@article{oai:oist.repo.nii.ac.jp:00000461, author = {Le Kien, Fam and Busch, Thomas and Truong, Viet Giang and Nic Chormaic, Síle}, issue = {2}, journal = {Physical Review A}, month = {Aug}, note = {We present a systematic treatment of higher-order modes of vacuum-clad ultrathin optical fibers. We show that, for a given fiber, the higher-order modes have larger penetration lengths, larger effective mode radii, and larger fractional powers outside the fiber than the fundamental mode. We calculate, both analytically and numerically, the Poynting vector, propagating power, energy, angular momentum, and helicity (or chirality) of the guided light. The axial and azimuthal components of the Poynting vector can be negative with respect to the direction of propagation and the direction of phase circulation, respectively, depending on the position, the mode type, and the fiber parameters. The orbital and spin parts of the Poynting vector may also have opposite signs in some regions of space. We show that the angular momentum per photon decreases with increasing fiber radius and increases with increasing azimuthal mode order. The orbital part of angular momentum of guided light depends not only on the phase gradient but also on the field polarization, and is positive with respect to the direction of the phase circulation axis. Meanwhile, depending on the mode type, the spin and surface parts of angular momentum and the helicity of the field can be negative with respect to the direction of the phase circulation axis.}, title = {Higher-order modes of vacuum-clad ultrathin optical fibers}, volume = {96}, year = {2017} }