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Abstract

The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of
microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level
of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an
extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the
consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and
interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic
interneurons and discuss the activation of pre- and postsynaptic muscarinic and nicotinic receptors that participate in the modula-
tion of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic
interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence
on acetylcholine-mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A
short examination of their role in neurological disorders such as Parkinson’s, Huntington’s, and Tourette’s pathologies and dysto-

nia is also included.

Introduction

Cholinergic interneurons (Chls) contribute to give striatum its place
among structures with the highest levels of acetylcholine (ACh) in
the brain (Zhou et al.,, 2002). Without a doubt, these interneurons
exert a strong and complex modulation of striatal microcircuits.
These large interneurons form synapses with medium size spiny
neurons (MSNs) and other numerous smaller GABAergic interneu-
rons of which there are 10 subtypes and counting (Tepper & Koos
et al., 2017). Chls can be identified by their electrophysiological
characteristics (Goldberg & Wilson et al., 2017) and by immunore-
activity of their enzymatic profile (Mesulam et al., 1984). The mor-
phology of Chls, the richness of their synaptic contacts as well as
the expression of a variety of receptors has attracted the attention of
neuroscientists. More than 1000 research articles on Chls, published
during the last two decades, have enriched the understanding of their
function.

Striatal acetylcholine receptors

An early study indicated that destroying possible afferent pathways
to striatum ‘cortex, thalamus, globus pallidus or ventrotegmental
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area’ did not affect the activity of choline acetylase nor acetyl-
cholinesterase (AChE) or the histochemical staining within the
nucleus (McGeer et al., 1971; Lynch et al., 1972). This led to the
proposal that interneurons were the main intrinsic source of striatal
ACh. We now know of external sources of ACh that arrives from
the pedunculopontine and laterodorsal tegmental nuclei (Dautan
et al., 2014), but the main source of striatal ACh still is the sponta-
neously active Chls (Kitai & Surmeier, 1993; Pisani et al., 2007
English er al., 2012; Goldberg et al., 2012). At the cellular level,
ACh exerts its actions through the activation of two families of
receptors, muscarinic (mAChR) and nicotinic (nAChR). The
mAChRs belong to the G-protein-coupled receptor (GPCR) family
(Caulfield, 1993). These receptors are divided into group I (M, M3,
and Ms) and group II (M, and My). Group I receptors are coupled
to Ggq1 proteins via o subunits that activate protein kinase C (PKC)
and phospholipase C (PLC) leading to the production of inositol
triphosphate and diacylglycerol that results in an increase in intracel-
lular calcium. Group I receptors are found in striatal MSNs of both
the direct (AMSN) and indirect iIMSN) pathways. In MSNs, these
receptors are postsynaptically in dendritic spine necks and extrasy-
naptically locations (Hersch & Levey, 1995; Yan et al, 2001).
Group II receptors are coupled to Gy, proteins, inhibit adenyl
cyclase (AC) activity and close voltage-activated calcium (Ca,)
Cay2 channels while opening inwardly rectifying potassium chan-
nels (Kir3) following GPCR activation (Caulfield, 1993; Nathanson,
2000; Eglen, 2006; Haga, 2013). Muscarinic M, receptors act as
autoreceptors on Chls and are located mostly extrasynaptically sug-
gesting a role in volume neurotransmission (Bernard et al., 1998).
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M, receptors act as inhibitory heteroreceptors on striatal neuropep-
tide Y-somatostatin expressing (NPY-SOM) GABAergic interneu-
rons and on corticostriatal glutamatergic terminals (Hersch et al.,
1994; Bernard et al., 1998).

The high degree of similarity of the orthosteric ligand-binding site
in all five types of muscarinic receptors is the main reason it has been
difficult to identify subtype-selective ligands (Eglen, 2006; Dencker
et al., 2012) and a reason why the dissection of specific cholinergic
effects on neuronal activity and release has been difficult to achieve.
Nevertheless, new pharmacological tools such as the highly specific
antagonist peptide isolated from the green mamba snake venom are
now being used (Jerusalinsky et al., 2000; Karlsson et al., 2000;
Rowan & Harvey, 2011; Servent ef al., 2011). Similarly, positive
allosteric modulators and allosteric agonists are becoming promising
tools, even providing some therapeutic potential for several central
nervous system diseases (Digby et al., 2010; Bock et al., 2017).

Acetylcholine release is regulated by presynaptically located hetero-
and autoreceptors. Muscarinic autoreceptors M,/M, (Hersch et al.,
1994; Ding et al., 2006), via direct Gy,-mediated inhibition of presynap-
tic Cay2.2 and Cay2.1 channels linked to exocytosis. Another presynap-
tic control of release is regulated by the M, auto- and heteroreceptor
activation of the barium-sensitive potassium currents carried through
K3 potassium channels in Chls (Yan & Surmeier, 1996; Ding et al.,
2006) and corticostriatal terminals (Calabresi et al., 1998a).

Nicotinic (nAChR) receptors are pentameric ligand-gated ion
channels that consist of either heteromeric subunit combinations of
o subunits (02-10) and B subunits (B2-4; Exley & Cragg, 2008;
Gotti et al., 2009). The most common types of nAChR in striatum
are the homomeric o subunits (o7) and a4B2*. The a4f2* subcom-
position acts as an autoreceptor in Chls, as a postsynaptic heterore-
ceptor in GABAergic interneurons and as a presynaptic
heteroreceptor in GABA, serotonin, and dopamine axon terminals
(Eskow Jaunarajs et al., 2015). The reported subunit composition on
GABAergic interneurons is proposed to have the o4f2* and
ada5B2* subtypes (Eskow Jaunarajs et al., 2015).

Characteristics of cholinergic interneurons
Anatomical

In general, anatomical studies have revealed that Chls immunoreac-
tive for choline acetyltransferase (ChAT), with a large multipolar cell
body of 23-50 pum in diameter and widespread aspiny dendrites that
arborize up to 1 mm (Kimura ez al., 1981; Bolam et al., 1984b; Wil-
son et al., 1990) with 3—6 primary dendrites that extend in a radial
pattern (Doig ef al., 2014). Electron microscopy of rat striatal tissue
performed by Doig et al., 2010, 2014 indicates that Chls receive a
prominent inhibitory input and that most of excitatory input is from
thalamic afferents; a single Chl receives 8450 + 694 connections of
which the majority are symmetric. Moreover, there are approximately
three times more vesicular glutamate transporter type 2 (vGLUT2)-
positive thalamic terminals than vesicular glutamate transporter type 1
(vGLUT1)-positive cortical terminals in an individual Chl (Doig
et al., 2014). It is important to mention that boutons expressing
vGLUT1 and vGLUT2 are the highest in the dorsal one-third in the
rat striatum (Wouterlood et al., 2012). However, since vGLUT?2 is
also expressed in some dopamine terminals in ventral striatum (Stuber
et al., 2010), it is harder to isolate thalamic inputs.

In spite of the comparative small number of Chls (Lehmann
et al., 1979; Bolam et al., 1984a; Bennett & Wilson, 1999; Bennett
et al., 2000; Kreitzer, 2009; Girasole & Nelson, 2015), their long
and many branched axons allow a widespread release of ACh
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(Bolam et al.,, 1984a; Contant et al., 1996; Calabresi et al., 2000).
Initially, Chls were described as homogeneously dispersed; however,
in mice, a greater concentration of Chls in the dorsomedial com-
pared to ventrolateral areas was observed following a stereological
reconstruction (Matamales er al., 2016). A correlation between this
distribution and the presence of vVGLUT1 and vGLUT2 contribute to
a possible segregation of function.

Similar to dopaminergic axon varicosities, cholinergic ones, form
few structurally defined synaptic connections, therefore favoring a
slow cholinergic volume transmission (Descarries et al., 1997; Zhou
et al., 2001; Aznavour et al., 2003; Coppola et al., 2016; Ovsepian
et al., 2016; Dunant & Gisiger, 2017). The integration of a striatal
cholinergic tone established by volume and synaptic transmission is
considered to act within neuronal networks to change their balance
of activity to possibly initiate neuronal ensembles with specific func-
tions (Fuxe et al., 2012).

