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SUMMARY

The CRISPR-Cas9 system has successfully been
adapted to edit the genome of various organisms.
However, our ability to predict the editing outcome
at specific sites is limited. Here, we examined indel
profiles at over 1,000 genomic sites in human cells
and uncovered general principles guiding CRISPR-
mediated DNA editing. We find that precision of
DNA editing (i.e., recurrence of a specific indel)
varies considerably among sites, with some targets
showing one highly preferred indel and others dis-
playing numerous infrequent indels. Editing preci-
sion correlates with editing efficiency and a prefer-
ence for single-nucleotide homologous insertions.
Precise targets and editing outcome can be pre-
dicted based on simple rules that mainly depend on
the fourth nucleotide upstream of the protospacer
adjacent motif (PAM). Indel profiles are robust, but
they can be influenced by chromatin features. Our
findings have important implications for clinical
applications of CRISPR technology and reveal gen-
eral patterns of broken end joining that can provide
insights into DNA repair mechanisms.

INTRODUCTION

The CRISPR-Cas9 system has quickly become the preferred

tool for genome engineering, enabling site-specific alterations

in a variety of organisms and cellular contexts (Hsu et al.,

2014). The system relies on the combined use of the bacterial

Cas9 endonuclease and a single-guide RNA (sgRNA) to

substitute, insert, or delete DNA sequences in almost any

desired location in the genome (Hsu et al., 2014). Regardless

of the experimental setting and application, genome editing by

the CRISPR-Cas9 system entails three steps: (1) scanning

of the genome by the RNA-guided Cas9 nuclease (RGN) to
Molecular Cell 73, 699–713, Febr
This is an open access article und
find the DNA sequence complementary to the sgRNA, (2) crea-

tion of a DNA double-strand break (DSB) by Cas9, and (3) repair

of the lesion by the endogenous DNA repair machinery (Hsu

et al., 2014). Both the accuracy and efficiency of the processes

involved in each of these steps strongly affect the outcome of

CRISPR-mediated editing and consequently the utility of the

technology. Since the adaptation of the CRISPR system as an

engineering tool, several studies have provided insights into

the mechanisms affecting CRISPR-mediated DNA editing and

have improved the method (Brinkman et al., 2018; Henser-

Brownhill et al., 2017; Horlbeck et al., 2016; Hsu et al., 2014;

Isaac et al., 2016; van Overbeek et al., 2016; Tsai et al., 2015;

Uusi-M€akel€a et al., 2018). However, fundamental questions

about how the mammalian genome and proteins interact with

Cas9 and the sgRNAs and how cells respond to CRISPR-

induced DNA damage remain unanswered. Increasing our

knowledge of the mechanisms regulating these interactions is

crucial to maximize the potential and safety of CRISPR-based

approaches.

A key prerequisite for a good editing tool is the ability to

discriminate between on-target and homologous off-target sites.

Characterization of selected sgRNAs using both in vitro and

cellular assays has provided important information about param-

eters influencing RGN specificity identifying the seed region of

guide RNAs (the 10- to 12-nt sequence adjacent to the proto-

spacer adjacent motif [PAM] sequence) as critical for recognition

of target sequences (Hsu et al., 2014). This characterization has

guided sgRNA-designing algorithms and improved CRISPR fi-

delity. However, systematic investigation of off-target cleavage

sites has shown that predicting the specificity of any given RGN

is not straightforward and has revealed that our understanding

of how RGNs scan the mammalian genome is incomplete (Tsai

et al., 2015). Importantly, by showing that truncated guide

RNAs (17–18 nt) exhibit substantially reduced off-target DSBs,

this large-scale analysis has proposed modifications that can

considerably improve the technology and benefit various appli-

cations (Tsai et al., 2015). This example illustrates howsystematic

characterization of CRISPR-induced alterations in experimental

systems may provide information about how RGNs interact

with complex genomes and help optimize editing outcome.
uary 21, 2019 ª 2018 The Author(s). Published by Elsevier Inc. 699
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Figure 1. General Specificity and Reproducibility of CRISPR-Mediated Indel Profiles

(A) Overview of the experimental setup.

(B) Frequency at which each detected indel occurs at each target site in two biological replicates.

(legend continued on next page)
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In addition to specificity, activity is another feature that can

vary widely across RGNs.While direct measurement of cleavage

activity at a given target is not simple, sgRNA efficacy has been

inferred either by quantifying the frequency of insertion and/or

deletion (indel) formation or by evaluating the ability of an sgRNA

to induce an expected phenotype. Analysis of large-scale

studies has revealed sequence patterns correlating with sgRNA

activity and has guided refinement of algorithms for sgRNA

design (Doench et al., 2016; Wang et al., 2014). Although in silico

predictions of sgRNA efficacy have improved considerably,

concordance between predicted and empirically measured indel

activity remains moderate (Henser-Brownhill et al., 2017). Thus,

while we have achieved a qualitative understanding of RGN

activity determinants, additional parameters not included in the

current algorithms likely contribute to the overall outcome. The

epigenetic status of target sequences may be one such factor.

Although correlative evidence and in vitro studies have impli-

cated chromatin in the modulation of RGN activity (Horlbeck

et al., 2016; Uusi-M€akel€a et al., 2018), formal demonstration

that the chromatin status of an endogenous locus affects its

editing potential is still lacking.

DSBs induced by RGNs at target sites are recognized by

the cell’s DNA damage response pathways and repaired. Failure

of accurate repair creates a chance for sequence alteration.

When an exogenous repair template is provided, the homolo-

gous recombination (HR) repair pathway allows introduction of

precise modifications in the DNA sequence, including single

point mutations or insertion of exogenous sequences (Hsu

et al., 2014). In the absence of a template, RGN-induced DSBs

are often repaired through relatively error-prone mechanisms

that result in insertions or deletions of variable length. Indels dis-

rupting gene open reading frames lead to production of trun-

cated, often nonfunctional proteins, making RGN-induced edit-

ing an effective means to induce gene knockout (KO) (Hsu

et al., 2014). Despite the wide use of the CRISPR system to

generate KO alleles, our understanding of the mechanisms

driving indel formation is still limited, making the functional

outcome of genome editing unpredictable and often preventing

a rational use of the technology. Based on the type of indels

observed upon RGN-mediated editing, two major repair path-

ways have been implicated in the formation of RGN-induced in-

dels: canonical non-homologous end joining (cNHEJ), which is

known to induce small indels, and microhomology-mediated

end joining (MMEJ), which typically generates larger deletions

at regions of microhomology (MH) (Deriano and Roth, 2013). Of

note, genetic studies examining the general role of these path-

ways in the formation of CRISPR-mediated indels are currently

lacking and the predominant method of repair of RGN-induced
(C) Indel profiles for two biological replicates at the indicated target sites. Inde

deletion]. Counts are normalized to the total library size for each experiment. Nu

(D) Size distribution of the commonest indel size at each target.

(E) Percentage of indels resulting in a frameshift mutation at each target. Inset pie c

a frameshift mutation.

(F) Heatmap visualizing the frequency at which indels of a given size occur at eac

above indicates the number of indels observed at the corresponding sites. On

comparisons.

See also Figures S1 and S2 and Table S1.
DSBs remains unclear. Based on the assumption that NHEJ is

the main pathway involved in CRISPR-mediated indel formation,

repair outcome was thought to be random. However, recent

characterization of indel patterns at multiple genomic locations

revealed that individual targets show reproducible repair

outcome, with distinct preferences for class (insertion or dele-

tion) and size of indels (van Overbeek et al., 2016). This finding

suggests a deterministic nature of RGN-induced break repair

and raises questions about the factors involved in defining these

nonrandom patterns. Here, we performed a large-scale genomic

characterization of indel patterns examining over 1,000 sites in

the genome of human cells, with the aim of understanding how

genetic and epigenetic factors influence CRISPR-mediated

DNA editing. We find that Cas9-induced DSBs are repaired in

a predictable or unpredictable way, depending on the target

site. Precise targets, which show a dominant indel, can be iden-

tified in silico and their likely repair outcome inferred by their DNA

sequence. Our findings suggest that selection of a predictable

target is an effective strategy to induce desired CRISPR-medi-

ated alterations.

RESULTS

Large-Scale Analysis of Indel Patterns
To characterize general patterns of RGN-induced indels, we

selected 1,491 target sites across the genome and retrieved

the corresponding sgRNAs from a previously generated arrayed

lentiviral library (Table S1) (Henser-Brownhill et al., 2017). The

library targets 450 nuclear genes with multiple sgRNAs and

has shown overall high activity (Henser-Brownhill et al., 2017).

