of atomic ensembles in cavities by analysing their interactionwithquantum light has also
beendiscussed, e.g., in [21, 22]. Regardingmethods that exploit thewavenature of the atomicfield, noise
interferometry [23–25] andmatter-wave interferometry [26], which require the release of the atoms from the trap,
have been successfullyused to determine local andnonlocal density correlations in quantumgases.

The progress in control andmeasurementmethods at the single-atom level enables an alternative approach
based on utilising quantum impurities (e.g., single atoms in a different internal state or belonging to an entirely
distinct atomic species) as nondestructive quantumprobes ofmany-body quantum systems [27–49]. For
example, [29] described a scanning tunnellingmicroscope analogue for atomic systems based on a single
strongly-localised impurity atom, capable ofmeasuring the local density and density correlationswith
nanometer resolution.More recently, [38, 39] have proposed protocols tomeasure nonlocal particle
correlations in atomic gases utilising one [38] ormultiple impurities [39]. Conversely, [40] has shown how a
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Bose–Hubbard lattice can act as a controllable environment leading to eitherMarkovian or non-Markovian
evolution of an impurity coupled to it.

Hangleiter et al [44] have discussed amethod tomeasure the excitation spectrumof a quantumgas by
coupling it to an atomic impurity in a double-well potential. By tuning the parameters of the doublewell, they
showed that the impurity’s dynamical evolution becomes sensitive to the phononic excitations with energy and
momentum selectivity. Nondestructive probing of the system’s dynamic structure factor using an
anharmonically trapped impurity has been discussed in [45].

These various theoretical proposals have been accompanied by considerable experimental progress.
Reference [46]has reported temperaturemeasurements based onmonitoring the evolution of a small number of
caesium impurities interactingwith an ultracold rubidium gas in an optical trap, which has further enabled to
study the relaxation of non-thermal states at the level of single atomic collisions [47].More recently, the
coherent internal (spin) evolution of atomic impurities immersed in a condensate has been observedwith high
temporal (ms) and spatial (∼μm) resolution [48], demonstrating the possibility to use the former as local
quantumprobes of a complex quantumgas. In an alternative experimental approach, [49, 50] have developed
the trapping of different rubidium isotopes in highly-tunablemultiple radiofrequency traps.

Here, we propose a protocol tomeasure a broad range of the excitation energies of a quantum gas
simultaneously, by coupling it to a localised two-level impurity. Specifically, we show thatmonitoring the
internal dynamics of the impurity enables to robustly detect small energy gaps,ΔE=J (with J the characteristic
energy scale of the system), over a broad energy range in the system’s spectrum, with the lower resolution limit
set by the probe dephasing rate. Thus, our protocol constitutes a new tool to characterise cold-atom systems in
optical lattices.

The paper is organised as follows. In section 2we describe themodel of the lattice systemunder
consideration, and howwe couple a quantumprobe to it.We provide an analytic description of the evolution of
the probe in section 3. In section 4, we compare the analytic results with exact numerical simulations of the
protocol, considering two scenarios for the quantumprobe: isolated or subject to dephasing. Finally, we
summarise ourfindings and discuss the relation of our proposal with earlier works in section 5. For clarity, some
details of the derivation are presented in four appendices.

2.Description ofmodel and protocol

2.1.Model setup
Let us consider a tight-bindingmodel in afinite lattice with L sites andN particles. This system can be described
by theHamiltonian

å å= +
á ñ

( )† †H J c c c c , 1
l m

l m l m
l

l l llatt
,

,

where Jl,m represents the hopping rate between (nearest-neighbour) sitesm and l, òl defines a single-site energy
term, and †c c,l l are the particle annihilation and creation operators at site l. Thismodel can represent a variety of
experimental setups, including cold atoms in optical lattices [1], arrays of superconducting circuits [51, 52],
photonicwaveguides [53], microwave cavity arrays [54], and optomechanical setups [55].