Electrophysiological

The spontaneously active firing characteristic of Chls ensures the basal
cholinergic tone (Kawaguchi et al., 1995; Lee et al., 1998; Wilson,
2005). These neurons have high input resistance, a broad action poten-
tial duration (Wilson et al., 1990; Tubert et al., 2016), a depolarized,
and often changing, resting membrane potential that is usually fixed at
—60 mV with a low holding current (Threlfell et al., 2012). These
interneurons also called ‘tonically active neurons or TANs’ and ‘au-
tonomous pacemakers’ are able to produce action potentials at 2—
10 Hz in the absence of synaptic input (Bolam et al., 1984a; Wilson
et al., 1990). Behind this tonic or pacemaking mechanism, it is an inter-
play of several ionic conductances (Wilson ez al., 1990; Pisani et al.,
2007). Their pacemaker cycle begins with an initial tetrodotoxin-sensi-
tive sodium current-induced depolarization that leads to calcium influx
from Cay2 channels. This first calcium influx in turn activates the cal-
cium and voltage-activated big potassium currents (BK). This potas-
sium influx contributes to membrane repolarization and the activation
of the Cay2.2 current that, in turn, activates the small-conductance cal-
cium-activated potassium current (SK). This second potassium current
induces a medium duration after-hyperpolarization (mAHP) of 100—
200 ms that defines the spike pattern and spike width (Kawaguchi,
1992; Bennett et al., 2000; Goldberg & Wilson, 2005). A decrease in
intracellular calcium levels reduces the SK current and consequently
the mAHP. The I, inward cyclic nucleotide-gated cation current (HCN)
repolarizes the membrane to about —60 mV, with a resulting inactiva-
tion of the outward potassium A-type Ky4 current. At the end of the
cycle, depolarization is slowed down, the persistent sodium current is
activated, and the threshold for an action potential is reached, beginning
anew sequence (Bennett e al., 2000; Goldberg & Wilson, 2005; Deng
et al., 2007; Pisani et al., 2007).

Another feature of Chls is a long pause in the tonic firing that fol-
lows bursts of action potentials. Their intrinsic properties allow Chls
to fire in regular, irregular, and in burst fashion interspersed with
long pauses (Bennett et al., 2000; Goldberg & Wilson, 2005, 2017;
Wilson, 2005; Sanchez et al., 2011). During a burst, a subthreshold
accumulation of calcium through Cayl channels recruits an addi-
tional potassium current that, in turn, produces a long-lasting (sev-
eral seconds) hyperpolarization (sSAHP) (Wilson & Goldberg, 2006;
Tubert et al., 2016).

It is considered that the delta frequency activity of these interneu-
rons results from the combination of synaptic inputs and intrinsic
mechanisms (Beatty et al., 2015). A muscarinic-dependent coher-
ence between motor cortex and Chls can be established following
optogenetic stimulation at both beta and low gamma frequencies
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(Kondabolu et al., 2016). The reports on striatal oscillatory activity
at different frequencies and the synchronization with other brain
regions have been the topic of several recent publications (Brittain
& Brown, 2014; Feingold et al., 2015; Sharott ez al., 2017).

Recordings of striatal neurons in behaving primates revealed two
cellular striatal populations (Kimura et al., 1984): phasic active neu-
rons that show brief action potentials and low spontaneous activity or
MSNs (Wilson & Groves, 1981; Apicella, 2017) and TANs that dis-
play a broader action potential and tonic spontaneous firing rate
(<12 Hz; Kimura et al., 1984; Wilson et al., 1990; Aosaki et al.,
1995; Apicella, 2002, 2017; Doig et al., 2014). Following electro-
physiological criteria, TANs were considered as putative Chls when
antidromic stimulation from globus pallidus (GP) was unable to acti-
vate them (Kimura et al., 1990, 1996). Moreover, in view of their
morphological, electrophysiological, regional, functional, and
immunoreactivity similarities, TANs were identified as Chls (Wilson
et al., 1990; Aosaki et al., 1995; Bennett & Wilson, 1999; Reynolds
et al., 2004; Inokawa et al., 2010; Goldberg & Reynolds, 2011; Brad-
field et al., 2013; Schulz & Reynolds, 2013; Atallah et al., 2014). See
Zhang & Cragg (2017) for a review on behavioral studies of TANs
and the range of striatal inputs that can modify the pauses.

The fact that the firing properties of TANs are similar to some
GABAergic interneurons has created confusion in the proper neu-
ronal differentiation (Berke, 2008; Beatty et al, 2012; Gonzales
et al., 2013; Gonzales & Smith, 2015; Apicella, 2017). It would be
best to identify all interneurons, including cholinergic, not only
associated with their extracellular electrophysiological characteristics
but also with other criteria. The systematic approach to interneuron
research being developed (Kepecs & Fishell, 2014; Wamsley &
Fishell, 2017) will provide a database of properly classified interneu-
rons (e.g., mRNA-expression profile). The future will likely bring
further determination of their individual electrophysiological charac-
teristics and integrative properties.

Afferents to cholinergic interneurons

Chls display symmetric (inhibitory) and asymmetric (excitatory)
synaptic specializations, from GABA/substance P and glutamate/dopa-
mine terminals, respectively (Kawaguchi, 1992; Bergson et al., 1995;
Yan et al., 1997; Koos & Tepper, 2002; Zheng & Wilson, 2002; Mau-
rice et al., 2004; Lim et al., 2014; Munoz-Manchado et al., 2016).
Here, we give examples of the established connectivity of Chls, local
neurons, and afferents to striatal microcircuits (Fig. 1; Table 1).

Intrastriatal

A key intrastriatal microcircuit is formed by connections between
MSNs, interneurons, and Chls. In general, 60% of the total intrastri-
atal synaptic contacts are GABAergic and somatodendritic (Gonza-
les et al, 2013; Gonzales & Smith, 2015). Medium size spiny
neurons that release substance P and dynorphin (Bolam ef al., 1986;
Pickel et al., 2000; Perez et al., 2007) or enkephalin (Le Moine
et al., 1994; Jabourian et al., 2005) contact and modulate Chls.
Importantly, opposite actions are described for their effects: excita-
tory for substance P (Aosaki & Kawaguchi, 1996; Bell er al., 1998;
Perez et al., 2007; Govindaiah et al., 2010) and a powerfully inhibi-
tory for opioid agonists (Mulder et al., 1984; Jabourian et al., 2005;
Ponterio et al., 2013). Axon collaterals of MSNs contact Chls
(Bolam ez al., 1986; Lapper & Bolam, 1992; Bennett & Wilson,
1998; Gonzales et al., 2013; Guo et al.,, 2015). In rhesus monkeys,
striatal output neurons of both types contact Chls (Gonzales et al.,
2013); however, in rodents, substance P containing terminals of

dMSNs contact Chls (Bolam er al., 1986; Martone et al., 1992).
Microcircuits where Chls are connected among themselves through
GABAergic interneurons can be seen when a single action potential
produced in a Chl evokes nAChR-mediated polysynaptic GABAL
inhibitory postsynaptic currents (Sullivan ez al.,, 2008). Connectivity
with an incidence of 9 Chls to 12 MSN has been observed follow-
ing MSN optogenetic stimulation (Chuhma ef al, 2011). Some
interactions of Chls occur between reciprocally connected Chls
(Pakhotin & Bracci, 2007) and with the GABAergic NPY-low
threshold spiking subtype (Vuillet e al., 1992). It would be impor-
tant to determine if striatal GABA, receptors contain the & subunit
that has been shown to be persistently active and to control presy-
naptic excitability in the spinal cord (Liu et al., 2017).

Extrastriatal
GABAergic

Extrastriatal GABAergic afferents arrive to striatum from three dif-
ferent GABAergic afferents, two from GP and one from substantia
nigra par compacta (SNc) (Fig. 2; Table 2). In GP, the arkypallidal-
type A (GP-TA) and the prototypic-type I (GP-TI) have been classi-
fied by electrophysiological (Mallet e al., 2008), anatomical (Bevan
et al., 1998), and molecular (Mallet et al., 2012; Mastro et al.,
2014; Abdi et al., 2015) techniques. The GP-TA express pre-
proenkephalin gene and FoxP2 or Meis2 transcription factors (Abdi
et al., 2015) and contact cholinergic, nitric oxide synthase (NOS)
interneurons, and MSNs (Mallet et al., 2012). SNc terminals that
corelease dopamine and GABA synaptically modify the activity of
Chls (Chuhma ef al., 2014; Straub er al, 2014), both types of
MSNs, and other interneurons (Tritsch & Sabatini, 2012).