At least three sites for each gene were selected, spacing the

target regions along genes (Figure S1A) and using sgRNAs

with high predicted activity (Chari et al., 2017; Doench et al.,

2016) (Figure S1B). Retrieved sgRNAs were combined and

sequenced to confirm homogeneous representation in the re-

sulting pools (STAR Methods) (Figures 1A and S1C). Pooled

sgRNAs were then transduced into HepG2 cells expressing

Cas9 and allowed to edit their target sites for 5 days, a time frame

sufficient to reach a plateau in terms of generated indels (Brink-

man et al., 2018; van Overbeek et al., 2016) (Figure S1D) but

short enough to avoid KO-induced phenotypic changes that

may confound the results (Figure S1E). Upon isolation of

genomic DNA, target regions were captured by pull-down using

custom probes and sequenced at �6,000- to 8,000-fold

coverage (Figures 1A, S2A, and S2B). As expected, infection

with pooled sgRNAs resulted in a high proportion of cells with un-

edited sequence at each target site, since only a small fraction of

cells within the population expressed each sgRNA and could edit
l nomenclature: [start coordinate relative to cleavage site]:[size][insertion or

mbers in gray indicate indel frequency.

hart shows the proportion of targets for which the commonest observed indel is

h target. Sites are clustered using Ward D2 hierarchical clustering. The bar plot

ly data from targets from the 450 pools (524 targets) are used to enable fair
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the corresponding site (Figure S2B). Therefore, we developed a

custom computational pipeline to filter reads from unedited cells

for a given sgRNA, which enabled robust detection of indels

(STAR Methods) (Figure S2B). In total, 1,248 sites showed

detectable indels, ranging from 1 to 188 per target, with amedian

count of 32 (Figure S2C). This is a likely underestimation of

induced indels, due to the limited sensitivity of our experimental

approach, but it provides sufficient repair events to identify gen-

eral indel patterns. Analysis of target sites in unedited control

cells showed minimal indel counts, confirming robust and spe-

cific detection of on-target indels (Figures S2C and S2D).

Furthermore, high-coverage analysis of cells transduced with

individual sgRNAs showed indel profiles very similar to those

detected when using pooled sgRNAs (Figure S2E). Targets

with at least 10 reads containing indels (649 sites) were selected

for downstream analysis.

In agreement with previous studies that examined a limited

number of sites (Brinkman et al., 2014; van Overbeek et al.,

2016), we observed that RGN-induced editing was highly repro-

ducible across biological replicates (Spearman’s coefficient

0.75, p < 2.2 3 10�16), indicating that repair outcome is

nonrandom (Figures 1B and 1C). Validated sites confirmed

these results, showing almost identical indel patterns in two in-

dependent experiments (Figure S2F). Furthermore, our ability to

probe a large number of sites simultaneously allowed us to

reveal general patterns of CRISPR-mediated DNA editing and

make a number of observations. First, single-nucleotide indels

were the most frequent type of indel for the majority of targets,

with 44% and 26% of targets showing 1-nt insertions or dele-

tions, respectively, as their commonest indel (Figure 1D). Never-

theless, sites showing a preference for longer deletions (up to

41 nt) were also observed (Figure 1D). Second, in line with the

observed bias for single-nucleotide alterations, CRISPR-

induced indels often resulted in frameshift alterations (Fig-

ure 1E). On average, 80.1% of indels induced at a given site

disrupted the gene coding frame, a percentage significantly

higher than the theoretical 66% assuming a random outcome

(p < 2.2 3 10�16, c2 test) (Figure 1E). Moreover, 81% of all

detected indels resulted in a frameshift (Figure 1E). Thus,

the probability of achieving protein loss of function through

CRISPR-induced indels is typically relatively high. However,

three sites showed strong preference for in-frame indels (in-

frame indels R 70%), suggesting that in certain cases, it may

be difficult to successfully induce gene KO. Third, unsupervised

hierarchical clustering identified four groups of targets showing

similar indel patterns (Figure 1F). Based on the relative fre-

quency of the observed indels, targets could be broadly divided

into sites that preferentially show small insertions, small dele-

tions, long deletions, or have no clear preference (Figure 1F).

Fourth, sgRNA activity, as measured by quantifying indel counts

at each site, was highly variable, ranging from 0 to 188 (Figures

S2C and 1F). Indel count did not correlate with abundance of

sgRNAs in the pools, suggesting that sgRNA activity is intrinsi-

cally variable (Figure S2G). This observation is in agreement

with previous findings obtained by inferring sgRNA activity

from their ability to induce an expected phenotype (Doench

et al., 2016; Wang et al., 2014). Of note, several inactive sgRNAs

had high predicted activity scores, indicating that predicting
702 Molecular Cell 73, 699–713, February 21, 2019
algorithms can be further improved and that, in addition to

DNA sequence, other factors may affect sgRNA activity at a

given site (Figure S1B). Activity did not correlate with preference

for a certain type of indel pattern (Figure 1F).

Precision of CRISPR-Induced DNA Editing Varies
Considerably across Sites
The observation that different targets display distinct prefer-

ences for certain indel types prompted us to examine the degree

of editing precision (i.e., recurrence of a specific indel) across

sites. To do so, we first calculated the relative frequency of

each distinct indel, defined by its coordinates and base compo-

sition, at each site and then ranked all sites based on the fre-

quency of the commonest indel. This analysis revealed a large

range of editing precision, with some targets displaying up to

79 distinct, infrequent indels (frequency < 5%) and others

showing one dominant indel (up to 94% frequency) and only a

few additional ones (Figures 2A, 2B, and S3A). Overall, we found

that for approximately one-fifth of the targets, there is at least a

50% chance of inducing a specific indel, but the majority of sites

are more unpredictable. On average, the commonest indel fre-

quency for a given site was 34.1%, and the median number of

observed distinct indels was 12.

Editing Precision Correlates with Editing Efficiency,
Indel Type, and Indel Size
To examine the relationship between editing precision and

indel features, we categorized target sites into three groups:

imprecise (0 < commonest indel frequency % 0.25), middle

(0.25 < commonest indel frequency % 0.5) and precise sites

(0.5 < commonest indel frequency % 1), with each group con-

taining comparable numbers of sites (Figure 3A). Notably, editing

precision correlated with efficiency of indel formation (p < 2.2 3

10�16, Kruskal-Wallis test) (Figure 3B). Precise targets showed

on average twice as many indels as imprecise targets, and the

most active sites showed a strong preference for specific indels

(commonest indel frequency > 0.57) (Table S2). This pattern was

not due to differences in sgRNA abundance or sequencing depth

among groups (Figures S3B and S3C). We then asked whether

editing precision correlated with preference for insertions or de-

letions. Imprecise targets showed a high proportion of deletions,

with insertions being on average only 20% of the total indels,

whereas insertions were more frequent in the middle group of

targets (Figure 3C). Precise targets segregated into two distinct

subsets; 68.4% showed a strong preference for insertions,

whereas the rest mainly repaired RGN-induced breaks by

inducing deletions (Figure 3C). The two subsets were clearly

separated, likely reflecting their tendency to induce mainly one

dominant indel. Editing precision also correlated with absolute

indel size (Figure 3D). While imprecise and middle targets

showed a range of indel sizes, with deletions as long as

2,315 bp, precise targets displayed a strong bias toward sin-

gle-nucleotide indels (Figures 3D, 3E, and S3A). Combining

insertion and deletions, 71.5% of edited sequences in the

precise group had a single-nucleotide alteration. We conclude

that RGN-related editing precision varies considerably across

sites and correlates with editing efficiency and the type of

resulting indels.
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Figure 2. Site-Specific Precision of DNA Editing

(A) Heatmap visualizing the frequency of each indel at each target. Red, commonest indel; blue, indels ranking 2–19; gray, indels ranking higher than 20. Bar plot

shows the normalized number of distinct indels at each site.

(B) Indel profiles of two imprecise (left) and two precise (right) targets. Indels are ordered by start coordinate relative to the cleavage site (arrowhead), with

insertions having priority over deletions. The inset number indicates the total number of indels detected at that site.