The spectral properties of this simpleHamiltonian depend sensitively on the shape of the system, and can
show regular or chaotic features [56]. For instance [57], showed that themodel equation (1)with òl=0 on a
square lattice in a rectangular Lx×Ly domain presents a regular spectrum,with a Poisson distribution of energy
gaps, = -( ) ( )P s sexpPoisson , with s the suitably normalised energy-level spacing [57]. On the other hand, the
samemodel on a Bunimovich stadium (see inset infigure 3(b))has a chaotic spectrum,which is characterised by
level repulsion, i.e., no two levels are close in the energy spectrum [56]. This flexibility rendersmodel(1) a useful
test-bed to assess the resolution in energy of a spectroscopy protocol.

In addition, the transport dynamics on these finite lattices is relatively insensitive to the differing spectral
statistics [57], an effect that can be related to a symmetry of the square lattice [58]. This contrasting behaviour
between spectral and transport properties of finite latticesmakes probing directly their spectrum in amanner
complementary to transportmeasurements [11] an interesting task in itself.

Our probing protocol (described below) relies on the accumulation of a differential phase between the two
states of the probe by their coupling to the lattice system. Reference [36] has shown that a probe formed by two
internal states of a strongly localised atom, as the atomic quantumdot described in [27, 29, 59], is notablymore
susceptible to dephasingwhen coupled to a Bose-condensed gas than a probe comprised by an impurity in a
double-well potential. To increase our protocol sensitivity, we thus choose to couple the system(1) to a localised
two-level quantum system (a qubit), with internal states ñ ñ∣ ∣, separated by an energy gap wqubit. The
correspondingHamiltonian reads
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w s= ( )H
1

2
2zqubit qubit

with the Pauli zmatrix s = ñá - ñá∣ ∣ ∣ ∣z . The probewill be coupled locally to a single lattice site, located in
position xpr, seefigure 1.

The composite system is then described by theHamiltonian

= Ä + Ä + ( )H H H H1 1 . 3qubit latt qubit latt int

Weconsider a state-dependent contact coupling between the lattice and the qubit of the form [36, 39]

k k= ñá + ñá Ä ( ∣ ∣ ∣ ∣) ˆ ( ) ( )H n x . 4int latt pr

This interactionHamiltonian describes that each internal state of the probe couples with different strength to the
total density, =ˆ ( ) †n x c ci i ilatt , at site xpr. For instance, in a cold-atom implementation, this can be realised by
exploiting amagnetic of laser-induced Feshbach resonance in the collisions between the atoms in the lattice and
the probe.Without loss of generality, belowwe set k k k= = , 0; further, for simplicity we also set Jl,m=J.

2.2.Quantumprobing protocol
Forweak coupling k w { }J , qubit , in accordance with perturbation theory, the interactionHamiltonian(4)
induces a shift of the qubit energy eigenstates,

k+      ( )E E n , 5, , , latt

where r= [ ˆ ( )]n n xTrlatt latt latt pr is the density at the site probed. If the qubit is prepared in a pure state, it is
possible tomeasure nlatt bymonitoring the time evolution of the population in each internal state of the qubit
[29].More generally, as we presently show, it is also possible to extract information on the lattice’s spectrum. To
this end, we consider the following protocol (seefigure 1(b)):

(i) Initialise the probe in its ground state, ñ∣ . The composite system is initially uncorrelated,
r r r= = Ä( )t 0 qubit latt, with r = ñá∣ ∣qubit , and r latt the lattice state.

(ii) Apply aHadamard gate to the qubit,

=
-( )U

1

2
1 1
1 1

,Had

in the basis ñ ñ{∣ ∣ }, , so that it is now in state ñ + ñ(∣ ∣ ) 2 . As explained in appendix A, this equal
superposition is favoured to extract time-dependence of the lattice dynamicsmaximally.