Glutamatergic

Presynaptic regulation of ACh release has an important function in
control of the excitability in striatal microcircuits (Fig. 2). The regu-
lation of dopamine release mediated by a glutamate-ACh link has
become important, and metabotropic glutamate (mGlu) receptors are
being explored as potential targets for the treatment of neurodegen-
erative diseases (Ribeiro, 2005). As indicated before, glutamatergic
fibers from both cortex and intralaminar thalamus form asymmetric
synaptic contacts on striatal Chls but with a higher proportion of
synaptic contacts from thalamic inputs (Doig et al., 2014). Cortical
axons contact distal striatal dendrites, and thalamic axons contact
striatal somas and dendritic shafts (Lapper & Bolam, 1992). In pri-
mates, approximately 20% of synaptic connections to Chls are pre-
sumed glutamatergic and localized on the distal dendrites (Gonzales
et al., 2013; Gonzales & Smith, 2015), and in rodents, the soma
and proximal dendrites of Chls are the targets of glutamatergic input
(Doig et al., 2014). However, both cortical and thalamic stimulation
induces short latency responses in Chls and effects of the different
afferent synaptic locations have been explored. Compared to
responses induced by thalamic stimulation, cortical responses are
less robust and attenuate if the stimulation is repeated (Doig et al.,
2014). These differences could mediate the length of the pause and
strength of the rebound; sustained thalamic input seems to keep
cholinergic firing followed by long pauses with no rebound. More-
over, the variable intrinsic activity of Chls seems more important
than the location of the afferents in the moment-to-moment variabil-
ity in the size of neuronal recruitment (Kosillo er al., 2016). The
section ‘Influence of cholinergic interneurons within the striatal
microcircuits: dopaminergic terminals’ describes other experiments
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Fi1G. 1. Connectivity of cholinergic interneurons in striatal microcircuits. Afferents from thalamus and cortex initiate direct glutamate-induced postsynaptic
activity in cholinergic and GABAergic interneurons (TH, PLTS, NPY-NGF, FS subtypes) and in MSNs. Chl connectivity is reciprocal with other Chls, PLTS,
NPY-NGF interneurons and with MSNs. Unidirectional connections from Chls are to FA. Intrastriatal unidentified GABAergic terminals are contacted by Chls
expressing nicotinic and muscarinic receptors. These terminals could be dopaminergic (see Corelease in Chls) or GABAergic arkypallidal (Extrastriatal:
GABAergic). Synaptic connections between Chls and FS are weak at best and probably FS to Chl connectivity does not exist. Reciprocal connectivity of MSNs
with other MSNs and TH interneurons is also illustrated. For simplicity, only the dopaminergic input from SNc to Chls is illustrated. Abbreviations of interneu-
rons: Chl—cholinergic; PLTS—persistent low-threshold spiking; NPY-NGF—neuropeptide-Y expressing neurogliaform; FA—fast adapting; FS—fast spiking,

TH—tyrosine-hydroxylase. See Table 1 for the numbers associated to connections.

that have contributed to clarify the role of glutamate receptors selec-
tively activated by cortical or thalamic afferents.

Chls express postsynaptic and presynaptic ionotropic and metabo-
tropic glutamate heteroreceptors (Testa et al., 1994; Landwehrmeyer
et al., 1995; Bell e al., 2002; Deng et al., 2010). A membrane
depolarization (Vorobjev et al., 2000; Cepeda et al., 2001) and
modulatory actions mediated by PKC are observed in Chls (Di
Chiara ef al., 1994; Calabresi er al., 1998a) following the activation
of postsynaptic glutamate ionotropic receptors, that is, n-methyl-D-
aspartate (NMDA), o-amino-3-hydroxy-5-methyl-4-isoxazolepropio-
nic acid (AMPA), or kainic acid.

The presynaptic activation of these receptors on Chls increases
ACh release (Consolo et al., 1996). In striatal microcircuits,
mGluRs modulate excitability and neurotransmitter release (Conn
et al., 2005). The group-III member, mGlu,, is not expressed in
Chls (Pisani ef al., 2002) but expressed presynaptically as autore-
ceptors where it decreases the probability of release and in turn
postsynaptic cholinergic excitability (Bell e al., 2002). Group-II
mGlu,/; receptors are expressed pre- and postsynaptically in Chls
(Testa et al., 1994; Bell et al., 2002). As presynaptic heterorecep-
tors, they decrease glutamate release with a consequent depression
of excitatory postsynaptic potentials (Martella et al., 2009). The

mGlu,; autoreceptors (and GABApg receptors) dampen glutamate
release, decrease postsynaptic excitatory responses, and can produce
a transient depression (Martella ef al., 2009) and long-term depres-
sion (LTD) (Kupferschmidt & Lovinger, 2015). Moreover, mGluy3
receptors are predominantly coupled to Gj, proteins that mediate
inhibition of AC activity and also to other cell signaling pathways
involved in neuroprotection. For example, extracellular signal-regu-
lated kinase activation attenuates rotenone toxicity on dopaminergic
neurons (Ribeiro, 2005). Chls also express group-I mGluys (Bell
et al., 2002), especially in dendrites (Mitrano & Smith, 2007). The
activation of mGluys receptors induces membrane depolarization
(Calabresi et al., 1999b; Bell et al., 2002; Martella et al., 2009).

Dopaminergic

Dopaminergic SNc afferents exert a robust striatal influence due to their
tonic spontaneous activity (1-8 Hz) and broad terminal field arboriza-
tion (Prensa & Parent, 2001; Schultz, 2007; Matsuda et al., 2009); a
single dopamine neuron has a dense terminal field that occupies 3% of
striatal volume with axonal varicosities forming synapses every 2 pm
(Arbuthnott & Wickens, 2007). D, receptors located postsynaptically
on Chls reduce autonomous firing through voltage-sensitive sodium
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TABLE 1. References supporting connectivity illustrated in Fig. 1

# From To References
1 Cortex TH Ibanez-Sandoval et al. (2010)
2 Cortex FS Bennett & Bolam (1994); Mallet ez al. (2005); Fino et al. (2008)
3 Cortex PLTS Fino et al. (2009); Ibanez-Sandoval et al. (2011)
4 Cortex Chls Lapper & Bolam (1992); Ding et al. (2010); Doig et al. (2014); Guo et al. (2015)
5  Cortex NPY/NGF Ibanez-Sandoval et al. (2011); Assous et al. (2017)
6  Cortex MSN Somogyi et al. (1981); Barral et al. (1999); Ding et al. (2010); Doig et al. (2010); Huerta-Ocampo et al. (2014)
7 SNc Chls Chuhma et al. (2014), Straub et al. (2014)
8  Thalamus MSN Ding et al. (2010); Doig et al. (2010); Dube et al. (1988); Sadikot e al. (1992); Huerta-Ocampo et al. (2014)
9  Thalamus TH Assous et al. (2017)

10  Thalamus FS Kita (1993)

Bennett & Wilson (1998); Alcantara et al. (2001); Yan et al. (2001); Chuhma et al. (2011); Goldberg & Reynolds (2011);

Mulder et al. (1984); Bolam et al. (1986); Le Moine et al. (1994); Aosaki & Kawaguchi (1996); Bell et al. (1998);

Pickel et al. (2000); Jabourian et al. (2005); Perez et al. (2007); Govindaiah et al. (2010); Gonzales et al. (2013);

11 Thalamus Chls Lapper & Bolam (1992); Ding et al. (2010); Doig et al. (2010)
12 Thalamus NPY/NGF Assous et al. (2017)
13 Chls MSN Bolam ef al. (1986); Bernard et al. (1992); Lapper & Bolam (1992); Hersch & Levey (1995);
Goldberg et al. (2012); Gonzales et al. (2013); Guo et al. (2015); Phelps et al. (1985); 1zzo & Bolam (1988)
14 TH MSN Ibanez-Sandoval ef al. (2010); Freund et al. (1984)
15 TH PLTS Assous et al. (2017)
16 FS MSN Kita (1993); Koos & Tepper (1999); Gittis et al. (2010); Bennett & Bolam (1994)
17 ES FS Koos & Tepper (1999); Gittis e al. (2010)
18 FS PLTS Gittis et al. (2010); Szydlowski et al. (2013)
19 PLTS MSN Kawaguchi (1993); Gittis et al. (2010)
20 PLTS Chls Elghaba er al. (2016); Straub et al. (2016)
21 NPY/NGF Chls Assous et al. (2017)
22 NPY/NGF MSN English et al. (2012)
23 MSN Chls
Ponterio et al. (2013); Gonzales & Smith (2015)
24  MSN MSN Wilson & Groves (1980); Taverna et al. (2008); Burke ef al. (2017)
25 Chls PLTS Vuillet ef al. (1992); Elghaba et al. (2016)
26 Chls FS Chang & Kita (1992); Koos & Tepper (2002); English et al. (2012)
27  Chls NPY/NGF Assous et al. (2017)
28 Chls FA Faust et al. (2015); Faust et al. (2016)
29  Chls Dopamine Jones et al. (2001); Zoli et al. (2002); Salminen et al. (2004); Exley & Cragg (2008); Gotti et al. (2009);
terminals Threlfell et al. (2012); Gonzales & Smith (2015)
30 Chls Autoreceptors  Ding er al. (2006); Pakhotin & Bracci (2007)
Chls Chls
31 FA MSN Faust et al. (2015); Faust et al. (2016)

These selected references by no means reflect all the evidence gathered through more than 40 years of research, apologies for unintended omissions.

channels (Maurice et al., 2004; Ding et al., 2010) or hyperpolariza-
tion-activated HCN currents (Deng et al., 2007).