See also Figure S3.
Precise Targets Exhibit Primarily Homology-Associated
Insertions and Deletions
Although indel profiles have been shown to be dependent on

both MH-dependent and MH-independent mechanisms (Bae

et al., 2014; Brinkman et al., 2018; van Overbeek et al., 2016),

a quantitative assessment of their relative contribution across

many target sites is lacking. In the absence of genetic or pharma-

cological interference with specific repair pathways (e.g., NHEJ,

homology directed repair [HDR], or MMEJ), characterization of

indel profiles is insufficient to determine which specific mecha-

nism led to an observed outcome. We therefore performed a

pathway-agnostic analysis of indels that searched for any ho-

mology at the indel boundaries. This analysis revealed that MH

of variable size, ranging from 1 to 18 nt, characterized the major-

ity of deletions (Figures 4A–4C; Table S3). 73.3% of all deletions

showed evidence of MH-mediated repair (MH deletions), and on

average, 74.3%of deletions at a given site were characterized by

MH (Figure 4A). Deletions associated with shorter MHs (1–4 nt)

were also enriched above the expected frequency, indicating

that the effect of sequence homology on repair outcome is not

limited to longer MH stretches (5–25 nt) used by the MHEJ

pathway (Figure 4B). MH deletions were enriched in the groups
of precise and middle targets (p = 1.36 3 10�5, Kruskal-Wallis

test) (Figure 4D). Furthermore, regardless of editing precision,

80% of targets had a MH deletion as their commonest.

Although sequence homology has not been implicated in the

formation of insertions, surprisingly, we found that many target

sites showed recurrent insertions containing a common inserted

base, suggesting that the choice of inserted nucleotide is

nonrandom (Figures 4E and S3A; Table S4). Moreover, the recur-

rently inserted base was often homologous to the nucleotide at

position�4 from the PAM sequence, which is typically the nucle-

otide upstream of the cleavage site (Jinek et al., 2012) (82% of

the commonest insertions at each target) (Figure 4F); we termed

this feature ‘‘insertion homology.’’ As observed for deletions, the

prevalence of insertion homology correlated with editing preci-

sion (p < 2.6 3 10�16, Kruskal-Wallis test) (Figures 4G and 4H).

Precise targets displayed 96% of homologous insertions,

whereas this percentage was only 57% in the imprecise group

(p < 2.6 3 10�16, c2 test) (Figure 4H), suggesting that

template-mediated insertions are a strong determinant of

the observed site-specific indel profiles. Even at imprecise tar-

gets, homologous insertions were often the commonest ones

(Figure 4H). Notably, precise targets showed a strong bias for
Molecular Cell 73, 699–713, February 21, 2019 703
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test followed by Dunn’s test for multiple compari-

sons with Benjamini-Hochberg correction for

multiple testing.

(E) Relationship between the median absolute in-

del size and the commonest indel frequency (i.e.,

the measure of editing precision at each target).

The background is colored as in (A).

See also Figures S3 and Table S2.
inserted ‘‘A’’s and ‘‘T’’s, suggesting that sequence features un-

derlie the correlation between editing precision and homologous

insertions (Figure 4I). Altogether, these observations suggest

that homology-mediated end joining strongly influences DNA

repair outcome, for both insertions and deletions, and correlates

with site-specific precision of CRISPR-mediated editing.

The DNA Sequence Determines Editing Precision
To examine whether editing precision depends on the base

composition of target sites and, if so, to identify critical positions

in the protospacer, we employed a machine learning approach.
704 Molecular Cell 73, 699–713, February 21, 2019
We trained a neural network that predicts

editing precision (i.e., commonest indel

frequency) using 80% of the targets

selected randomly to train the network,

with the remaining 20% kept unseen for

testing. We found a significant correlation

between the estimated and observed

indel frequencies for the 130 test target

sites (correlation coefficient R = 0.49,

p = 4.73 3 10�9, Wald test) (Figures 5A

and S4A). Analysis of an independent

dataset characterizing indel profiles at

96 distinct sites (van Overbeek et al.,

2016) confirmed these findings (R = 0.53,

p = 7.26 3 10�8) (Figures 5B and S3E).

Importantly, targets analyzed by van

Overbeek et al. were selected differently

from ours and showed distinct overall

nucleotide composition, indicating that

the neural network has learned generaliz-

able features (Figures S3D and S4B).

Although the predictive power of the

model was only moderate (coefficient of

determination R2 = 0.24), it allowed us to

identify important positions in the proto-
spacer. If certain positions have a significant influence on editing

precision, then randomizing those nucleotides is expected to

dramatically reduce the correlation between estimated and

observed indel frequencies. To investigate this, we performed a

permutation ‘‘nucleotide’’ importance analysis, systematically

randomizing each position in test sequences and examining the

resulting effect on the neural network output. This analysis re-

vealed that the nucleotide at position�4 from the PAMsequence

had the strongest influence on editing precision as a single

nucleotide, reducing the model’s accuracy by 78% ± 9%

upon randomization (R2 = 0.05 ± 0.02) (Figure 5C). Nucleotide
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Figure 4. Precise Targets Are Enriched for Homology-Associated Indels

(A) Percentage of microhomology (MH)-associated deletions at each target site. Inset pie chart shows the proportion of all detected MH deletions.

(B) Percentage of deletions that have MH of a given size. The gray bar indicates the expected percentage for each k-mer size. Statistical analysis was done using

the c2 test.

(legend continued on next page)
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positions �2, �3, and �5 also showed an effect, although

weaker, reducing R2 by 29% ± 9%, 15% ± 5%, and 50% ±

13%, respectively. Simultaneous randomization of all four nucle-

otides reduced R2 by over 98% ± 2% and abolished the predic-

tive significance of the trained model (average R2 = 0.01 ± 0.01;

p > 0.1 for all permutations, Wald tests), indicating that these po-

sitionswithin the protospacer, especially the one upstreamof the

cleavage site, are critical for defining editing precision of a target

site (Figure 5D). We refer to these combined nucleotides as the

‘‘precision core’’ of a target site. Similar results were obtained

using a least absolute shrinkage and selection operator (LASSO)

linear regression model (Figures S4C and S4D).

Targets in different precision groups revealed differences

in protospacer nucleotide composition (Figures 5E and S4E).

Notably, precise targets showed distinct base preferences de-

pending on whether the commonest indel was an insertion or a

deletion (Figure 5E). As expected, nucleotide �4 showed the

biggest differences, followed by nucleotide �5, which was

frequently a ‘‘C,’’ specifically in precise targets (Figure 5E). We

then examined to what extent nucleotide �4 on its own could

predict editing outcome. Different bases at position �4 showed

distinct association with indel types (insertions versus deletions)

and precision groups (Figure 5F). The vast majority of target sites

that contained an ‘‘A’’ or a ‘‘T’’ upstream of the cleavage site

repaired RGN-induced DSBs via insertions (77% and 91% of

targets, respectively) (Figure 5G). These were mostly precise or

middle targets (median commonest indel frequency: 0.42 and

0.56 for targets with ‘‘A’’ and ‘‘T,’’ respectively) (Figures 5G

and S4F). When taking into account positions �5 and �4

together, the correlation with precision further increased (median

commonest indel frequency: 0.53 and 0.65 for targets with ‘‘CA’’

and ‘‘AT,’’ respectively) (Figure 5E; Table S5). In contrast, 79% of

targets containing a ‘‘G’’ at position �4 showed deletions and

were mostly imprecise targets (median commonest indel fre-

quency: 0.21) (Figures 5G and S4F). Moreover, 76.4% of targets

containing ‘‘CC’’ at positions �5 and �4 induced relatively pre-

cise deletions (median commonest indel frequency: 0.39) (Fig-

ure 5E; Table S5). Notably, similar distributions were observed

at the sites edited by van Overbeek et al. (2016) (Figures

S4F and S4G). Given the large number of sites examined, the

observed percentages assume a predictive value with respect

to the editing outcome that may occur at similar protospacers

(Figure 5H). We conclude that precise targets can be identified
(C) Deletions detected at the ARID1D.7 site. In the gray panel is the reference sequ

site indicated with a red line. Below, each line represents a detected deletion.

corresponding MH in the unedited part of the sequence.

(D) Percentage of MH deletions at individual sites grouped by precision. I, imprecis

test followed by Dunn’s test for multiple comparisons with Benjamini-Hochberg

(E) Frequency of the commonest insertion at a target site. Only targets with 5 or m

number of target sites included.

(F) Insertions detected at the indicated sites. In the gray panel is the reference seq

site indicated with a red line. The �4 position is underlined. Below, the edited se

emboldened in red.

(G) Percentage of homologous insertions at individual target sites grouped by pre

Dunn’s test for multiple comparisons with Benjamini-Hochberg correction for mu

(H) Percentage of all homologous insertions in a group (filled bars) and correspo

(I) Nucleotide inserted as the commonest insertion for each precision group.

See also Tables S3 and S4.
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by examining the base composition of the precision core and

that position�4 is sufficient to predict with a high degree of con-

fidence whether a site will acquire insertions or deletions.