(iii) At time t=0, couple the probe to the lattice with Hint, and let it evolve for a time tfin. For concreteness, we set
k k k= = ( ) ( )t t, 0, for < <t t0 fin. (Physically, during this stageof the protocol the two states of the qubit
acquire different phases, f = tEs s Î  ( { })s , , due to their interactionwith theparticles in the lattice.)

(iv) At time =t tfin, apply a newHadamard gate, and finallymeasure the probe state in the  { }, basis.

Figure 1. (a) Sketch of the system: particles can hop at a rate J (blue arrow) between nearest-neighbour sites on a lattice of Lx×Ly sites
(light blue spheres). A quantumprobe (dark orange sphere) is coupled locally to the lattice site xpr with strengthκ (red line).
(b)Probing protocol: the probe is initialised in its ground state, ñ∣ , and follows a Ramsey sequence, interacting with the lattice for a
time t before beingmeasured in the ñ ñ{∣ ∣ }, basis.
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3. Analytic time evolution

As in a standard Ramsey sequence, the last step of the protocol transforms the relative phases accumulated by the
 , states of the qubit into different populations of the probe states.More specifically, one can determine
analytically the time evolution of the composite system through the protocol by solving the vonNeumann
equation for the densitymatrix

 r r
¶
¶

= [ ] ( )
t

Hi , , 6

with the initial densitymatrix corresponding to an uncoupled situation, r r r= = Ä( )t 0 qubit latt. By tracing
out the lattice, one can extract the time evolution of the qubit, r r=( ) ( )t tTrqubit latt .Wefind that the state of the
probe at the end of the protocol is described by (see appendix A for details of the derivation)

r
r r

r r
q q
q q

= =
+
- -

 

 

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( ) ( ) ( )t
t t

t t
1

2

1 cos i sin
i sin 1 cos

7qubit fin
qubit qubit

qubit qubit

fin fin

fin fin

with q w= + å W + W -a s as as as as<( ) ˜ [ ( )]t t c t d tsin cos 1 . Here the summation runs over all pairs of lattice
eigenstates occupying site xpr, and w wW = -as a s is the difference between the corresponding eigenenergies.
The parameters as asc d, are functions of Was, the local density nlatt, and the relative phase between eigenstates
at =x xpr (see equations (A.7)–(A.9) in appendix A). If there are no particles at the coupled site, = =as asc d 0,
and w w=˜ ;qubit in this case, equation (7) recovers the free evolution of the probe. If only one lattice state is
present at xpr, again = =as asc d 0, but w w k= +˜ nqubit latt , in agreement with the energy shift expected in
perturbation theory. In this case,monitoring the probe’s time evolution allows to determine the density at the
lattice site throughmeasurements of w̃. However, one cannot access the energy of this single lattice eigenstate.

When the probe site is occupied by several eigenstates, however, an analysis of the time evolution of the
population of any of the probe states,

r r= á ñ = Î  ( ) ∣ ( )∣ { } ( )P t s t s s, , 8s
ss

fin qubit fin qubit

allows to retrieve the spacings between lattice energy levels, Was, of states present at xpr. To show this, we focus
on the case that there are no degenerate eigenstates; we discuss briefly the degenerate case in appendix B.

For simplicity, let usfirst consider the case that only two lattice states are present at xpr, so that there is only
one non-zero frequency difference, w wW = -21 2 1. Then, the time dependence of the probe state follows
equation (7)with an angle θ(t) given by

q w
w

w

= + W + W -
= - W W

- W W
- - W W
+ W W

( ) [ ˜ ( )]
( ˜ ){ ( ) ( )

