@article{oai:oist.repo.nii.ac.jp:00001312, author = {Liang, Jia and Liu, Zonghao and Qiu, Longbin and Hawash, Zafer and Meng, Lingqiang and Wu, Zhifang and Jiang, Yan and Ono, Luis K. and Qi, Yabing}, issue = {20}, journal = {Advanced Energy Materials}, month = {Apr}, note = {In this work all-inorganic perovskite CsPbIBr2 are doped with Mn to compensate their shortcomings in band structure for the application of perovskite solar cells (PSCs). The novel Mn-doped all-inorganic perovskites, CsPb1-xMnxI1+2xBr2-2x, are prepared in ambient atmosphere. As the concentration of Mn2+ ions increases, the bandgaps of CsPb1-xMnxI1+2xBr2-2x decrease from 1.89 to 1.75 eV. Additionally, when the concentration of Mn dopants is appropriate, this novel Mn-doped all-inorganic perovskite film shows better crystallinity and morphology than its undoped counterpart. These advantages alleviate the energy loss in hole transfer and facilitate the charge-transfer in perovskites, therefore, PSCs based on these novel CsPb1-xMnxI1+2xBr2-2x perovskite films display better photovoltaic performance than the undoped CsPbIBr2 perovskite films. The reference CsPbIBr2 cell reaches a power conversion efficiency (PCE) of 6.14%, comparable with the previous reports. The CsPb1-xMnxI1+2xBr2-2x cells reach the highest PCE of 7.36% (when x= 0.005), an increase of 19.9% in PCE. Furthermore, the encapsulated CsPb0.995Mn0.005I1.01Br1.99 cells exhibit good stability in ambient atmosphere. The storage stability measurements on the encapsulated PSCs reveal that PCE is dropped by only 8% of the initial value after >300 h in ambient. Such improved efficiency and stability are achieved using low-cost carbon electrodes (without expensive hole transport materials and Au electrodes).}, title = {Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution for High-Stability All-Inorganic Perovskite Solar Cells with Carbon Electrodes}, volume = {8}, year = {2018} }