Chromatin States Affect RGN Activity
Our findings, in agreement with previous small-scale studies

(Brinkman et al., 2014; van Overbeek et al., 2016), suggest that

DNA sequence features strongly affect RGN-induced indel pro-

files in a site-specific manner, influencing editing precision and

efficiency. However, even within precision groups, the number

of induced indels and their patterns varied across sites (Fig-

ure 3B). Furthermore, the neural network model, based solely

on the protospacer sequence, was unable to fully recapitulate

observed frequencies, suggesting other factors at play. We

therefore examined whether chromatin structure may contribute

to the observed editing outcome. To do so, we selected six

target sites characterized by variable editing precision and effi-

ciency of indel formation (Figure 6A) and individually transduced

the corresponding sgRNAs in Cas9-expressing cells in the pres-

ence of chromatin-modulating compounds.We used the histone

deacetylase (HDAC) inhibitor trichostatin A (TSA) to induce his-

tone hyperacetylation at the target sites (Figures S5A and S5B)

using concentrations of the inhibitor that do not impair cell pro-

liferation or induce DNA damage (Figures S5C and S5D). TSA

treatment significantly increased the efficiency of indel forma-

tion, inducing dose-response changes (p < 0.001, paired Wil-

coxon test) and reaching almost a 2-fold increase for the

ACTL6A.5 site (Figure 6B). The effect was highly reproducible

across biological replicates (Figures 6B and 6D; Table S6), varied

depending on the target, and inversely correlated with the

endogenous levels of histone acetylation (Figures 6B, 6C, and

S5B). Sites characterized by low levels of acetylated H3 showed

a greater response to the treatment than those that already had

high levels of the endogenous mark (MSH6.2 and SMARCD2.1),

suggesting a direct effect of chromatin modulation on indel for-

mation (Figures 6B, 6C, and S5B). Editing efficiency was also

affected, to a lower extent, by treatment of cells with EZH2i inhib-

itors, which decreased H3K27me3 levels (Figure S5A). Contrary

to TSA, EZH2i inhibited indel formation (Figure 6B). Analysis of

individual indels indicated that the effect of TSA and EZH2i

was not restricted to a few indels and that both insertions and

deletions were affected (Figures 6D and S6A; Table S6). We

conclude that the chromatin state of target sites affects the
ence, with the PAM sequence emboldened in blue and the expected cleavage

In the dashed box is the MH in the deletion, and emboldened in red is the

e; M, middle; P, precise. Statistical analysis was done using the Kruskal-Wallis

correction for multiple testing.

ore insertions are considered to obviate a low-count bias. The inset count is the

uence, with the PAM sequence emboldened in blue and the expected cleavage

quence is shown with the insertion homology (either a mono- or dinucleotide)

cision. Statistical analysis was done using the Kruskal-Wallis test followed by

ltiple testing.

nding percentage of commonest insertions (outlined bars).
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activity of RGNs and that transient induction of histone acetyla-

tion enhances DNA editing efficiency.

Chromatin States Influence Indel Profiles but Do Not
Alter Dominant Indels at Precise Sites
Although changes in editing efficiency by TSA or EZH2i were

observed for most indels at each site, some indels were prefer-

entially affected (Figure 6D). Furthermore, shorter and longer in-

dels appeared differentially altered by treatment (Figure S6B).

These observations suggest that chromatin modulation may

affect indel profiles. We therefore examined the relative changes

in the abundance of individual indels, focusing on the effect of

TSA, which induced greater and more consistent changes in in-

del formation (Figures 6B and 6D). Across all sites, we observed

dose-dependent changes in the relative frequency of indels, with

some being favored at the expense of others (Figures 7 and S7).

Although the observed changes were small in extent and the

overall indel patterns were maintained, confirming robustness

of the editing profiles, the most frequent indels showed repro-

ducible and dose-dependent changes (Figure 7). At some sites

(MBD3L1.6, MSH6.2, and SMARCD2.1), the preference for their

commonest indel was enhanced, while at others (ACTL6A.5,

ASF1B.7, and BRD2.7), it was decreased (Figure 7C). Impor-

tantly, changes induced by chromatin modulation had distinct

impact on sites, depending on their editing precision; for

instance, the identity of the commonest indel changed at the

imprecise BRD2.7 site, whereas the dominant indel at the

precise ACTL6A.5 site was not altered, despite significant

changes in its frequency (Figures 7A and 7C). Thus, editing of

precise targets is not substantially affected by differences in

chromatin states, whereas dominant indels can vary at imprecise

targets depending on chromatin state. This observation has

implications for DNA editing in different cell types.

As a complementary approach to experimental modulation of

chromatin, we analyzed the van Overbeek dataset, which exam-

ined indel profiles at 96 sites in different cell types characterized

by distinct chromatin landscapes. HCT116 cells were excluded

from this analysis, as their deficiency in mismatch repair may

modulate indel profiles independently of chromatin differences.

Embryonic kidney HEK293 cells and lymphoblastoid K562 cells

displayed very similar but not identical indel profiles, indicating

that these are primarily, but not entirely, determined by DNA

sequence (Figure S5E). Sites with major differences in histone

acetylation levels showed different indel profiles. As observed
Figure 5. A Neural Network Identifies Protospacer Nucleotide Position

(A and B) Correlation between the observed precision at a given target site and

dataset (van Overbeek et al., 2016) (B). R, correlation coefficient. Statistical anal

(C andD) Contribution of the indicated protospacer nucleotides (C) or combination

shown as reduction of the model’s accuracy (R2). Values are mean and SD fro

increased p values of Wald tests across the majority of permutations to nonsign

(E) Sequence logos for the precision core for the different precision groups. Precis

deletions. The most important �4 nucleotide position is highlighted in a yellow b

(F and G) Proportion (F) and percentage (G) of targets that have the indicated nuc

preference (commonest indel) for insertions or deletions.

(H) Likelihood of editing outcome for sites having the indicated nucleotides at the�
the insertion rate for each mono- or dinucleotide as measured in our dataset. Se

See also Figure S4 and Table S5.
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in our dataset, some imprecise targets showed different domi-

nant indels in the two cell lines, whereas precise sites showed

conserved indel profiles (Figure S5F). Altogether, these results

show that chromatin structure contributes to the establishment

of site-specific indel profiles. While the DNA sequence appears

to be the major determinant of CRISPR-mediated editing

outcome, the chromatin state of a given site may modulate the

relative abundance of individual indels and contributes to

defining the site’s indel profile. Despite chromatin-mediated dif-

ferences in indel profiles, precise targets display a conserved

and highly reproducible editing outcome.

DISCUSSION

Precision of Editing Outcome
Although the bacterial CRISPR system has been widely adopted

as the preferred genome engineering tool, our ability to predict

the editing accuracy, efficacy, and outcome at specific sites is

still limited. A major obstacle in defining precise genome editing

rules is our incomplete understanding of how RGNs interact with

eukaryotic cellular components—complex genomes containing

repetitive sequences, the packaging of DNA into chromatin,

and the presence of various cellular pathways that recognize

and repair RGN-induced DSBs. Various studies have provided

insights into some of these interactions (Brinkman et al., 2018;

Isaac et al., 2016; Jensen et al., 2017; Kosicki et al., 2018; Lemos

et al., 2018; van Overbeek et al., 2016). However, due to the

limited number of characterized target sites, discerning whether

the observed patterns are general or site-specific features is

not straightforward. Through systematic analysis of indel forma-

tion at over 1,000 different sites in the human genome, this

study reveals general trends of CRISPR editing and provides

simple rules to predict how a given target may respond to

RGN-induced DSBs.

Extending the observation that indel profiles are nonrandom

(van Overbeek et al., 2016), we find that precision of DNA editing

varies considerably among sites, with some targets showing one

highly preferred sequence alteration and others displaying a

wide range of infrequent, yet reproducible, indels. We show

that editing precision is an intrinsic feature of the target site

and depends on four nucleotides located around the cleavage

site within the protospacer, with the most influential position

being the nucleotide at position �4 from the PAM sequence.

Strikingly, the mere presence of a ‘‘T’’ here gives a site a 51%
s that Determine Editing Precision

that predicted by the neural network, using our test set (A) and independent

ysis was done using the Wald c2 test.

of nucleotides (D) to editing precision. The effect of nucleotide randomization is

m 10 different permutations. Bars in red indicate randomized positions that

ificant levels (p > 0.05).

e targets are split based on their preference (commonest indel) for insertions or

ox.

leotide at the �4 position. Sites are grouped based on their precision and their

5 and�4 positions. Numbers represent themedian commonest frequency and

e also Table S5.
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probability of repairing in a predictable manner and 91% chance

of introducing an insertion. Our finding that editing precision is

site-specific and can be predicted has important implications.

