@phdthesis{oai:oist.repo.nii.ac.jp:00002653, author = {Gupta, Ratnesh Kumar}, month = {2022-06-09, 2022-06-09}, note = {Optical nanofibers (ONFs) have shown promising potential for quantum technology developments. The tight transverse confinement of guided light over an extended length (> 1000!) offers strong atom-light interactions with potential long-range atom-atom interactions mediated by the guided light, allowing for better scalability in many quantum information applications than their corresponding free-space implementations. We demonstrated, experimentally, an electric quadrupole transition and a single-frequency two-photon transition in cold 87Rb atoms driven by nanofiber-guided light, establishing ONFs as excellent platforms for potential applications in compact fiber-based clocks and correlated photon pair sources. ONFs are well-suited for nonlinear collective interactions, such as four-wave mixing and superradiance, that require an ensemble of phase-matched quantum emitters coupled to a common radiation field. An effective system is a 1D array of few hundred atoms trapped near an ONF surface and coupled with the guided mode. A crucial requirement is maximizing the number of trapped atoms which remains challenging in the absence of a quantitative description of atom dynamics during the trap-loading process involving many-body interactions and complex scattering process. We experimentally optimized, leveraging the ability of machine learning algorithms, the number of 87Rb atoms loaded in a shallow fiber-based dipole trap by parametrizing the control of magneto-optical trap parameters. This sets the first step toward planned studies on optical nanofiber mediated collective atom-light interactions and nearest-neighbor interactions in a 1D lattice of Rydberg atoms.}, school = {Okinawa Institute of Science and Technology Graduate University}, title = {冷たいルビジウム原子と光ナノファイバーモードとのエバネッセント場媒介相互作用}, year = {} }