The dopamine—ACh interaction is mediated by D, and Dys recep-
tors. D,/Ds subtypes are expressed in dendrites (Bergson et al., 1995;
Yan & Surmeier, 1997; Yan et al., 1997) and D, receptors are located
in soma, dendrites, and axons (Alcantara et al., 2003). The activation
of D,/Ds receptors in slice preparations enhances Chls excitability
(Centonze et al., 2003b; Ding et al., 2011). Apparently, a cAMP-
dependent mechanism allows the closure of potassium channels and
promotes the opening of nonselective cation channels (Aosaki et al.,
1998). Cholinergic receptors expressed in the dopaminergic axon ter-
minal fields modulate dopamine release; nAChRs increase dopamine
release (Imperato er al., 1986; Calabresi et al., 1989) whereas presy-
naptic Ms mAChRs reduce it (Foster et al., 2014). At the somatod-
edritic level, both nAChRs and Ms mAChR increase spontaneous
activity (Foster ez al., 2014). Other effects on dopamine release medi-
ated by other mAChR subtypes appear related to the stimulation of
receptors located in non-dopaminergic neurons (Zhang et al., 2002a).

Using optogenetic stimulation of dopaminergic terminals in vitro,
a biphasic modulatory action on Chls was similar to the pause-
rebound response of putative Chls recorded in vivo. This consisted
in a decrease in spike rate and a delayed excitatory response that
peaked 0.4-0.6 s after stimulation (Straub ez al., 2014).

Although presynaptic D, receptors on Chls limit ACh release
through voltage-gated Cay2 channels, an important control of

downstream processes is also provided by the regulators of G-protein
signals (RGS) (Anderson et al., 2009). Ding et al. (2006) observed
that following dopamine depletion, My rather than D, receptors alter
signaling in Chl. In the absence of dopamine, M, autoreceptors suffer
the attenuation of Ca,2 channel opening and pacemaking by upregula-
tion of the expression of RGS9. Consistently, significant decreases of
RGS9 protein concentration and mRNA were observed in dopamine
depleted animals following L-DOPA treatment (Yin et al., 2011).

Other afferents

Axon terminals releasing serotonin, histamine, or adenosine are
known to modulate the activity of Chls. Serotonin afferents from the
dorsal raphe nucleus (Miguelez ef al., 2014) induce a direct excita-
tory effect on Chls through 5-HT, (Blomeley & Bracci, 2005) and 5-
HT¢ receptors (Bonsi et al., 2007). Similarly, histamine-containing
afferents from the hypothalamic tuberomamillary nucleus (Bolam &
Ellender, 2016) depolarize Chls by the activation of GPCR histamine
receptor type 1 (H;) (Bell et al,, 2000). In nucleus accumbens, the
activation of Chl Hj receptors decreases their spontaneous activity,
but this effect can only be observed in accumbens since striatum does
not seem to express this histamine receptor subtype (Varaschin et al.,
2018). The purine nucleoside, adenosine, is released by neurons and
glia. Of the four subtypes of GPCR adenosine receptors in brain, the
A A subtype is mostly expressed in striatum (Dunwiddie & Masino,
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Fi1G. 2. Influence of afferents on cholinergic activity and release. As mentioned in the text, pre- and postsynaptic auto- and heteroreceptors to Chls and their
afferents can selectively affect the spatial and temporal release of ACh with important functional consequences. The participation of different types of glutamate
receptors not only modulates Chl activity and ACh release but also exerts a fine control over dopamine release and other interneuronal and MSN activity. Coin-
cident afferent striatal activation can induce short- and long-term changes in ACh release important in the expression of striatal functions; in this way, Chls,
although few in number, are centrally positioned to likely control neuronal activity using wired and volume transmission. See Table 2 for the letters associated

to the references of postsynaptic and presynaptic auto- and heteroreceptors.

2001). Striatal A; and A,a receptors in Chl are potent regulators of
striatal ACh release with opposite effects (Preston et al., 2000; Song
et al., 2000). Concomitant dopamine D, and A, receptor stimula-
tion inhibits ACh release (Song & Haber, 2000; Tozzi et al., 2011).
Moreover, adenosine reverses N-type calcium currents in Chls and
both MSNs through membrane G-protein pathways (Song et al.,
2000; Hernandez-Gonzalez et al., 2014).

Influence of cholinergic interneurons within striatal
microcircuits

In spite of their relative small number, Chls within the striatal
microcircuits form enmeshed axonal projections with an extensive

neuromodulatory presynaptic and postsynaptic effect (Descarries
et al., 1997; Descarries & Mechawar, 2000) and most likely, inter-
act with all neuronal elements through synaptic and volume trans-
mission (Threlfell & Cragg, 2011). The modulation of striatal
microcircuits by Chls is exemplified in studies involving neuronal
excitability and neurotransmitter release (Figs 2 and 3).

Medium spiny neurons

Chls synapse onto dendritic spines (Hersch & Levey, 1995; Alcan-
tara et al., 2001) of iMSN and dMSNs (Izzo & Bolam, 1988; Ber-
nard et al, 1992; Yan et al, 2001; Goldberg et al., 2012). In
electrophysiologically identified MSNs, ACh evokes complex
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TABLE 2. References supporting connectivity illustrated in Fig. 2

Letter References

a Hersch et al. (1994); Testa et al. (1994); Calabresi et al. (1998c);
Hernandez-Echeagaray et al. (1998); Barral et al. (1999); Bell
et al. (2002); Pisani et al. (2002); Conn et al. (2005); Ribeiro
(2005); Pakhotin & Bracci (2007); Martella et al. (2009);
Campos et al. (2010); Ding et al. (2010); Atwood et al. (2014);
Pancani et al. (2014); Kupferschmidt & Lovinger (2015); Shen
et al. (2015); Banerjee et al. (2016); Howe et al. (2016)

b Testa et al. (1994); Bell et al. (2002); Martella e al. (2009);
Johnson et al. (2017); Pisani et al. (2002); Conn et al. (2005);
Ding et al. (2010); Atwood et al. (2014); Ribeiro et al. (2017)

c Di Chiara et al. (1994); Consolo et al. (1996); Calabresi et al.
(1998b); Vorobjev et al. (2000); Cepeda et al. (2001); Deng
et al. (2010); Kosillo et al. (2016)

d Calabresi et al. (1998a); Calabresi et al. (1999a) Bell et al.
(2002); Conn et al. (2005); Mitrano & Smith (2007); Ribeiro
et al. (2017)

e Hersch et al. (1994); Yan & Surmeier (1996); Bernard et al.
(1998); Azam et al. (2003); Ding et al. (2006); Eskow Jaunarajs
et al. (2015)

f Yan et al. (1997); Bennett & Wilson (1998)

g Bernard et al. (1998); Sullivan et al. (2008); English et al.
(2012); Eskow Jaunarajs et al. (2015); Elghaba et al. (2016);
Straub et al. (2016); Assous et al. (2017)

h Weiner et al. (1990); Jones et al. (2001); Zhou et al. (2001); Zoli
et al. (2002); Salminen er al. (2004); Gotti et al. (2009);
Livingstone & Wonnacott (2009); Chuhma et al. (2014); Foster
et al. (2014); Straub et al. (2014); Wang et al. (2014); Gonzales
& Smith (2015); Howe et al. (2016); Garcao et al. (2014)

i Richfield et al. (1989); Bergson et al. (1995); Yan et al. (1997);
Yan & Surmeier (1997); Aosaki et al. (1998); Alcantara et al.
(2003); Centonze et al. (2003a); Cabrera-Vera et al. (2004);
Maurice et al. (2004); Ding et al. (2006); Deng et al. (2007);
Ding et al. (2010); Ding et al. (2011)

j Bernard et al. (1992); Hersch et al. (1994); Santiago & Potter
(2001); Yan et al. (2001); Perez-Rosello et al. (2005);
Hernandez-Flores et al. (2015)

These selected references by no means reflect all the evidence gathered
through more than 40 years of research, apologies for unintended omissions.

excitatory actions by direct modulation of several ionic currents,
mainly potassium, sodium, and calcium (Pineda et al., 1995; Perez-
Rosello et al., 2005; Shen et al., 2007; Carrillo-Reid et al., 2009).
Both dMSNs and iMSNs express M, receptors, and their activation
increases neuronal excitability by the enhancement of the persistent
sodium conductance and by directly or indirectly depressing potas-
sium currents (Akins et al., 1990; Galarraga et al., 1999; Figueroa
et al., 2002; Perez-Rosello et al., 2005; Shen et al., 2005, 2007;
Carrillo-Reid et al., 2009; Goldberg et al., 2012; Perez-Ramirez
et al., 2015). Both M|, M, receptors are expressed in dMSNs (San-
tiago & Potter, 2001; Yan et al., 2001; Goldberg et al.,, 2012), and
the activation of My with muscarine increases MSN excitability by
enhancing Cayl channels (Hernandez-Flores et al., 2015).