Practically, knowing what editing outcome is likely to occur at

a given site maximizes the chance of having a desired sequence

alteration, for both clinical and research applications. Although

pharmacological modulation of repair pathways alters indel pro-

files, the induced changes are subtle, and for many applications,

the use of inhibitors may not be suitable (van Overbeek et al.,

2016; Shou et al., 2018). Targeting a precise site would be a

more effective way of steering CRISPR-mediated editing toward

a desired outcome. Moreover, given the extreme reproducibility

of indel patterns, the selection of a precise target combined with

experimental validation in model systems could considerably

increase safety in clinical applications. This is particularly rele-

vant in light of recent studies reporting the occurrence of large

on-target deletions that may have pathological consequences

(Kosicki et al., 2018).

Relationship between Editing Precision and Indel Type
Our findings also reveal a strong correlation between editing

precision and preference for repairing RGN-induced DSBs

via insertions. We show that targets with ‘‘A’’s or ‘‘T’’s at

nucleotide �4 mainly show insertions, with the commonest

insertion being highly recurrent and representing on average

approximately half of the indels detected at a given site (Fig-

ure 5H). DSB repair via insertions may be kinetically faster

compared to other types of indel, partly explaining the higher ef-

ficiency of precise targets and the general bias toward single-

nucleotide indels. Notably, recent studies have reached similar

conclusions using experimental approaches complementary to

ours, based on synthetic target sites (Allen et al., 2018; Shen

et al., 2018; Taheri-Ghahfarokhi et al., 2018). The identity of the

recurrent insertions can also be predicted, as the inserted nucle-

otide is nearly always homologous to the �4 nucleotide (Figures

4G–4I). Such predictions could, for instance, allow efficient intro-

duction of a stop codon (TAA) when an in-frame TA dinucleotide

is present at positions �5 and �4 of the targeted region. In

contrast, targets with ‘‘G’’s at nucleotide �4 are the most impre-

cise and repair mainly induces a variety of unpredictable dele-

tions (Figures 5G and 5H). Thus, choosing target sites with

‘‘A’’s or ‘‘T’’s at nucleotide �4 is an effective way to induce pre-

dictable insertions at regions of interest.

Critical Role of Nucleotide –4 in Defining Site-Specific
Indel Profiles
The key role of nucleotide �4 in influencing editing precision

and preference for indel type is particularly interesting in light

of recent findings that revealed flexible scissile profiles by

Cas9 and generation of 50 overhangs upstream of the canonical
(C) Mean chromatin immunoprecipitation sequencing (ChIP-seq) signal for H3K9a

2015). Signal in a 500-nt window centered on the cleavage site at each target sit

(D) Chromatin modulation affects both insertions and deletions. Count of individua

efficiency induced by TSA or EZH2i relative to untreated cells (below). Indel coun

indels with a normalized count of at least 1 in any condition are included. The ind

deletion].

See also Figures S5 and S6 and Table S6.
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cleavage site due to asymmetric cleavage of the two DNA

strands (Shou et al., 2018). Notably, 50 overhangs are mostly

observed at position �4 on the non-complementary strand.

These findings, together with our results, explain the prevalence

of single-nucleotide insertions homologous to the �4 nucleo-

tide, as the overhanging nucleotide can be used as a template

before ends are rejoined. Thus, paradoxically, imprecision of

Cas9 cleavage is the likely cause of precision in the insertion

outcome. Similarly, the high frequency of single-nucleotide

deletions is likely related to the asymmetric cleavage of DNA

by Cas9.

Envisioning how the base composition of position �4 may

influence editing precision is not straightforward. One possibility

is that the nature of the 50 overhanging nucleotide may recruit

distinct proteins involved in DNA repair. Alternatively, it may

affect Cas9 binding to the broken ends, and this may, in turn,

affect the repair outcome. The other nucleotides in the precision

core may act similarly. Structural analysis of RGNs with

distinct �4 nucleotides may help shed light on this issue.

Our observation that the vast majority of detected insertions

show homology, combined with the finding that NHEJ-mediated

repair of CRISPR-induced DSBs is mostly error-free (Geisinger

et al., 2016) and that deletions generated by sgRNA pairs

can be repaired with a high level of precision (Shou et al.,

2018), suggests a model whereby flexible cleavage by Cas9

influences DNA repair fidelity; when blunt ends are generated

at nucleotide �3, cells repair DSBs in an error-free manner, re-

constituting the original sequence, whereas indels occur mainly

when asymmetric cleavage generates overhanging ends. This

model may also reconcile apparently conflicting results about

the fidelity of NHEJ in CRISPR-independent and CRISPR-

dependent contexts (Brinkman et al., 2018; Dudley et al., 2005;

Geisinger et al., 2016; van Heemst et al., 2004; Shou et al.,

2018). Interestingly, both outcomes are useful for genome edit-

ing, as blunt ends allow precise genomic deletions and insertions

of exogenous sequences, while overhanging ends enable induc-

tion of indels resulting in gene KO.

Influence of the Chromatin Environment on
Site-Specific Editing Outcome
Although DNA sequence is a major determinant of site-specific

indel profiles, we show that packaging of DNA into chromatin

may affect editing efficiency and the relative frequency of indels

at a given locus. We find that histone hyperacetylation and

reduction of the heterochromatin-associated mark H3K27me3

induce opposite changes in editing efficiency, enhancing and in-

hibiting indel formation, respectively. Although the effect of TSA

was observed at all tested sites, the effect was particularly pro-

nounced at sites with low endogenous levels of histone

acetylation, suggesting that transient TSA treatment may be a
c and H3K27ac and DNase-seq signal in untreated HepG2 cells (Kundaje et al.,

e is shown as a heatmap.

l indels at the indicated sites in untreated cells (above), and log2 fold-change in

t is normalized to the effective library size at each site for each replicate. Only

el nomenclature is [start coordinate relative to cleavage site]:[size][insertion or
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strategy to enhance editing efficiency at sites located in repres-

sive chromatin environments. While our results do not unequivo-

cally prove that local chromatin changes are responsible for the

observed effects, they are in agreement with the reported corre-

lations between sgRNA activity and open chromatin at the

genome-wide levels and evidence from in vitro studies indicating

that nucleosome positioning impairs binding of Cas9 to DNA and

inhibits its activity (Horlbeck et al., 2016; Uusi-M€akel€a et al.,

2018). In addition to interfering with Cas9 binding to a target

site, chromatin may also affect its cleavage profile, favoring

either blunt ends that can be precisely repaired or overhanging

ends that promote the formation of indels. We also show that

modulation of chromatin differentially affects individual indels

at a target site and can change the identity of the commonest

indel at imprecise sites (Figure 7). Notably the magnitude of

changes observed upon TSA treatment, albeit small, is compa-

rable to those observed when inhibitors of specific DNA repair

pathways are used (van Overbeek et al., 2016). These results

show that the chromatin configuration of a given site contributes

to defining its indel profile. Given the established role of chro-

matin in DNA repair (Kalousi and Soutoglou, 2016) and the

involvement of multiple DNA repair pathways in mediating

CRISPR-induced DNA editing (Maruyama et al., 2015; van Over-

beek et al., 2016; Shou et al., 2018), altered recruitment of factors

involved in different pathways may underlie the observed differ-

ence upon chromatin modulation. Importantly, regardless of

chromatin states, precise targets show consistent dominant in-

dels, suggesting that editing outcome at these sites is conserved

across cell types.