( ) ( )}
( ˜ ){ ( ) ( )
( ) ( )} ( )

t t c t d t

t d c t d t

c t d t

t d c t d t

c t d t

cos cos sin cos 1

cos cos sin cos cos

sin sin sin cos

sin sin sin cos cos

cos sin sin cos . 9

1 21 1 21

1 1 21 1 21

1 21 1 21

1 1 21 1 21

1 21 1 21

By using the Jacobi–Anger expansion (see appendix C), it follows that q ( )tcos has frequency components
w  W˜ m 21, withΩ21 the difference in energy of the two states, andm=0, 1,KIt is straightforward to generalise
this to the case of an arbitrary number of lattice states, inwhich case the time evolution of the probewill have
components at the frequencies w  Was˜ m , withm=0,1,K, andα,σ running over all pairs of lattice states.
Physically, the situation is analogous to coupling the internal state of a trapped ion (described as a two-level
system, as the probe here) to itsmotional states in the trap (their role played here by pairs of lattice eigenstates):
the newqubit eigenfrequencies w  Was˜ m (m>0) are analogous to a trapped ion’smotional sidebands [60].

4.Numerical results

4.1. Non-dephasing quantumprobe
Wehave performed numerical simulations to determine the capability of our protocol to studyfinite lattices,
with regular or chaotic spectra, and compared the results with the analyticfindings in the previous section.We
set as our energy unit the hopping amplitude Jl,m=J=1, and choose a small interaction strengthκ<1, so that
we can comparewith the analytic results fromperturbation theory.

Wefirst consider a 5×5 square lattice on a rectangular domain, with small diagonal disorder,modelled by
on-site energies taken fromauniform randomdistribution òkä [−0.3, 0.3] (this allows to lift level degeneracies
due to the high symmetry of the square lattice), and set the qubit level splitting to wqubit=5. To test our
protocol, we take as the lattice initial state a superposition of the four lower-energy eigenstates, that we label 1, 2,
3, 4 (our protocol is likewise applicable when the lattice system is in amixed state, see appendix A).We then
expect the time evolution of the probe to show six first-order (m= 1) sidebands in frequency space, with varying
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amplitudes depending on the coupling site.We show infigure 2(a) the time evolution of the excited state
population of the probewhen coupled to various lattices sites, xpr. These time traces show a complex behaviour,
which is easier to understand bymoving to frequency space.

The Fourier transformof these signals is reported infigure 2(b), wherewe can clearly identify a small
number of underlying frequency components. There is a dominant peak at w w˜ qubit: as knlatt is rather small
( n 0.1latt ), the frequency shift w w-˜ qubit is unobservable at the energy resolution of the figure. There are 12
additional narrow peaks, distributed symmetrically to lower and higher frequencies. The frequencies of all peaks
are consistent with the expected locations of the first-order sidebands, w  Was˜ m , with a s Î ¼{ }1 4, , , , and it
is easy to identify all peakswith pairs of lattice states4 .We do not observe peaks fromhigher-order sidebands,
m�2. This is due to the amplitude of each peak being proportional to a Bessel function as( )J cm [or as( )J dm ],
with kµas asc d n, latt. In the present simulations, we have k -n 10latt

2. In this limit,  -( )J x 10m
4 for m 2,

which is below the resolution infigure 2. (Wediscuss in appendixD practical requirements onmeasurement
time to achieve the required frequency resolution in light of typical parameters in current experiments.)

An important observation offigure 2(b) is the variation in the number of frequency peaks, as well as in their
locations and intensities, as the coupling site ismodified. For instance, when the probe is coupled to site =x 5pr ,
there are two distinct peaks atω≈4.3.When the probe is displaced to =x 6pr , there are three similarly intense
peaks, while for =x 7pr , we see one large peak only. These variations spring from the spatial dependence of the
various eigenstates. This is also reflected for instance in the displacement in frequency of the peak atω≈3.5
depending on the probe position. Thesefindings support that our protocol is able to capture the different energy
spacings in the spectrumof a generic lattice system in a position-dependent way, fromwhich the local density of
states can be reconstructed.

To further illustrate this point, we have simulated as well the time evolution of a qubit probe coupled to a
square lattice on a domainwith the shape of a Bunimovich stadiumwith 27 sites (see figure 3(b), inset), for
which the spectrum is chaotic [57]. In this case, we have taken as the lattice initial state a superposition of three
lattice eigenstates with different energies, so that we expect to observe six first-order sideband peaks on each
side of w̃.