A strong depolarization induced by glutamatergic striatal afferents
triggers a postsynaptic release of endocannabinoids (eCB). CB;
receptors are one of the most abundant GPCRs in the central ner-
vous system and are located at excitatory and inhibitory presynaptic
and axonal compartments. CB, receptors are primarily localized in
microglia (Kendall & Yudowski, 2016). CB; receptors are coupled
to pertussis toxin-sensitive Gy, type G-proteins, and their striatal
activation results in a presynaptic long-term depression in corticos-
triatal synapses (Adermark & Lovinger, 2007).

Chls are also important regulators of striatal eCB. ACh produces
an indirect modulatory effect in the regulation of striatal plasticity

Glutamatergic terminal

Cortex &
Thalamus
Dopamine Acetylcholine
( — ) a4p2* D2 ( + )
nAChR a7 nAChR
mAChR
T MSNs Ov, AD2 @a7

Av; Omg ©oadp2

F1G. 3. Presynaptic muscarinic and nicotinic control of striatal glutamate
release. Illustrated are the effects of ACh release within striatal microcircuits
as discussed in the sections ‘dopaminergic terminals’ and ‘glutamatergic ter-
minals’. The cartoon depicts Right: An increase in glutamate release medi-
ated by presynaptic o7 nAChR on glutamate terminals. Left: A decrease in
glutamate release mediated by two mechanisms: (i) a direct effect of ACh on
presynaptic mAChRs (M,, M3, and My), or (ii) an indirect effect of ACh
mediated by an increase in dopamine due to activation of o4p2* nAChRs on
dopamine terminals. Dopamine action on inhibitory D, receptors on gluta-
mate terminals reduces glutamate release. Such a complex action on the same
terminal as depicted in (Fig. 2) [if indeed the receptors are coexpressed on
single terminals] suggests either that fine control of the concentration of glu-
tamate or the precise timing of it is important for MSN activity. The second,
more indirect, inhibition by a4p2* nAChRs on dopamine terminals may be
an important source of the increased activity in striatum in the absence of
dopamine when such inhibition would be removed. The symbol code depicts
the receptor types and their location.

through the eCB system (Oldenburg & Ding, 2011). At inhibitory
synapses, M, receptor stimulation promotes eCB production and ret-
rograde activation of CB;R that suppresses the inhibitory synaptic
transmission. In contrast, at excitatory glutamatergic synapses, an
M, agonist reduces postsynaptic Ca,1.3 currents that, in turn,
decrease eCB production and activation of presynaptic CB;R (Wang
et al., 2006; Narushima et al., 2007). Low to moderate activation of
corticostriatal afferents in vitro (5 Hz/60 s) produces a long-lasting
disinhibition of synaptic input that complies with all the requisites
for the induction of striatal high-frequency stimulation-induced LTD
(Calabresi et al., 1992; Adermark & Lovinger, 2007; Kreitzer &
Malenka, 2008).

The in vitro long-lasting disinhibition of synaptic input induced
by corticostriatal afferents can be prevented with an antagonist to
the non-o7 nAChR; moreover, a nicotine-induced facilitation of
eCB-LTD is occluded by the dopamine receptor agonist quinpirole
and by the mAChR antagonist scopolamine (Adermark et al., 2018).
Using a slightly different paradigm to induce LTD in MSNs (i.e.,
direct activation of mGlu; with the agonist (S)-3,5-Dihydroxy-phe-
nylglycine (50 pm) plus postsynaptic depolarization to —50 mV),
selective optogenetic stimulation of cortical or thalamic afferents
revealed that cortical, but not thalamic afferent stimulation, induces
a significant eCB-LTD accompanied by a decreased probability of
presynaptic release. Double immunohistochemistry of CB;R and
vGLUTI1 or vGLUT?2 indicates cortical vGLUT1 terminals colocal-
ize =4 times more with CB; (Wu et al., 2015).

Long-term changes in striatal excitability by cortical and thalamic
axonal stimulation could be related to their different proposed func-
tions: goal-directed behavior for cortical afferents (Graybiel, 1995)
and attention and arousal for thalamic afferents (Alloway et al.,
2017).
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The interrelation between MSNs, glutamatergic cortical afferents,
Chls, and presynaptic action on dopamine terminals opens delibera-
tion as to whether other receptors located in these microcircuits have
a direct or indirect effect on MSNs (see Fig. 3).

GABAergic interneurons

Symmetrical synapses between labeled MSNs and interneurons are
observed in striatum (Bennett & Bolam, 1994). GABAergic
interneurons may not only be influenced by cortical or thalamic
inputs but also by local Chls. For example, excitatory activation of
GABAergic interneurons by nAChR are frequently reported (Sulli-
van et al., 2008; English ef al., 2012; Luo et al., 2013; Ibanez-
Sandoval et al., 2015; Munoz-Manchado et al., 2016).

Within striatal microcircuits, there is a neuronal chain that follows
glutamatergic input to Chls, then inputs to NPY-NGF interneurons,
and finally GABAergic input to MSNs evidenced in vitro following
multicellular recordings and calcium imaging. The activation of
nAChRs on GABAergic interneurons induces a global decrease in
neuronal activity indicating a general activation of inhibitory
GABAergic interneurons (Plata er al., 2013). Similarly following
synchronized activation of Chls, the GABAergic NPY-NGF subtype
produces the inhibition of MSNs mediated by Chl to GABAeric
interneuronal synapses and then to MSN (Faust ez al., 2015, 2016).
The recurrent inhibition of Chls is sensitive to nicotinic antagonists
therefore not mediated by the GABAergic interneuron (Sullivan
et al., 2008; English et al., 2012). Optogenetic activation of gluta-
matergic thalamic afferents to Chls provides a nicotinic excitatory
input to NPY-NGF interneurons that in turn modulate MSN activity
(Assous et al., 2017). Within this neuronal chain, it is still unknown
if other interneurons such as the FA subtype also participate.

Additionally, persistent low-threshold spiking (PLTS) interneurons
are highly excited by cortical afferents (Assous et al., 2017) and are
directly and indirectly modulated by both nACh and mACh recep-
tors. The amplitude of striatal intracellular responses mediated by
GABA decreases in the presence of muscarine and ACh (Sugita
et al., 1991).

A mutual excitatory interaction exits between Chls and PLTS: Chls
acting on nAChR directly excite PLTS interneurons and indirectly
through mAChR on unidentified GABAergic terminals. The net effect
of a tonic cholinergic action on the GABAergic interneurons is inhibi-
tory as both nicotinic and muscarinic antagonists reverse the inhibi-
tion (Elghaba eral, 2016). This evidence suggests that
interconnected Chls and GABAergic interneurons form a subcircuit
that could allow flow of information independent of classical inputs
such as MSNs to FSI (Luo et al., 2013; Faust et al., 2015, 2016).

Dopaminergic terminals

It is clear that synaptic release modulated at the terminal level, inde-
pendent of the cell body, is a major component of the striatal micro-
circuits (Rice & Cragg, 2008). It has been calculated that within a
sphere of striatal tissue of 20 pm in diameter, point-to-point synap-
tic communication for dopamine and ACh terminals takes place.
Axons of dopamine and cholinergic neurons contribute each ~ 400
terminals that are intermingled with other 2000-4000 unidentified
terminals (Descarries ef al., 1997). Such observations led Agnati
et al. (1986), as quoted by Fuxe et al. (2013), to propose the con-
cept of volume transmission as a non-junctional mode of intercellu-
lar communication. By modeling striatal dopamine spillover after
quantal release, Rice & Cragg (2008) concluded that uptake does
not limit the initial overflow from an extrasynaptic or synaptic
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release site, resulting in the formation of a cloud of dopamine that
can reach extrasynaptic dopamine receptors which are more abun-
dant than the synaptic receptors.