In summary, our findings uncover general principles guiding

CRISPR-mediated DNA editing in human cells and provide

guidelines for a more effective and safer use of the technology,

with important implications for clinical applications. They also

reveal a striking influence of the DNA sequence in dictating

DSBs repair outcomes and lay the foundation for future mecha-

nistic studies that can increase our understanding of end-joining

processes in human cells.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-trimethyl-Histone H3 (Lys27) Millipore Cat# 07-449; RRID: AB_310624

Mouse monoclonal anti-Ezh2 (AC22) Cell Signaling Technology Cat# 3147; RRID: AB_2102420

Rabbit polyclonal anti-Histone H3 (acetyl K27) Abcam Cat# ab4729; RRID: AB_2118291

Rabbit polyclonal anti-mouse IgG H&L Abcam Cat# ab46540; RRID: AB_2614925

Mouse monoclonal anti-phospho-Histone H2A.X (Ser139) Millipore Cat# 05-636; RRID: AB_309864

HRP goat anti-rabbit IgG (Peroxidase) Vector Laboratories Cat# PI-1000; RRID: AB_2336198

Donkey polyclonal anti-mouse IgG AF488 Thermo Fisher Cat# A-21202; RRID: AB_141607

Donkey polyclonal anti-mouse IgG AF568 Thermo Fisher Cat# A10037; RRID: AB_2534013

Donkey polyclonal anti-mouse IgG AF647 Thermo Fisher Cat# A-31571; RRID: AB_162542

Donkey polyclonal anti-rabbit IgG AF488 Thermo Fisher Cat# A-21206; RRID: AB_2535792

Donkey polyclonal anti-rabbit IgG AF568 Thermo Fisher Cat# A10042; RRID: AB_2534017

Chemicals, Peptides, and Recombinant Proteins

Trichostatin A Sigma Cat# T1952

GSK126 (EZH2 inhibitor) Cayman Chemical Cat# 15415

Critical Commercial Assays

MiSeq Reagent Kit v3 Illumina Cat# MS-102-3003

DNeasy Blood & Tissue Kit QIAGEN Cat# 69506

SureSelectXT Custom 0.5-2.9Mb library Agilent Cat# 5190-4816

QIAquick Gel Extraction Kit QIAGEN Cat# 28706

QIAquick PCR Purification Kit QIAGEN Cat# 28106

Herculase II Fusion DNA polymerase Agilent Cat# 600675

CellTiter 96 Aqueous One Solution Promega Cat# G3582

Deposited Data

Targeted DNA-seq of Human HepG2 cells following

editing with CRISPR/Cas9

EBI ArrayExpress ArrayExpress: E-MTAB-7095

Targeted DNA-seq of Human HepG2 cells following

editing with CRISPR/Cas9 upon chromatin modulation

with TSA and EZH2i

EBI ArrayExpress ArrayExpress: E-MTAB-7091

Experimental Models: Cell Lines

Human: HepG2 cells The Francis Crick Cell Services

Department

N/A

Human: HEK293-T cells The Francis Crick Cell Services

Department

N/A

Oligonucleotides

Primers used in this study (see Table S7) This paper N/A

Recombinant DNA

pLenti_BSD_sgRNA Henser-Brownhill et al., 2017 N/A

Software and Algorithms

FastQC https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

N/A

BBMap 36.59 https://sourceforge.net/

projects/bbmap/

N/A

R 3.3.2 - 3.4.4 The R Project for Statistical

Computing

https://www.r-project.org/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CrispRVariants https://github.com/HLindsay/

CrispRVariants

N/A

Python 3.7 Python Software Foundation https://www.python.org/

Apache MXNet (v1.2.0) (python 3 API) The Apache Software Foundation https://mxnet.apache.org/

Custom analysis scripts This paper https://github.com/luslab/crispr-indels

Other

van Overbeek et al., 2016 Sequence Read Archive SRP076796

HepG2 H3K9ac, H3K27ac ChIP-seq and DNase-seq Kundaje et al., 2015 http://www.roadmapepigenomics.org/

HEK293 K3K9ac ChIP-seq Cistrome DB 58997

HEK293 K3K27ac ChIP-seq Cistrome DB 43073

HEK293 DNase-seq Gene Expression Omnibus GSM1635901-6

K562 K3K9ac ChIP-seq Cistrome DB 45406

K562 K3K27ac ChIP-seq Cistrome DB 55731

K562 DNase-seq Cistrome DB 45020 & 45021
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Paola

Scaffidi (paola.scaffidi@crick.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
HepG2 cells, of male origin, were cultured in Minimum Essential Media (MEM) with 10% FBS, and HEK-293T cells, of likely female

origin, were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% FBS. All media was supplemented with 2mM

L-glutamine, 100U/mL penicillin, and 100 mg/mL streptomycin. All cell lines were maintained at 37�C and 5% CO2. Cas9-expressing

HepG2 cells were generated as previously described (Henser-Brownhill et al., 2017). For all experiments, Cas9 expression was

induced with 1 mg/mL doxycycline 1 day prior to infection with the sgRNAs and sustained until cells were harvested for genomic

DNA extraction (QIAGEN). All cell lines were obtained from the Francis Crick Institute Cell Services Department and have been

STR authenticated and tested negative for mycoplasma.

METHOD DETAILS

sgRNAs pool generation
sgRNApools were generated by combining equal volumes of saturated bacterial culture from the arrayed library described in Henser-

Brownhill et al. (2017), and extracting the resulting plasmid libraries. Six different pools were generated and independently trans-

duced into HepG2 Cas9-expressing cells. This was necessary to reduce the library complexity and allow efficient detection of indels

despite the high number of unedited sequences in the cell population – each sgRNA only infected a limited number of cells. We first

tested three pools targeting 100 sites each (pools 100_1, 100_2 and 100_3). Once we confirmed efficient indel detection, we gener-

ated three sgRNA pools targeting 450 sites each (pools 450_5, 450_6, 450_7). 450 pools contained three distinct sgRNAs targeting

the same 450 genes. 100 pools mainly contained sgRNAs present in the 450 pools with a few additional ones (Table S1). Although

pools were transduced and processed independently, indel analysis was performed integrating data from the different pools. When

assessing efficiency of indel formation, only data from 450 pools were used. This was done because indel counts for sgRNAs present

in both 450 and 100 pools were artificially higher than those detected at sites targeted only with the 450 pools. When assessing edit-

ing precision, data from both 100 and 450 pools was combined, as frequencies of individual indels are not affected by differences in

indel counts.

Viral transductions
Transduction of sgRNAs was performed using high titer virus, at an estimated MOI of at least 10, to increase the fraction of edited

cells in the population for each sgRNA. To produce virus, 80% confluent HEK293T cells were transfected with the sgRNA pools

(pLenti_BSD_sgRNA plasmids), packaging plasmids (psPax2 and pMD2G) and pAdVantage at a ratio of 3:1 DNA to FugeneHD

(Promega). 24h after transfection viral particles were collected, filtered through a 0.45 mm filter and used to infect Cas9-expressing

HepG2 cells in the presence of 5mg/ml Polybrene (Santa Cruz). To increase infection efficiency, plated cells were spun for 2h at
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2000rpm soon after the virus-containing supernatant was added. A second infection was carried out using viral particles collected

48h after transfection. Cells were not spun for the second infection. Transduced cells were selected with 4 mg/mL blasticidin (Merck),

starting 24h after the first infection, and genomic DNA was extracted 5 days after infection (QIAGEN).

Timing of CRISPR-mediated editing
In order to experimentally determine the kinetics of indel formation, sgRNAs targeting 3 sites (ACTL6A.5, ASF1B.7 and SMARCD2.1)

were individually transduced into Cas9-expressing HepG2 cells, using high titer virus to ensure efficient infection of all cells. Genomic

DNAwas isolated from infected cells (QIAGEN) for 5 consecutive days and editing of the target sites quantified by Sanger sequencing

(Herculase II Fusion, Agilent) and TIDE analysis (https://tide.deskgen.com/) (See Table S7 for primers). To confirm the absence of

possible phenotypic consequences induced by gene knock-out after 5 days, which may confound the results, cells infected with

an EZH2-targeting sgRNA were analyzed by immunofluorescence to quantify the levels of both EZH2 and its associated mark

H3K27me3. Based on these experiments, 5 days post-infection was concluded to be the optimal length for performing all subse-

quent experiments.

Protein detection
Western blot analysis and immunofluorescence microscopy were performed using anti-H3K27ac (Abcam ab4729), anti-H3K27me3

(Millipore 07-449), anti-ɣH2A.X (Millipore 05-636), anti-EZH2 (CST 3147) and Alexa Fluor- or HRP-conjugated secondary antibodies

following standard protocols.