We show infigure 3(a) the time evolution of P for the case that the probe is coupled to a site populated by all
three states ( =x 15pr ). The Fourier transformof this signal is reported as a thick solid line infigure 3(b). Aswas
the casewith the rectangular domain, we can clearly identify each frequency componentwith the expected peak
at w  Was˜ (a s Î { }1 2 3, , , ), which illustrates the power of the protocol to unravel rather complicated energy
spectra. Additionally, in this case we observe a small displacement of w w- =˜ 0.06qubit , for the signal taken at

=x 15pr , which agrees with the perturbation theory expectationwith peak density »n 0.2latt . As afinal check,
we also coupled the qubit to a site that is not populated by any of the lattice states ( =x 2pr , bottompanel in
figure 3(a)). The corresponding Fourier signal (top line infigure 3(b)) features only the peak at wqubit as predicted
by equation (A.7) in this case.

Figure 2. (a)Population of the excited state of the qubit as a function of time, ( )P t , when it is coupled to the lattice site
=x 8, 7, 6, 5pr (from top to bottom) of a square lattice on a 5×5 rectangular domainwith diagonal disorder. (b) Fourier transform

of the signals in (a), displaced vertically for clarity with the same ordering. The full circle at the bottom indicates wqubit, while the
crosses are the expected frequencies w  Was˜ , with the states a s Î ¼{ }1 4, , , indicated in the boxes. In these simulations,
w = 5.0qubit andκ=0.3, with the hopping rate as our energy unit, J=1.

4
Taking into account that, within the frequency resolution in figure 2, dw - J10 1 , the peaks around w =( )J 4.2, 4.3, 5.6 and 5.7

correspond to two transitions each.
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4.2. Effect of dephasing on the quantumprobe
A real probewill be inevitably coupled to the environment, and it is important to assess towhat extent the
accuracy of the idealisedmeasurements simulated in section 4.1 is affected by this. In an implementation in
which the lattice is realisedwith cold atoms in an optical lattice, and the quantumprobe by an atom trapped in a
separate optical lattice or in optical tweezers, we expect dephasing of the internal state of the probe due to the
trapping and ambient electromagnetic fields to be the dominant source of noise [61]. This can bemodelled using
the standardMarkovian approach to open quantum systems [62]. In this formalism, the evolution of the density
matrix describing the lattice and probe is described by the Lindbladmaster equation

r r g r r
¶
¶

= - + -( ) [ ( )] ( ( ) { ( )}) ( )† †
t

t H t L t L L L ti , 2 , , 10

where the Lindblad operator s=L z dephases the probe in the z-direction, and γ is the dephasing rate.
We present infigure 4 simulations of the joint evolution of the lattice and probe including dephasing noise

according to equation (10) for the rectangle and the stadium. (The calculationwas done via a Suzuki–Trotter
decomposition of the Liouvillian; this allows us toworkwith operators rather than superoperators, greatly
increasing the efficiency of the numerical calculation, see [63].)

Figure 4(a) shows the Fourier transformof the signal for a probe coupled to a 5×5 rectangle with disorder,
and subject to dephasingwith various dephasing rates γ=0.01, 0.06, 0.08. For very small dephasing rate,
γ=1, there is no noticeable effect. On the other hand, as expected, when γ becomes comparable to the distance
between the peaks, theymerge and can no longer be distinguished; see for instance themerging of the two peaks
aroundω≈5.7 for γ 0.06. For γ>0.08 practically all peaks have become unobservable.

Figure 3. (a)Population of the excited state of the qubit as a function of time, when coupled to an occupied (top panel, =x 15pr ) or
empty (bottom, =x 2pr ) site of a square lattice on a 7×5 Bunimovich stadium. (b) Fourier transformof the signals in (a). The
crosses at the bottom indicate the expected frequencies w  Was˜ while the full circle is at wqubit. (Inset) Scheme of thefinite lattice
with labels# #2, 15 at the sites where the probe is coupled.Other parameters as infigure 2.