Studies of cholinergic modulation of dopaminergic terminals sug-
gest that ACh diminishes dopamine release via nAChRs located on
dopamine terminals (Rice et al, 2011); however, when dopamine
release and the activity of Chls could be simultaneously monitored
with fast scan voltammetry, a synchronous activation of Chls
increased striatal dopamine release; for references, see Cachope &
Cheer (2014). Therefore, endogenous release of ACh directly triggers
striatal dopamine release (Cachope et al., 2012) and Chls synchro-
nized by their thalamic input promote dopamine release (Threlfell
et al., 2012). The prolonged debate about the interrelation between
dopamine and ACh release has been slowly resolving, as more data
are gathered. We now know that presynaptic nAChRs are highly
expressed on striatal dopaminergic terminals (Jones et al., 2001; Zhou
et al., 2001; Zoli et al., 2002; Salminen et al., 2004; Gotti et al.,
2009; Livingstone & Wonnacott, 2009; Garcao et al., 2014; Wang
et al., 2014; Gonzales & Smith, 2015; Howe et al., 2016), and that
their activation facilitates dopamine release (Exley & Cragg, 2008).

Combined light activation of dopamine terminals and chemoge-
netic stimulation of Chl potentiates dopamine release (Aldrin-Kirk
et al., 2018). Moreover, a neurotoxic dopamine depletion plus
chemogenetic activation of Chls in vivo increases the use of previ-
ously akinetic forelimbs induced by a low dose of L-DOPA; how-
ever, the activation of Chl combined with a D, agonist (quinpirole),
but not a D; agonist, increases the L-DOPA-induced abnormal
involuntary movements (Aldrin-Kirk ez al., 2018). This is congruent
with other observations of exacerbation of dyskinesias by D, ago-
nists in mice (Alcacer et al., 2017) and increases in dyskinesias seen
by the activation of M; receptors on dMSN in combination with
presynaptic M, blockade (Bernard et al., 1992; Yan et al., 2001).

When considering microcircuits, different affinities or the com-
plete absence of ACh (in knockout mice) can produce different
modulatory effects. For example, a low affinity o7-containing
nAChR will quickly become desensitized with a resulting decrease
in cholinergic modulation; on the contrary, a high affinity o4p2*-
containing nAChR will desensitize more slowly, with a resulting
increase in modulatory effect of ACh. Moreover, a ChAT knockout
results in mice with no Chls and produces increased phasic-to-tonic
dopamine signal with altered dopaminergic and glutamatergic tone
(Patel et al., 2012).

The participation of corticostriatal and thalamostriatal afferents on
dopamine release has been clarified using selective optogenetic acti-
vation; increases in dopamine release by the corticostriatal terminal
field are mediated by nAChR but modulated by mAChR. Moreover,
the increase in dopamine release results from the action of AMPA
receptors on Chls that promote short-latency action potentials. Dopa-
mine release driven by thalamostriatal afferents involves additional
activation of NMDA receptors and action potential generation over
longer timescales (Kosillo et al., 2016).

If the presence of NMDA receptors in thalamic afferents is
observed, it would be interesting to know if they act as ‘sniffers’ of
spillover glutamate release, have neurotrophic/neuroprotective func-
tion, or are involved in the modulation of postsynaptic responses.

Glutamatergic terminals

As mentioned before, striatal glutamatergic afferents arrive from cor-
tex and thalamus (Ding et al.,, 2010; Doig et al., 2014), and presy-
naptic mAChRs (subtypes M;, M,, M3, My) are located on axon
terminals (Hersch et al., 1994). Electrophysiological in vitro
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recordings of striatal slices have been useful to clarify their inhibi-
tory role in the modulation of presynaptic release from excitatory
terminals to MSNs and their participation in striatal microcircuits.

Stimulated release of glutamate reduces responses to field pair-
pulse stimulation (Barral et al, 1999) and random synaptic events
(Hernandez-Echeagaray et al., 1998). Furthermore, pair recordings
of interactions between Chls and MSNs indicate that spontaneous
activity of Chls decreases the amplitude of the MSN intracellularly
induced EPSC and that M,/M, antagonists prevents the decrease
(Pakhotin & Bracci, 2007). Similarly, the activation of M, presynap-
tic receptors with a positive allosteric modulator decreases glutamate
release with a consequent reduction in postsynaptic excitatory cur-
rents in both types of MSNs (Pancani er al., 2014). Moreover,
mAChR induce presynaptic inhibition of striatal glutamatergic termi-
nals through an action on Ca,2 channels (Barral et al., 1999) with a
consequent decrease in glutamate release at both corticostriatal (Her-
nandez-Echeagaray et al., 1998; Barral er al., 1999; Higley et al.,
2009) and thalamostriatal terminals on dMSN and iMSN (Ding
et al., 2010), (Fig. 3).

Apart from the muscarinic action, nAChRs play a bidirectional
modulation on corticostriatal glutamate release due to the presynap-
tic location of o7-containing nicotinic heteroreceptors on corticostri-
atal afferents and presynaptic =~ o4f2*-containing nicotinic
heteroreceptors on dopamine afferents that in turn contact corticos-
triatal terminals. The activation of o7-containing nicotinic heterorep-
tors on cortical afferents increases glutamate release (Campos et al.,
2010; Howe et al., 2016), whereas the activation of presynaptic
042-containing nicotinic heteroreceptors on dopamine afferents
produces a two-link chain reaction: first, enhanced dopamine release
stimulates presynaptic D, heteroreceptors that in turn produce a
decrease in glutamate or ‘brake’ effect (Campos et al., 2010; Howe
et al., 2016). Certainly the affinity of nAChRs and mAChR, their
location, physiological properties, and activation state of the terminal
field have already begun to explain the spectrum of pre- and postsy-
naptic responses to ACh and for that matter to other neurotransmit-
ter receptors.

The variety of auto- and heteroreceptors located presynaptically at
synaptic and non-synaptic locations can selectively affect the spatial
and temporal control of spontaneous and action potential-driven neu-
rotransmitter release, depending on the terminal subtype and their
intrinsic activity (Banerjee et al., 2016; Pittaluga, 2016). After coin-
cident presynaptic activation, short- and long-term changes in neuro-
transmitter release can also occur (Atwood et al., 2014), but most
importantly, the controls on release described in this section reflect a
precise receptor-mediated regulation (Fig. 3).

Co-release from cholinergic interneurons

Although it goes against the Dale’s principle of one neurotransmitter
per neuron, the concept of corelease is now more accepted (Hnasko
& Edwards, 2012). The presence of the glutamate type 3 vesicular
transporter (VGLUT3) in neurons typically indicates the possibility
of corelease (Kljakic et al., 2017). In striatum, a high expression of
the glutamate transporter vGLUT3 is seen in a population of vesi-
cles that express both VGLUT3 and vesicular acetylcholine trans-
porter (VAChT) (Gras et al., 2002; Amilhon et al,, 2010; Kljakic
et al., 2017). Striatal corelease of ACh and glutamate has been
determined following two main strategies: electrophysiological and
genetic manipulation. Following the electrophysiological approach,
there are two studies: one reports that optical stimulation of Chls
induces in MSNs two glutamate-dependent responses (Higley ef al.,
2011) and another reports that ACh release following synchronous

Chls triggers an action potential-independent presynaptic release of
GABA colocalized in dopaminergic terminals (Nelson et al., 2014).
With the genetic approach, it was observed that following the dele-
tion of the VAChT gene and subsequent elimination of ACh release,
alterations in gross motor skills and in performance attributed to
ACh, are still present most likely as a consequence of coreleased
glutamate (Guzman et al., 2011).

Several questions must be answered regarding this topic: Does
corelease for both neurotransmitters occur at the same time? Is
release differentially regulated? Is release spatially coupled? How
does the presence of two neurotransmitters contribute to microcir-
cuits function? Does the ratio neurotransmitters change?

Striosome and matrix compartments

Almost 40 years ago, Graybiel & Ragsdale (1978) reported two dis-
tinct densities or compartments in the distribution of AChE in the
striatum of primates and cats. These two compartments are called
striosomes or patches, and matrix. Striosomes receive dopamine
afferents from SNc and glutamatergic afferents from medial pre-
frontal, anterior cingulate, orbitofrontal, and anterior insular cortices
(Benarroch, 2016). Stereological analysis in humans finds a differen-
tial distribution of Chls with most of them located in the periphery
of the striosomes (Bernacer et al., 2007). Similarly in rodents, Chls
are found in the border of striosomes (Kubota & Kawaguchi, 1993)
with extended processes into both compartments (Kubota & Kawa-
guchi, 1993). In recent reviews, Chls are described as preferentially
located in the matrix (Crittenden & Graybiel, 2011; Crittenden
et al., 2017). Using new tools, attempts to exclusively stimulate one
compartment in vitro are clarifying the location of Chls. Whole-cell
patch recordings of Chls with a posteriori identification of their
compartment location revealed that GABAergic currents mediated
by nAChRs are more frequently observed in the matrix than the
striosome (Inoue er al., 2016), and the photoactivation of the matrix
compartment with independent local stimulation and patch-clamp
recordings revealed lack of synaptic connectivity between matrix
and striosomes (Lopez-Huerta et al., 2016). The presence of Chls in
the areas high in calbindin-D28K and ChAT (Prensa et al., 1999)
referred to as the ‘peristriosomal boundary’ reaffirm the location of
Chls between as well as within matrix and striosome compartments
(Brimblecombe & Cragg, 2017).

