WEKO3
アイテム
Remarks on a melonic field theory with cubic interaction
https://oist.repo.nii.ac.jp/records/2140
https://oist.repo.nii.ac.jp/records/2140efe475ff-8805-4c9f-b1e3-ddfa06d8ca11
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Creative Commons Attribution 4.0 International(https://creativecommons.org/licenses/by/4.0/)
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2021-05-28 | |||||||||
タイトル | ||||||||||
タイトル | Remarks on a melonic field theory with cubic interaction | |||||||||
言語 | en | |||||||||
言語 | ||||||||||
言語 | eng | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Conformal Field Theory | |||||||||
キーワード | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | Renormalization Group | |||||||||
資源タイプ | ||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||
資源タイプ | journal article | |||||||||
著者(英) |
Benedetti, Dario
× Benedetti, Dario
× Delporte, Nicolas
|
|||||||||
書誌情報 |
en : Journal of High Energy Physics 巻 2021, 号 4, p. 197, 発行日 2021-04-20 |
|||||||||
抄録 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | We revisit the Amit-Roginsky (AR) model in the light of recent studies on Sachdev-Ye-Kitaev (SYK) and tensor models, with which it shares some important features. It is a model of N scalar fields transforming in an N-dimensional irreducible representation of SO(3). The most relevant (in renormalization group sense) invariant interaction is cubic in the fields and mediated by a Wigner 3jm symbol. The latter can be viewed as a particular rank-3 tensor coupling, thus highlighting the similarity to the SYK model, in which the tensor coupling is however random and of even rank. As in the SYK and tensor models, in the large-N limit the perturbative expansion is dominated by melonic diagrams. The lack of randomness, and the rapidly growing number of invariants that can be built with n fields, makes the AR model somewhat closer to tensor models. We review the results from the old work of Amit and Roginsky with the hindsight of recent developments, correcting and completing some of their statements, in particular concerning the spectrum of the operator product expansion of two fundamental fields. For 5.74 < d < 6 the fixed-point theory defines a real CFT, while for smaller d complex dimensions appear, after a merging of the lowest dimension with its shadow. We also introduce and study a long-range version of the model, for which the cubic interaction is exactly marginal at large N , and we find a real and unitary CFT for any d < 6, both for real and imaginary coupling constant, up to some critical coupling. | |||||||||
出版者 | ||||||||||
出版者 | Springer Nature | |||||||||
ISSN | ||||||||||
収録物識別子タイプ | ISSN | |||||||||
収録物識別子 | 1029-8479 | |||||||||
ISSN | ||||||||||
収録物識別子タイプ | ISSN | |||||||||
収録物識別子 | 1126-6708 | |||||||||
DOI | ||||||||||
関連タイプ | isIdenticalTo | |||||||||
識別子タイプ | DOI | |||||||||
関連識別子 | info:doi/10.1007/JHEP04(2021)197 | |||||||||
権利 | ||||||||||
権利情報 | © The Author(s). | |||||||||
関連サイト | ||||||||||
識別子タイプ | URI | |||||||||
関連識別子 | https://link.springer.com/article/10.1007/JHEP04(2021)197 | |||||||||
著者版フラグ | ||||||||||
出版タイプ | VoR | |||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 |