Figure 4. (a) Fourier transformof the signal for a probe coupled to site#5 of the 5×5 rectangle with disorder, and subject to
dephasingwith various dephasing rates γ=0.01, 0.06, 0.08 as indicated; other parameters and symbols as in figure 2. (b) Fourier
transformof the signal for a probe coupled to site#15 of the 7×5 stadiumwith disorder, and subject to dephasingwith various
dephasing rates γ=0.05, 0.1, 0.2 as indicated; other parameters and symbols as infigure 3. In both panels, the different traces are
displaced vertically for clarity.

6
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Interestingly, the level repulsion between eigenstates in chaotic systems renders themeasurement of their
energy gaps with the present protocolmore robust against probe dephasing. This is illustrated infigure 4(b),
wherewe present the Fourier transformof the probe signal for a disordered 7×5 Bunimovich stadium,
including dephasing noise on the probe. Here, as the dephasing rate γ is increased, the peaks loose strength in a
similar way towhat is found for the rectangle. However, the absence of nearby pairs of peaksmakes it possible to
resolve the various dominant frequencies up to larger dephasing rates, γ≈0.1: each peak eventually becomes
unobservable for strong dephasing, but they do not get tomerge, in contrast that what is found in the rectangle.
In general, the Fourier peaks for both regular and chaotic spectra will be distinguishable if one can control the
dephasing rate of the probe below a thresholdwhichmay depend on the kind of lattice. (Weemphasise that,
within the approach embodied by equation (10), there is no energy exchange between the probe and the source
of environmental noise, which guarantees that the peaks in the Fourier signal are not displaced; this would not
hold in the presence of dissipative noise.)

5.Discussion

In summary, we have studied the dynamics of a two-level quantumprobe locally coupled to a quantum lattice
system.Wehave shown that the probe’s evolution encodes information on the local density and excitation
spectrumof the lattice system, and designed a nondestructive protocol tomeasure thembased on state-
dependent probe-system contact interactions and standard control andmeasurement techniques applied on the
probe.Our numerical simulations including dephasing of the probe support the applicability of our protocol to
study lattices with regular or chaotic spectra.

The key ingredients of our proposal are a two-level probe onwhichwe only require projectivemeasurements
in the computational basis ( ñ ñ{∣ ∣ }, ), and a local density–density coupling to the systemof interest. The simple
level structure of the probemakesmonitoring its dynamics easier than for the case of probes realisedwith a
quantumharmonic oscillator, as recently proposed in [64] tomeasure the spectral density of a large structured
environment (i.e., in the limit  ¥N ), which requires tomeasure the average excitation number of the probe.

The density–density coupling to the systemmakes our protocol sensitive to the presence of particles at the
coupling site, and is thus readily applicable to bosonic or fermionicmany-body lattice systems. On the other
hand, a probewith a richer structure—together with amore complex coupling to the system—would be
required to perform full counting statistics of particle occupations on the sites that would reveal the quantum
statistics of the system.

Our probing strategy is nondestructive, essentially encoding the system’s excitations into the probe’s phase,
which is then accessed by a Ramsey sequencewithmeasurements in the ñ ñ{∣ ∣ }, basis. This strategy sets lower
experimental requirements thanmore elaborate protocols aimed at determining the structure or internal
couplings of spin networks [65–67], which ask for full state tomography.