A separation between matrix and striosomes has been established
in rats by their different thalamic afferents. Unzai er al. (2017)
reported that striatum and nucleus accumbens receive afferents to
the striosome compartment mostly from thalamic midline nuclei,
whereas the intralaminar nuclei innervate the matrix compartment.
Moreover, whereas most terminal fields form en passant boutons,
clusters or plexus containing many boutons are observed on terminal
fields of the parafascicular nucleus. From the functional point of
view, information from these two thalamic areas support the func-
tion previously inferred (Vertes e al., 2015): limbic (emotional)
control for the striosomes and sensorimotor associative for the
matrix (White & Hiroi, 1998; Crittenden & Graybiel, 2011; Buot &
Yelnik, 2012).

Participation of cholinergic interneurons in striatal
plasticity

It is broadly believed that long-lasting changes in synaptic efficiency
at corticostriatal synapses are the cellular basis of motor learning
(Pisani et al., 2007; Fino & Venance, 2011; Deffains & Bergman,
2015). These plastic changes have been shown as LTD or as long-
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term potentiation (LTP). Early reports of striatal long-term changes
indicated that either LTP or LTD could be produced by high fre-
quency stimulation of cortical or thalamic glutamatergic inputs along
with postsynaptic depolarization (Calabresi et al., 1992; Lovinger
et al., 1993; Wickens et al., 1996; Centonze et al., 2001).

Further studies revealed that the precise timing and order between
presynaptic and postsynaptic action potentials dictate the occurrence
of either LTP or LTD in the paradigm of spike-timing-dependent
plasticity (STDP) (Markram et al., 2011). As in the case of long-
term changes induced by high-frequency stimulation, STDP-induced
LTD and LTP was also induced in corticostriatal synapses (Fino
et al., 2008; Pawlak & Kerr, 2008; Shen et al., 2008; Fino &
Venance, 2011; Shindou er al., 2011; Jedrzejewska-Szmek et al.,
2017). Two variables are important for corticostriatal STDP: the fre-
quent in vivo bombardment of pre- and postsynaptic inputs onto stri-
atal neurons, and the presence of modulators like ACh, dopamine,
or serotonin. Extracellular ACh and the level of M, receptor stimu-
lation control the direction of LTP or LTD (Calabresi et al., 1999a;
Centonze et al., 1999). Additionally, cholinergic modulation of eCB
synthesis has been linked to these long-lasting processes (Wang
et al., 2006; Narushima et al., 2007).

The interaction between dopamine and ACh is important in the
regulation of MSN excitability and plasticity. It appears that in vitro
cortical inputs first activate striatal GABAergic FS interneurons,
then Chls, and finally MSNs (Fino e al., 2008). This order of
events provides a facilitating effect on the MSNs while they receive
cortical information and so define the direction of the plasticity
(Deffains & Bergman, 2015).

High-frequency stimulation of cortical or thalamic afferents that
synapse onto Chls leads to an early monosynaptic glutamate-depen-
dent depolarization (EPSP) followed by an intrastriatal disynaptic
GABAergic hyperpolarization (IPSP). In the presence of a GABAer-
gic antagonist, induction of LTP depends on a rise in intracellular
calcium and the activation of dopamine D,/Ds but not D, receptors
(Suzuki et al., 2001; Bonsi et al., 2004; Oswald et al., 2015). More-
over, in the absence of a GABAergic antagonist, the LTP of IPSPs
recorded in Chls is presynaptically mediated. The amplitude of each
unitary induced IPSP is the same whereas their frequency increases
(Suzuki et al., 2001; Miura et al., 2002). Other experiments suggest
that the direction of STDP is determined by the rheobase of the
Chls. If the minimal current amplitude to evoke an action potential
is low, LTD is observed in the recorded Chl, whereas LTP is
induced if the Chl has a high rheobase (Fino et al., 2008; Fino &
Venance, 2011).

The study of plasticity of cortical input to striatal GABAergic
interneurons is limited due to their low population prevalence and
cellular variability. So far, there are a few studies describing STDP
on FS or PLTS-NOS expressing interneurons (Fino er al., 2008,
2009). However, with the help of transgenic mice targeting specific
interneurons, in the near future, the knowledge in this field will
Zrow.

ACh and striatal microcircuits

Tonically active Chls are central in any analysis of the striatal
microcircuits and perhaps should be considered within a functional
relevant microcircuit. In order to be able to clearly isolate neuronal
microcircuits in behaving animals, technical advances are needed.
The study of neuronal ensembles was originated by the analysis of
the spatiotemporal organization of groups of neurons. To perform
the mathematical analyses to reveal interacting neuronal ensembles
as multidimensional microcircuits, many neurons should be recorded
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at once (Yuste, 2015; Carrillo-Reid ez al., 2017). Although single
cell studies have been valuable revealing direct postsynaptic actions,
sometimes conflicting interpretations can occur using the recordings
of many interacting cells (Carrillo-Reid ef al., 2011). In recent
years, these calcium-imaging techniques have provided the most
powerful tool to study spontaneous or drug-induced neuronal modu-
lation of ~60-80 striatal neurons for at least 20 min without losing
the single cell resolution (Carrillo-Reid ez al., 2008).

In the section ‘Influence of cholinergic interneurons. . .GABAergic
interneurons’, we described that the stimulation of striatal Chls
through nAChRs activation excites GABAergic interneurons that in
turn induce recurrent inhibition in themselves and nearby Chls (Sul-
livan er al., 2008). This effect could conceivably impact the activity
in the whole population of striatal neurons. To study this possibility,
Plata et al. (2013) artificially increased activity in the whole popula-
tion of striatal neurons by bath application of NMDA or a previous
chronic dopamine depletion. Under these conditions, it is clear that
bath application of 1 pm nicotine clearly inhibits the hyperactive
microcircuits.

Excitatory striatal activation of MSNs mediated by mAChRs has
also been reported (Lv et al., 2017). The activation of M, receptors
enhances a persistent sodium current that can synchronize a large
population of MSNs (Carrillo-Reid et al., 2009). Moreover, M;
receptor activation inhibits the persistent Ky/7-potassium or the M-
current in the dendritic/spine compartment of MSNs (Perez-Ramirez
et al., 2015) and as expected, a specific antagonist of M, receptors
also decreases striatal neuronal activity (Hernandez-Flores et al.,
2015). The influence of Chl on Kv7 channels is relevant, since these
channels are widely expressed and are known to control neuronal
excitability, the resting membrane potential, the spiking threshold,
and to set the firing frequency within the burst and the subsequent
hyperpolarization that follows a burst (Greene & Hoshi, 2017).

Movement disorders related to cholinergic interneurons

Impairment of striatal Chls is central in the production of movement
disorders (Pisani et al., 2007); altered cholinergic signaling is seen
in a diverse class of syndromes that include Parkinson’s disease
(PD; Brichta et al., 2013; Kalia et al, 2013; Ztaou et al., 2016),
dystonia (Peterson et al., 2010; Eskow Jaunarajs er al., 2015; Scar-
duzio et al., 2017), Tourette’s syndrome (Xu et al, 2015; Albin
et al., 2017), and Huntington’s disease (Di Filippo et al., 2007).

Parkinson’s disease is a common neurological disorder character-
ized by a decreased dopamine level. Early clinical and experimental
studies revealed that PD was also characterized by increased striatal
extracellular levels of ACh (Barbeau, 1962; Cachope & Cheer,
2014). Indeed, the earliest pharmacological treatment of PD con-
sisted of administration of anti-cholinergic agents (e.g., weak
antimuscarinic diphenylhydramine, benztropine, orphenadrine; Fahn,
2014). However, the cumulative effect of anti-cholinergic medica-
tion ‘anti-cholinergic burden’, and the ‘anti-cholinergic risk’ associ-
ated with a decrease in the use of anti-cholinergic in old
hospitalized patients. In a study of databases reporting side effects
of anti-cholinergics, Salahudeen ef al. (2015) compiled a list of
those anti-cholinergics frequently prescribed and indicated that medi-
cated patients suffer more frequent falls and hip fractures, increased
dyskinesias, and suffer from hallucinations, blurry vision, and mem-
ory impairment than non-medicated patients.