Chromatin modulation and ChIP-qPCR
To investigate the effect of chromatin on CRISPR-mediated DNA editing, HepG2 cells were treated with the HDAC inhibitor Trichos-

tatin A (Sigma), which induces histone hyperacetylation, and the EZH2 inhibitor GSK126 (Cayman Chemical), which globally reduces

H3K27me3 levels. Cells pre-treated with TSA (11nM or 100nM) or GSK126 (0.3mM and 3mM) for 5 days were infected with sgRNAs

targeting the ACTL6A.5, ASF1B.7, BRD2.7, MBD3L1.6, MSH6.2 and SMARCD2.1 sites. Treatment was continued for an additional

5 days while indels were induced. Compounds were refreshed daily over the course of the experiment. Successful alteration of his-

tone acetylation at the target sites was confirmed by ChIP-qPCR of H3K27ac in cells either untreated (NT) or treated with TSA

(100nM). For both conditions, 8 million HepG2 cells were fixed with 1% formaldehyde for 10 min at room temperature, treated

with 125mM glycine for 5min at RT, washed three times with ice-cold PBS and scraped off cell culture plates in PBS supplemented

with 10% FBS. Cell pellets were resuspended in 0.6mL of IP buffer (1:1 of SDS buffer (0.5% SDS, 0.2% NaN3, 5mM EDTA pH 8,

50mM TRIS pH 8, 100mM NaCl): Triton buffer (5% Triton X, 0.2% NaN3, 5mM EDTA pH 8, 100mM NaCl, 100mM TRIS pH 8)) sup-

plemented with protease inhibitors (1:100, Cell Signaling Technology) and incubated for 15 min on ice. Chromatin was subsequently

sheared to 200-500bp with 2 cycles of 30sec ON/OFF using the Bioruptor sonicator (Diagenode). Chromatin from each biological

replicate was divided into 2 and 200mg of sample were incubated overnight at 4�C with 8mg of either anti-acetyl H3K27 (Abcam

ab4729) or control anti-rabbit IgG (Abcam ab46540). In all cases, 10%of each sample was kept as input. Next, 30mL of Pierce Protein

G magnetic beads (Invitrogen) were added per sample and incubated an additional 4h at 4�C. All samples were then washed 3x with

low salt wash buffer (1% Triton X, 0.1%SDS, 2mMEDTA pH 8, 20mMTRIS pH 8, 150mMNaCl) and 1xwith high salt wash buffer (1%

Triton X, 0.1% SDS, 2mM EDTA pH 8, 20mM TRIS pH 8, 500mM NaCl) with the use of a magnetic rack. Subsequently, 120mL of

decrosslinking buffer (1% SDS, 100mM NaHC03) was added to all samples and inputs and incubated overnight at 65�C. All decros-
slinked samples were purified using the QIAquick PCR purification kit (QIAGEN) and eluted in 45mL of Nuclease-free water. ChIP

samples were analyzed on a CFX96 real-time PCR detection system (Bio-rad) using SsoAdvanced Universal SYBR Green Supermix

(Bio-rad). All samples were run in triplicates and normalized to the 10% input that was retained before pulldown.

Cell proliferation
To examine the effect of the chromatin-modulating compounds on HepG2 cell proliferation, 8,000 HepG2 cells were plated per well

of a 96-well plate and treated with TSA (11nM or 100nM) or GSK126 (0.3mM or 3mM) for 5 days. On a daily basis, 20mL of Cell-Titer

96 Aqueous One Solution (Promega) were added per well in triplicates and following incubation at 37�C for 1h, the Optical Density

of each well was read at 490nm as a measure of the number of cells per well. The growth rate of the cells was normalized to the

number of cells on day 1.

Library preparation and deep sequencing
sgRNA representation in pools

To assess the representation of individual sgRNAs in the plasmid library, amplicons containing the sgRNA sequences were gener-

ated as previously described (Henser-Brownhill et al., 2017). Briefly, PCR amplicons containing the P5 and P7 Illumina adaptors were

generated using the high-fidelity Herculase II polymerase kit (Agilent), and the resulting products extracted from an agarose gel

(QIAGEN). Purified products were sequenced with either a HiSeq 2500 or a MiSeq using custom sequencing and indexing primers

(SeqP and IndexP, Table S7). Following sample demultiplexing, all sgRNA sequences were trimmed and aligned to the target

sequences to assess sgRNA representation (normalized read count).
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Large scale indel sequencing

To identify CRISPR-mediated editing at targeted regions, DNA libraries enriched for the targeted sites were generated using the

SureSelect Target enrichment kit (Agilent) following the manufacturer’s instructions. Capture probes were designed to cover 2Kb re-

gions centered on each target site. When multiple target sites were located in the same exon, the 2Kb region was centered on the

exon middle point. Probe tiling parameters were: Tiling density: 1x; Masking: Least Stringent; Boosting: Maximize Performance. All

samples were sequenced using Paired End 100bp runs on a HiSeq 4000 sequencer, multiplexing 2 samples per lane. Approximately

200 million reads were obtained for each sample. Analysis of sequenced regions confirmed good enrichment of the targeted regions

(Figure S2A).

Small scale indel sequencing

For validation experiments and experiments assessing the effect of chromatin modulation, indels induced at 6 selected sites were

examined. In these experiments, a two-step PCR was performed on biological duplicates to generate a library of PCR amplicons.

For the first PCR, 150ng of the corresponding gDNA were amplified for 20-22 cycles using the Herculase II polymerase kit yielding

products of �500bp (See Table S7 for primers). Next, PCR products were purified as per manufacturer’s instructions (QIAGEN) and

1ml of the resulting product was used as a template for the second nested PCR reaction in which primers containing barcodes and

adapters for the sequencing reaction were added. Overall, a library of 60 individually barcoded amplicons of�300bp was generated

(See Table S7 for primers). Samples were purified in a 96-well format (Zymo Research) and sequenced on a 300bp paired-end run on

a MiSeq using standard Illumina sequencing primers (See Table S7 for primers). The long 300bp reads allowed assessment of both

long and short indels.

Sequencing read alignment
The quality of the sequenced readswas assured using FastQC. For alignment, we usedBBMap (v. 36.59) as it is a global aligner that is

able to align longer indels. Alignment was carried out against the UCSC hg19/GRCh37 genome assembly.

Indel identification
Large scale indel sequencing

In order to robustly identify the reads that contained indels we adopted a two-stage alignment strategy. In the first phase we aligned

the reads to the genome disallowing any reads that contained indels. We discarded reads that aligned in a proper pair in this phase

and took the remainder forward. In the second phase we aligned the remaining reads to the genome, this time setting a soft threshold

allowing indels up to 2000bp. Duplicates were marked using Picard (v. 2.1.0). Reads that were marked as duplicates, or that had a

mapping quality score of less than 38 were filtered using samtools (v. 1.2) and sambamba (v. 0.6.0). This two-phase approach was

necessary to delineate, for a given target amplicon, between reads from cells uninfected with the corresponding sgRNA and reads

from cells with successful transfections, on account of the pooling of sgRNAs. For a given amplicon, only a small proportion of the

total number of cells would have been transfected with the sgRNA targeting the site contained within it. We know that aligned reads

containing indels arise from appropriately transfected cells. However, our approach forces the aligner to choose an alignment with no

indels over one with indels for the multiple possibilities for a given read. With this approach we can improve our confidence that the

reads with indels are not background noise or alignment errors. Because of the experimental approach, the sensitivity of our method

is inherently limited, and it is likely that indels occurring at low frequency are not detected. Furthermore, kinetically slow repair events

may be underrepresented in our dataset. Nevertheless, the observation that most targets are identified as imprecise or middle

indicates that there is no significant bias toward most frequent indels. Furthermore, complementary studies using alternative

experimental approaches (Shen et al., 2018) observed a very similar distribution of precision groups, confirming the reliability of

our method.

Indel identification was performed in R (v. 3.4.4) using custom scripts. The location and size of indels in reads were identified

from the CIGAR string. Indels were only considered valid if they occurred within 5 nucleotides of the Cas9 cleavage site (defined

as 6 nucleotides upstream of the end of the guide RNA including the PAM sequence). Any indels that could also be detected in

the control HepG2 sample were removed as probable somatic mutations in this cancer cell line. To ensure robust estimate of indel

frequencies, we filtered out target sites that had a low overall indel count (indels identified in fewer than 10 reads in total across all

samples and replicates, where present).

Assessment of indel identification approach

To assess possible confounding effects from sequencing errors, particularly given the depth of sequencing, we performed two com-

plementary analyses. First, we assessed the number of indels detected at each target site (within 5 nucleotides of the Cas9 cleavage

site) in the wild-type sample without Cas9 induction and sgRNA transduction (without filtering for probable HepG2 somatic muta-

tions). Second, we leveraged the fact that all targeted regions in the whole library were pulled down and sequenced to a similar depth

in all experiments, irrespective of whether they were targeted in that particular pool or not. Therefore we compared the number of

indels in both replicates from the 450 pool experiments at each target site in the experiment where the corresponding sgRNA

was in the transfected pool, with the mean of the number of indels in both replicates from the two other 450 pool experiments where

the corresponding sgRNAwas not. This provided an estimate of the occurrence of sequencing errors in our experimental setupwithin

5 nucleotides of the Cas9 cleavage site.
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Small scale indel sequencing

Before alignment, paired end reads were merged using BBMerge (v. 36.59). After alignment, duplicates were marked using Picard

(v. 2.1.0). Reads that were marked as duplicates, or that had a mapping quality score of less than 38 were filtered using samtools

(v. 1.2) and sambamba (v. 0.6.0). The R package CrispRVariants (Lindsay et al., 2016) was used to identify indels.