Finally, ourmethod does not rely on a resonant coupling between the probe and the system [44], thus
enabling one tomeasure various spectral gaps simultaneously, even if the impurity is subject to additional
dephasing processes. Because of these reduced requirements, our protocol constitutes an attractive tool to
characterise the spectrumof systems implementedwith cold atoms in optical lattices.We expect this workwill
contribute to the development of newmeasurement techniques [29, 33, 37–45] exploiting atomic impurities to
characterise cold-atomquantum simulators [34, 46–50], and to explore aspects of quantum chaos in ultracold
finite-sized systems [57, 58].
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AppendixA. Time evolution of the qubit

We start with the vonNeumann equation (6), whichwewrite explicitly in terms of thematrix elements,

 år r r
¶
¶

= -a b
s

a s s b a s s b[ ] ( )
t

H Hi . A.1s k
r

s r r k s r r k, ; ,
,

, ; , , ; , , ; , , ; ,
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Here, r a r b= á ña b ∣ ∣s k, ,s k, ; , are the elements of the densitymatrix, while a b= á ña b ∣ ∣H s H k, , ;s k, ; , we use
Roman indices s, k, r to refer to probe eigenstates, andGreek indicesα,β,σ for lattice states. By tracing out the
lattice states, the left hand side (lhs) of equation (A.1) can be recast in the form

 å d
r

w w r=
¶

¶
+ -

a b
a b

w w- -
⎛
⎝⎜

⎞
⎠⎟( )

˜
( ) ˜ ( )( )

t
lhs i e A.2s k

s k s k
t

,
,

,
,

i s k

with the probe eigenenergiesωs(k) and r r= w w- -( ) ˜ ( ) ( )t t es k s k
t

, ,
i s k .

In general, the qubit and lattice become entangled by the interaction. However, wemake an assumption that
densitymatrix is separable at all times, r r r= Ä( ) ( ) ( )t t tqubit latt , which permits to simplify somematrix

elements in equation (A.1): a r b r a r bá Ä ñ = á ñá ñ∣( ) ∣ ∣ ∣ ∣ ∣s H k s k H, 1 ,qubit latt qubit latt latt and

a r b r a r bá Ä ñ = á ñá ñ∣( ) ∣ ∣ ∣ ∣ ∣s H k s H k, 1 ,qubit latt qubit qubit latt . This assumption is rigorously justified forweak
coupling and short evolution times, but our numerical results support a broader applicability for the present
problem.

Tracing over the lattice states on the right hand side (rhs) of equation (A.1), we then obtain

å åd w w r r r= - + -
a b

a b
a s

a s
s a a s

s a( ) ( ) ( ) ( )H Hrhs . A.3s k s k
r

s r
r k s r

r k

,
, ,

, ,
int

, ; ,
, ; , , ; , int

, ; ,

For the contact interaction equation (4), thematrix elements of the interactionHamiltonian are
a b kd d a b= á ñ = á ñá ña b

∣ ∣ ∣ ∣H s H k x x, ,s k
s k sint

, ; ,
int , , pr pr , with bá ñ∣xpr the amplitude of lattice eigenstate bñ∣ at site

xpr, and *a aá ñ = á ñ∣ ∣x xpr pr .We substitute this result in equation (A.3), apply the separability assumption again,
andfinally combinewith equation (A.2) to rewrite equation (A.1) as


r r
r r

r
r

¶
¶

=
-

 

 





⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜ ˜
˜ ˜

( ) ˜
( ) ˜

( )
t

M t

M t
i

0

0
, A.4

with

å åk k w w f= + - +
a

aa
a s

as a s as
<

( ) {( ) } ( )M t A A t2 cos . A.5

Here, we introduced a s r= á ñá ñas
f

saas ∣ ∣ ˜A x xei
pr pr with real numbers >asA 0 and fas. Thefirst summation

in equation (A.5) runs over all lattice eigenstates, while the second runs over all pairs of eigenstates. Physically,
the factors a sá ñ á ñ∣ ∣x x,pr pr guarantee that only eigenstates with non-zero probability density at xpr contribute to
the evolution of the probe’s off-diagonal terms. On the other hand, importantly, in this derivation the lattice
initial state does not need to be a pure state, but it can be a generalmixed densitymatrix, which implies that our
method can be applied likewise to quantumgases with a non-zero thermal component [68].