The elevation of cholinergic signaling in PD is directly related to
the alterations in ChI spiking (Tanimura ef al., 2018). As described
before, M, autoreceptors in Chls slow firing rate and ACh release
(Zhang et al., 2002b). In the rodent model of PD, dopamine
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depletion induces an upregulation of RGS4-dependent processes that
result in decreased My signaling in Chl (Ding ez al., 2006). Alterna-
tive RGS modulation of ACh release might aid future treatment of
patients. Experiments using the same animal model of PD report
that halorhodopsin photoinhibition of Chls in mice reduces akinesia,
bradykinesia, and sensory motor neglect; however, in wild-type
mice, the specific striatal blockade of M; and M, receptors has a
similar effect. This suggests that the main participants in the absence
of ACh are likely the M; and M, receptors since specific striatal
blockade of M; and M, receptors has a similar effect (Ztaou et al.,
2016). These results agree with the electrophysiological studies of
muscarinic and dopaminergic interactions described in (Hernandez-
Flores et al., 2015).

Recently Burbulla ef al. (2017), using long-term cultures of
human-induced pluripotent stem cells-derived dopamine neurons,
has demonstrated a toxic cascade triggered by dysfunctional mito-
chondria that can induce neuronal pathological changes and cellular
dysfunctions observed in PD. Now, research is centered on whether
the same toxic mitochondrial intracellular cascade is present in the
genetic and idiopathic forms of the disease. More work may eventu-
ally demonstrate the primary cause of SNc¢ dopamine neuron death.

Dystonia involves intermittent or sustained abnormal involuntary
muscle contractions that produce twisting postures in the absence of
other neurological signs. Repetitive movement and uncontrolled
muscle contractions can start early in childhood (Valente et al.,
1998; Klein & Fahn, 2013). Early onset of dystonia is a genetically
determined mutation in the gene TOR1A (Sciamanna et al., 2012).
As in PD, the reciprocal modulation between dopamine and ACh is
at the center of dystonia. For instance, high doses of anti-choliner-
gics (trihexyphenidyl) are used in the treatment of this disease
(Burke et al,, 1986). Electrophysiological experiments in Chls of
mice overexpressing mutant torsin A show that the sensitivity of a
D, agonist-mediated inhibition of Ca,2.2 N-type current is
increased. Following D, agonists, a reduction in mAHP and thresh-
old for action potentials is expected (Sciamanna et al, 2011). In
mice with a conditional knockout of the dystonia 1 protein, the acti-
vation of thalamostriatal inputs induces a short pause and increased
rebound activity in Chls that could result from a postsynaptic
increase and a presynaptic decrease in M; and M,-dependent cur-
rents (Sciamanna et al., 2012).

Gilles de la Tourette’s syndrome is a neurodevelopmental disorder
characterized by motor and phonic tics, usually measured by the
Yale Global Tic Severity Scale (Leckman et al, 1989). In the last
few years, several advances have been achieved toward the under-
standing of the neuropathology of this syndrome.

The participation of Chls in this syndrome is supported by post-
mortem findings of a significant 49% loss of cholinergic and 42%
loss of parvalbumin-positive FS interneurons with a no significant
change in ~ 20% in DARPP-32 expression in MSNs (Kataoka
et al., 2010); however, targeted toxin lesion of Chls in the dorsolat-
eral striatum of adult mice fails to show any abnormal stereotypes
(Xu et al., 2015). Moreover, the radiotracer ['°F] fluoroethoxy-ben-
zovesamicol that is successfully used to image overexpressed
VAChT in mice (Janickova et al., 2017) failed to detect changes in
the number of Chls in Tourette’s syndrome patients (Albin ef al.,
2017), perhaps obscured by the pedunculopontine cholinergic
afferents.

Since stereotypy is regarded as a predominant aspect of this
syndrome, using cocaine-induced stereotyped behaviors to test the
function of Chls, it is observed that a lesion of Chl or blockade
of mAChR (scopolamine) prolongs the time course of the stereo-
typy, whereas blockade of dopamine D, receptors (raclopride)

stops the stereotypy presumably by increasing the extracellular
cholinergic concentration (Aliane et al., 2011). These results sug-
gest that a restoration of cholinergic transmission may have impor-
tant consequences in the arrest of stereotypy. This is supported by
a decrease in stereotyped behaviors in children following the
administration of a cholinesterase inhibitor (donepezil) (Cubo
et al., 2008).

Pharmacological animal models of the syndrome have been pro-
duced following blockade of striatal GABA, receptors. In mice,
rats, and monkeys, intrastriatal administration of specific GABA,L
antagonists (picrotoxin or bicuculine) induces increased activity in
striatum and its outputs (i.e., subthalamic nucleus and thalamus) and
motor abnormalities similar to tics (McCairn et al., 2009; Bronfeld
et al., 2013), for review, see Yael et al. (2015).

Huntington’s is a progressive late-onset neurodegenerative disease
characterized by psychiatric symptoms and cognitive deficit. It is
caused by a CAG trinucleotide repeat in the gene encoding hunt-
ingtin. The resulting huntingtin accumulates forming inclusion bod-
ies with other proteins, initially in neurons of striatal and cortical
motor and prefrontal areas (Shepherd, 2013). In postmortem human
tissue and rodent models of the disease, there is a striatal pre- and
postsynaptic loss of GABA, glutamate, dopamine, and muscarinic
acetylcholine receptors (Penney & Young, 1982; Dure et al., 1991)
and a preferential degeneration of MSNs (Reiner et al., 1988) with
a faster loss in iMSNs (Cha et al., 1998; Deng et al., 2004; Starr
et al., 2008). Although the number of Chls is relatively normal (Fer-
rante et al., 1987), these interneurons have decreased the levels of
vAChT and ChAT (Smith ef al.,, 2006). In an animal model of the
disease (Q140 huntington-like mice), Deng & Reiner (2016) studied
the specific vGLUT2 thalamic inputs to Chls. They observed a
reduction in the extension of the dendritic trees, with a subsequent
loss of synapses, as also reported before (Deng et al., 2013). The
authors propose that a reduced thalamic excitatory drive onto iMSNs
could be responsible for an initial observed hyperkinesia in mice.
Then, a subsequent loss of dMSNs could lead to the permanent
hypokinesia in this animal model.

In recent years, interest has shifted in somewhat different direc-
tions. Two examples: (i) attention to the posttranslational modifica-
tions of huntingtin by the covalent attachment of a small ubiquitin
modifier (SUMO) protein (PIAS1). PIAS1 participates in the hunt-
ingtin accumulation of inclusion bodies and as expected, a reduction
in PIASI prevents the formation of inclusion bodies and reduces
inflammation (Ochaba et al., 2016). (i) Attention to the participa-
tion of NMDA receptors in neuronal degeneration pointing to the
molecular link between mutant huntingtin and the synaptic retrieval
of the GIuN3A subunit of the NMDA receptors. Mutant huntingtin
redirects an intracellular store of juvenile NMDA+GIuN3A to the
surface of the neurons favoring neuronal loss. Overexpression of
GIluN3A in normal mice induced synapse loss. Moreover, as
expected, the genetic ablation of GluN3A subunits improves motor
performance and decreases cell loss in mutant mice (Marco et al.,
2013).

Conclusions and future directions

There is an emerging idea that like dopamine, ACh is necessary at a
minimum concentration to maintain striatal function. The complex
distribution of the receptors for ACh and the tonic activity in the
cells themselves suggests a ‘maintenance’ role. The input to these
interneurons from cortex and thalamus allows them access to goal-
directed behavioral contexts (from cortex?) and to attentional and
arousal internal signals (from thalamus?). The pause in firing that
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accompanies newly learned cues is similar in timing with the burst
of dopamine activity that itself may generate the later burst of activ-
ity in the Chls.

It is easy to imagine that these temporary changes in extracellular
transmitter concentrations are a mechanism to remodel striatal func-
tional microcircuits to adjust to the change in circumstances that initi-
ated the pause. The intimate involvement of ACh in the long-term
changes in excitability in striatal cells in vitro is also an indication that
such a scheme might be involved in the response to novel cues that
are recognized as significant by the animal. In this scenario, the distri-
bution of receptors on both cells and terminals suggests that the orga-
nization of synaptic microcircuits in the striatum might underlie the
changes in functional assemblies that result in changes in behavior.

Methods to identify these functional assemblies and demonstrate
their sensitivity to local transmitter concentrations are being devel-
oped. They will provide information about the detailed physiology
of such changes in function and perhaps begin to make sense of the
detailed receptor localizations in the striatal microcircuitry. Work on
optogenetic manipulation of the ‘maintenance transmitters’ is already
leading to direct tests of their role. Moreover, methods to image
activity, at single cell resolution, in groups of related neurons in
freely moving animals are developing. We are reaching a time when
such ideas cease to be speculation and become testable hypotheses
about the role of acetylcholine in animal behavior.
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