Characterization of target sites
Throughout, we used all detected indels from both 100 and 450 pools to characterize the targets, except when assessing for effi-

ciency where indels from the 450 pools only were used to ensure an unbiased analysis of each target site as explained above.

Frameshifts and indel size

Indels were assessed for their frameshift potential by the divisibility of their size by 3. To identify patterns in the indel size profiles at

target sites, we calculated the frequency of each size of indel (considered in bins of insertions greater than 1 nucleotide, insertions

of 1, and deletions of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and greater than 10).We performed unsupervised hierarchical clustering using theWard

D2 method to categorize groups of target sites based on their indel size profiles.

Precision

We also categorized target sites by calculating the frequency of each distinct indel at each target site. The most frequent

indel was termed the commonest; ties were broken by prioritizing insertions over deletions, and then by longest deletion.

The precision of indel generation at a target site was defined based on the frequency of the commonest indel: imprecise % 0.25,

0.25 < middle % 0.5, precise > 0.5.

Sequence homology

The presence of MH of n nucleotides was assessed in the deletions. The 50 n nucleotides of the deleted sequence were compared

with the first n nucleotides downstream of the 30 join. Likewise, the 30 n nucleotides of the deleted sequence were compared with

the last n nucleotides upstream of the 50 join. If there was a match, this was considered as MH. For each deletion sequence, values

of n ranging from 1 to 50 (or the length of the deletion, whichever was shortest) were used. The largest matching nwas considered the

size of the MH.

Insertion homology was assessed by extracting the inserted nucleotide from the read sequence using the CIGAR string. This was

compared with the nucleotide in the�4 position of the protospacer to assess for matches.When assessing the commonest insertion,

we only considered target sites that had 5 or more insertions. Where the inserted nucleotide either creates, or lies within a short

repetitive stretch; e.g., ‘‘A’’ inserted adjacent to ‘‘A’’ creating ‘‘AA,’’ or ‘‘T’’ inserted adjacent to/within ‘‘TT’’ creating ‘‘TTT’’; it is

not possible to identify precisely which of these nucleotides is the inserted position. The aligner arbitrarily assigns the first position

to the inserted nucleotide.

Analysis of van Overbeek data
For the van Overbeek ‘spacer’ target sites, aligned BAM files were obtained from the Sequence Read Archive for all time points in

HCT116, HepG2 and K562 cell lines. Indel identification was performed in R (v. 3.4.4) using custom scripts. The location and size

of indels in reads were identified from the CIGAR string. Indels were only considered valid if they occurred within 5 nucleotides of

the Cas9 cleavage site (defined as 6 nucleotides upstream of the end of the guide RNA including the PAM sequence). For a given

time point and cell type, indels that occurred with < 1% frequency were filtered, as were sites that had < 10% editing efficiency.

Downstream analyses were performed as detailed in ‘Characterization of target sites’ above.

Indel profiles upon chromatin modulation
Mutation efficiency was assessed using themutationEfficiency function fromCrispRVariants (Lindsay et al., 2016), considering single

nucleotide variants as non-variants. To compare the counts of indels across the different conditions, in order to assess the

contribution of each indel to the changes in efficiency, the raw counts for each indel in each condition were normalized to the library

size for that condition. Indels that constituted less than 1% of the library size in any condition were filtered out.

To assess the effects of chromatin modulation on the indel profile of target, over and above the effects on efficiency, we performed

a different normalization on the raw counts.We divided by a size factor (the total number of indels detected in a condition). In this way,

we could compare the relative contribution of each indel to the overall indel profile across the different conditions. After normalization,

only the most frequent 10 indels in the untreated condition were used.

Analysis of chromatin environment
DNase-seq and H3K9ac and H3K27ac ChIP-seq fold-enrichment data for in HepG2 cells were obtained pre-processed from the

Roadmap Epigenomics consortium (Kundaje et al., 2015). We calculated the mean fold-enrichment signal in a 500bp window

centered on the cleavage site of the six validation targets. For the van Overbeek ‘spacer’ target sites, preprocessed coverage files

were obtained for DNase-seq, H3K9ac and H3K27ac ChIP-seq for HEK293 and K562 cell lines aligned to GRCh38 from sources indi-

cated in the Key Resources table. Data quality was assessed using Cistrome’s tools and manual inspection. 500bp windows

centered on the cleavage site were created and converted from GRCh37 to GRCh38 using the UCSC liftOver tool. The signal in

each window was extracted using Deeptools. For visualization, the mean signal for each dataset was centered and scaled across

all the target sites.
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Analysis of nucleotide influence
Artificial neural network

To estimate editing precision, we designed an artificial neural network (ANN) that uses the raw sgRNA sequences as input: 20 indi-

vidual nucleotides, plus the PAM sequence (as a rudimentary internal control). All variable nucleotides were encoded using one hot

encoding. The input layer of the network therefore has 86 nodes, with each of the 21 variable nucleotide positions in the 23nt sgRNA

target sequence represented by 4 binary inputs, and the 2 constant ‘G’s in the PAM sequence represented as single constant values.

These are followed by a single hidden layer containing 512 neurons using rectified linear unit (ReLU) activation functions, connected

to a single output node, followed by a softplus activation function. Our loss function wasmean square error (L2 norm loss). Themodel

parameters were initialized using Xavier initialization. In summary, the weights were initially filled with random numbers [-c, c] where:

C=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:24

0:5 3 ðnin + noutÞ

s

Here, nin is the number of neurons preceding weights and nout is the number of neurons proceeding weights. 80% (n = 519) of our

sgRNAs were randomly selected for use as a training set, with 20% (n = 130) held out as a test set. To ensure consistency and to

mitigate bias introduced by particular sets of sgRNAs in the training set, we validated our model by performing bootstrapping

with replacement (taking a random sample of 80% (n = 415) of our training sgRNAs each time) before training the final model (final

validation RMSE = 0.15 ± 0.003). The final ANN was trained for 800 epochs using stochastic gradient descent with Nesterov mo-

mentum set to 0.9, a learning rate of 0.001, and a batch size of 100. The final model’s RMSE was 0.14 for the train set, 0.18 for

the test set, and 0.16 for van Overbeek et al. To identify key sequence positions with the greatest influence on editing precision,

we conducted a permutation nucleotide importance analysis by systematically randomizing each nucleotide in the test set at the

respective position. We maintained the original prior-distribution by shuffling the column values before one hot encoding. The

mean decrease in accuracy was recorded as the reduction in R2 from predictions made with the unaltered sequences. We also re-

corded the difference in predictive statistical significance (Wald test p values). We performed the nucleotide randomization 10 times

and report the average percentage reduction in R2 for neutralized positions. We considered an average increase inWald test p values

to > 0.05 as having abolished the predictive significance of the model. The ANN was built, trained, and deployed using Apache

MXNET (python 3 API) v. 1.2.0.

LASSO multi-regression model

To corroborate the results of our non-linear ANN model, and obtain the coefficients of the most important linear correlations with

observed indel frequencies, we constructed a linear model optimized for generalization using L1 regularization by deploying a least

absolute shrinkage and selection operator (LASSO) algorithm. Here the aim is to minimize the objective function:

1

2nsamples

kXw� y k 2
2 +a kw k 1

Where regularization parameter a is a constant and kw k 1is the L1 regularized parameter coefficient vector. Our training set was 80%

of our data (n = 519) selected at random, with 20% (n = 130) held out to test the model. The coefficients were fitted using coordinate

descent and the regularization parameter a (0.002592943797404667) selected by 10-fold cross validation on the training set. The

final model’s RMSE was 0.15 for the train set, 0.17 for the test set, and 0.15 for van Overbeek et al. The LASSO was built, trained,

and deployed using scikit-learn v. 0.19.1 for python 3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Non-parametric statistical tests were used as appropriate and p-values were adjusted for multiple testing where necessary. Each

specific test is indicated in the main text or figure legend, as well as the exact value of N and what N represents. In boxplots, the

bottom and top of boxes indicate the 25th and 75th percentiles, respectively, and middle lines indicate medians. Whiskers indicate

the lowest and highest data points within 1.5 3 interquartile range from the box. A significance level of 0.05 was used throughout.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the sequencing data generated in this study are EBI ArrayExpress: E-MTAB-7091, E-MTAB-7095.

Custom scripts are available at https://github.com/luslab/crispr-indels.
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