@phdthesis{oai:oist.repo.nii.ac.jp:00002931, author = {服部 優菜 and Yuna, Hattori}, month = {2023-05-17, 2025-04-03, 2025-04-03}, note = {A wide range of dynamical phenomena in nature are self-similar. This remarkable property entails that scaled versions of a phenomenon conform onto themselves. It not only affords simplified mathematical analysis but also reveals the physical underpinnings of the phenomenon. In fluid flows, a textbook example of such phenomena is the boundary-layer flow over a rigid boundary---the Blasius boundary layer flow. In this thesis, we experimentally and theoretically study self-similarity in boundary-layer flow over a dynamic boundary, wherein the flow and the boundary are dynamically coupled. Our experimental setup is a soap-film channel, which is essentially a soapy waterfall---a planar film of soap-water solution falling under gravity. This setup has long been used to study quasi-two-dimensional flows in a laboratory setting. Unlike previous experiments, however, where the focus is on the flow in the film, we train attention on what surrounds the film: air. The falling film drags the surrounding air, inducing flow in a thin layer of air adjacent to the film. This flowing air, in turn, resists the motion of the falling film; thus, the film-air interface is a dynamic boundary. We measure the velocity profile of the airflow in the boundary-layer of this interface using super-resolution Particle Image Velocimetry. (To our knowledge, these are the first experiments to measure airflow induced by a soap film.) The downstream evolution of the air velocity profile manifests self-similarity, which we analyze using the framework of boundary-layer theory. Surprisingly, we find that the conditions of self-similarity of the airflow also shed light on the downstream evolution of the film. Beyond air-film interaction, our findings may bear on a broader class of flows over dynamic boundaries, e.g. ocean-air interaction.}, school = {Okinawa Institute of Science and Technology Graduate University}, title = {力学的境界条件下における境界層での自己相似性:垂直石鹸膜に引き起こされる空気の流れ}, year = {} }