{"created":"2023-06-26T11:00:55.351960+00:00","id":1516,"links":{},"metadata":{"_buckets":{"deposit":"c1fd47d5-6205-4f7d-8173-cf7e8c6ca52b"},"_deposit":{"created_by":28,"id":"1516","owners":[28],"pid":{"revision_id":0,"type":"depid","value":"1516"},"status":"published"},"_oai":{"id":"oai:oist.repo.nii.ac.jp:00001516","sets":["6:67"]},"author_link":["9170","9168","9166","9167","9172","9164","9173","9169","9165","9174","9171"],"item_10001_biblio_info_7":{"attribute_name":"Bibliographic Information","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2020-04-18","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"56","bibliographicPageStart":"49","bibliographicVolumeNumber":"174","bibliographic_titles":[{},{"bibliographic_title":"Biochimie","bibliographic_titleLang":"en"}]}]},"item_10001_creator_3":{"attribute_name":"Author","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Otsuka, Hiroshi"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Fukao, Akira"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Tomohiro, Takumi"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Adachi, Shungo"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Suzuki, Toru"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Takahashi, Akinori"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Funakami, Yoshinori"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Natsume, Toru"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Yamamoto, Tadashi"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Duncan, Kent E."}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Fujiwara, Toshinobu"}],"nameIdentifiers":[{}]}]},"item_10001_description_5":{"attribute_name":"Abstract","attribute_value_mlt":[{"subitem_description":"Eukaryotic gene expression can be spatiotemporally tuned at the post-transcriptional level by cis-regulatory elements in mRNA sequences. An important example is the AU-rich element (ARE), which induces mRNA destabilization in a variety of biological contexts in mammals and can also mediate translational control. Regulation is mediated by trans-acting factors that recognize the ARE, such as Tristetraprolin (TTP) and BRF1/ZFP36L1. Although both proteins can destabilize their target mRNAs through the recruitment of the CCR4-NOT deadenylation complex, TTP also directly regulates translation. Whether ZFP36L1 can directly repress translation remains unknown. Here, we used an in vitro translation system derived from mammalian cell lines to address this key mechanistic issue in ARE regulation by ZFP36L1. Functional assays with mutant proteins reveal that ZFP36L1 can repress translation via AU-Rich elements independent of deadenylation. ZFP36L1-mediated translation repression requires interaction between ZFP36L1 and CNOT1, suggesting that it might use a repression mechanism similar to either TPP or miRISC. However, several lines of evidence suggest that the similarity ends there. Unlike, TTP, it does not efficiently interact with either 4E-HP or GIGYF2, suggesting it does not repress translation by recruiting these proteins to the mRNA cap. Moreover, ZFP36L1 could not repress ECMV-IRES driven translation and was resistant to pharmacological eIF4A inhibitor silvestrol, suggesting fundamental differences with miRISC repression via eIF4A. Collectively, our results reveal that ZFP36L1 represses translation directly and suggest that it does so via a novel mechanism distinct from other translational regulators that interact with the CCR4-NOT deadenylase complex.","subitem_description_type":"Other"}]},"item_10001_publisher_8":{"attribute_name":"Publisher","attribute_value_mlt":[{"subitem_publisher":"Elsevier"}]},"item_10001_relation_13":{"attribute_name":"PubMedNo.","attribute_value_mlt":[{"subitem_relation_type":"isVersionOf","subitem_relation_type_id":{"subitem_relation_type_id_text":"info:pmid/32311426","subitem_relation_type_select":"PMID"}}]},"item_10001_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type":"isVersionOf","subitem_relation_type_id":{"subitem_relation_type_id_text":"info:doi/10.1016/j.biochi.2020.04.010","subitem_relation_type_select":"DOI"}}]},"item_10001_relation_17":{"attribute_name":"Related site","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"https://www.sciencedirect.com/science/article/pii/S0300908420300808","subitem_relation_type_select":"URI"}}]},"item_10001_rights_15":{"attribute_name":"Rights","attribute_value_mlt":[{"subitem_rights":"This article/chapter was published in Biochimie, Volume 174, Hiroshi Otsuka, Akira Fukao, Takumi Tomohiro, Shungo Adachi, Toru Suzuki, Akinori Takahashi, Yoshinori Funakami, Toru Natsume, Tadashi Yamamoto, Kent E. Duncan, Toshinobu Fujiwara, ARE-binding protein ZFP36L1 interacts with CNOT1 to directly repress translation via a deadenylation-independent mechanism, 49-56, © 2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM)."}]},"item_10001_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0300-9084","subitem_source_identifier_type":"ISSN"}]},"item_10001_version_type_20":{"attribute_name":"Author's flag","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_ab4af688f83e57aa","subitem_version_type":"AM"}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2021-04-18"}],"displaytype":"detail","filename":"BRF paper_revised version 200410+ref.pdf","filesize":[{"value":"546.4 kB"}],"format":"application/pdf","license_note":"Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International(https://creativecommons.org/licenses/by-nc-nd/4.0/)","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"BRF paper_revised version 200410+ref","url":"https://oist.repo.nii.ac.jp/record/1516/files/BRF paper_revised version 200410+ref.pdf"},"version_id":"f9b2185f-ea11-450a-9c9a-f96df8fa1051"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"ZFP36L1","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"AU-Rich element","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"CCR4-NOT","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Deadenylation","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Translation","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"ARE-binding protein ZFP36L1 interacts with CNOT1 to directly repress translation via a deadenylation-independent mechanism","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"ARE-binding protein ZFP36L1 interacts with CNOT1 to directly repress translation via a deadenylation-independent mechanism","subitem_title_language":"en"}]},"item_type_id":"10001","owner":"28","path":["67"],"pubdate":{"attribute_name":"公開日","attribute_value":"2020-05-15"},"publish_date":"2020-05-15","publish_status":"0","recid":"1516","relation_version_is_last":true,"title":["ARE-binding protein ZFP36L1 interacts with CNOT1 to directly repress translation via a deadenylation-independent mechanism"],"weko_creator_id":"28","weko_shared_id":-1},"updated":"2023-06-26T11:45:43.580130+00:00"}