From equation (A.4) it follows that only the off-diagonal elements evolve, in accordance with the fact that the
interactionHamiltonian describes a dephasing of the probe state. This requires the initial state to have non-zero
off-diagonal elements; the optimal choice is an equal-weight superposition such as ñ + ñ(∣ ∣ ) 2 , see [69]. At
the end of the evolution and after the finalHadamard gate, the state of the qubit is of the form equation (7)with

 å åq w
k k

f f= + +
W

W + -
a

aa

a s

as

a s
a s as as

<

⎛
⎝⎜

⎞
⎠⎟( ) [ ( ) ] ( )t

A
t

A
t

2
sin sin . A.6qubit

,
,

This has the form given in themain text, q w= + å W + W -a s a s a s a s a s<( ) ˜ [ ( )]t t c t d tsin cos 1, , , , , with

 åw w
k

= +
a

aa˜ ( )A , A.7qubit


w w h

k
W = - =

W
a s a s a s

as

a s
( )A

,
2

, A.8, ,
,

h f h f= =a s a s as a s a s as( ) ( ) ( )c dcos , sin . A.9, , , ,

Wehave solved numerically the vonNeumann equation (A.1)with the initial state r = =( )t 0 1 2s k,

" Î  { }s k, , . As shown infigures 2–3, the numerical results of equation (A.1) agreewith the analytic
results(A.6), which justifies the separability assumption.

Appendix B. Case of energy degeneracy

Consider a lattice systemwith energy degeneracy between eigenstate s1 and s2. The dynamics of the probe follows
equation (A.4), withM(t) given by
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å åk k f k w w f= + + - +
a

aa
a s

a s

as a s as
<
¹

( ) {( ) } ( )M t A A A t2 cos 2 cos , B.1s s s s

s s, ,

1 2 1 2

1 2

which shows that an extra term is added into equation (A.5). Thismeans that level degeneracy leads to changes in
the frequency w̃, but does not disturb observation of lattice energy levelsΩα,σ.

AppendixC. Jacobi–Anger expansion

For completeness, we include here explicit expressions of the Jacobi–Anger expansion relevant to equation (9),
see [70]:

åf f= + -
=

¥

( ) ( ) ( ) ( ) ( ) ( )z J z J z kcos cos 2 1 cos 2 , C.1
k

k
k0

1
2

åf f= +
=

¥

( ) ( ) ( ) ( ) ( )z J z J z kcos sin 2 cos 2 , C.2
k

k0
1

2

åf f= - +
=

¥

+( ) ( ) ( ) [( ) ] ( )z J z ksin cos 2 1 cos 2 1 , C.3
k

k
k

0
2 1

åf f= +
=

¥

+( ) ( ) [( ) ] ( )z J z ksin sin 2 sin 2 1 C.4
k

k
0

2 1

with Jk(z) the Bessel function of 1st kind and order k.

AppendixD.Measurement time and frequency uncertainty

It is of practical importance to assess how long one needs tomonitor the qubit probe in order to retrieve spectral
information on the system, particularly when the probe is subject to large dephasing rates ( g J0.1 ). The trade-
off between frequency and observation time that follows from the Fourier transform is encapsulated in the
Wiener–Heisenberg relation between angular frequency resolutionΔω andmeasurement time tfin [71, 72]

wDt 1 2.fin

For cold atoms in optical lattices, one has typical hopping rates  ~ –J 1 100 Hz. Typical system lifetimes are
limited by vacuum to~ –10 70 s [73, 74], whichwould enable to resolve peaks down to wD - -–10 102 1Hz.
This appears sufficient to discern the peaks in themost demanding situation in our simulations: nearby peaks in
the disordered rectangle are separated by - J10 2 , which corresponds to~ - –10 1 Hz2 , depending on J. Still,
the longer lifetime of impurities immersed in a quantumgas reported to date is 40ms [75], with prospects of
increasing up to;600ms [73].
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