ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 鳥海ユニット

Remarks on a melonic field theory with cubic interaction

https://oist.repo.nii.ac.jp/records/2140
https://oist.repo.nii.ac.jp/records/2140
efe475ff-8805-4c9f-b1e3-ddfa06d8ca11
名前 / ファイル ライセンス アクション
Benedetti-2021-Remarks Benedetti-2021-Remarks on a melonic field theo (701.8 kB)
Creative Commons Attribution 4.0 International(https://creativecommons.org/licenses/by/4.0/)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2021-05-28
タイトル
タイトル Remarks on a melonic field theory with cubic interaction
言語 en
言語
言語 eng
キーワード
言語 en
主題Scheme Other
主題 Conformal Field Theory
キーワード
言語 en
主題Scheme Other
主題 Renormalization Group
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者(英) Benedetti, Dario

× Benedetti, Dario

Benedetti, Dario

Search repository
Delporte, Nicolas

× Delporte, Nicolas

Delporte, Nicolas

Search repository
書誌情報 en : Journal of High Energy Physics

巻 2021, 号 4, p. 197, 発行日 2021-04-20
抄録
内容記述タイプ Other
内容記述 We revisit the Amit-Roginsky (AR) model in the light of recent studies on Sachdev-Ye-Kitaev (SYK) and tensor models, with which it shares some important features. It is a model of N scalar fields transforming in an N-dimensional irreducible representation of SO(3). The most relevant (in renormalization group sense) invariant interaction is cubic in the fields and mediated by a Wigner 3jm symbol. The latter can be viewed as a particular rank-3 tensor coupling, thus highlighting the similarity to the SYK model, in which the tensor coupling is however random and of even rank. As in the SYK and tensor models, in the large-N limit the perturbative expansion is dominated by melonic diagrams. The lack of randomness, and the rapidly growing number of invariants that can be built with n fields, makes the AR model somewhat closer to tensor models. We review the results from the old work of Amit and Roginsky with the hindsight of recent developments, correcting and completing some of their statements, in particular concerning the spectrum of the operator product expansion of two fundamental fields. For 5.74 < d < 6 the fixed-point theory defines a real CFT, while for smaller d complex dimensions appear, after a merging of the lowest dimension with its shadow. We also introduce and study a long-range version of the model, for which the cubic interaction is exactly marginal at large N , and we find a real and unitary CFT for any d < 6, both for real and imaginary coupling constant, up to some critical coupling.
出版者
出版者 Springer Nature
ISSN
収録物識別子タイプ ISSN
収録物識別子 1029-8479
ISSN
収録物識別子タイプ ISSN
収録物識別子 1126-6708
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 info:doi/10.1007/JHEP04(2021)197
権利
権利情報 © The Author(s).
関連サイト
識別子タイプ URI
関連識別子 https://link.springer.com/article/10.1007/JHEP04(2021)197
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-26 11:36:30.883134
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3