ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "7efdc9a1-2701-484b-8772-8919dcfbdd18"}, "_deposit": {"created_by": 22, "id": "2911", "owners": [22], "pid": {"revision_id": 0, "type": "depid", "value": "2911"}, "status": "published"}, "_oai": {"id": "oai:oist.repo.nii.ac.jp:00002911", "sets": ["241"]}, "author_link": [], "item_10006_creator_3": {"attribute_name": "Author", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Metz, Friederike", "creatorNameLang": "en"}]}]}, "item_10006_date_granted_11": {"attribute_name": "Degree Conferral Date", "attribute_value_mlt": [{"subitem_dategranted": "2023-02-28"}]}, "item_10006_degree_grantor_9": {"attribute_name": "Degree Conferrral Institution", "attribute_value_mlt": [{"subitem_degreegrantor": [{"subitem_degreegrantor_name": "Okinawa Institute of Science and Technology Graduate University"}], "subitem_degreegrantor_identifier": [{"subitem_degreegrantor_identifier_name": "38005", "subitem_degreegrantor_identifier_scheme": "kakenhi"}]}]}, "item_10006_degree_name_8": {"attribute_name": "Degree", "attribute_value_mlt": [{"subitem_degreename": "Doctor of Philosophy "}]}, "item_10006_description_7": {"attribute_name": "Abstract", "attribute_value_mlt": [{"subitem_description": "In this thesis, I consider the three main paradigms of machine learning – supervised, unsupervised, and reinforcement learning – and explore how each can be employed as a tool to study or control quantum systems. To this end, I adopt classical machine learning methods, but also illustrate how present-day quantum devices and concepts from condensed matter physics can be harnessed to adapt the machine learning models to the physical system being studied. In the first project, I use supervised learning techniques from classical object detection to locate quantum vortices in rotating BoseEinstein condensates. The machine learning model achieves high accuracies even in the presence of noise, which makes it especially suitable for experimental settings. I then move on to the field of unsupervised learning and introduce a quantum anomaly detection framework based on parameterized quantum circuits to map out phase diagrams of quantum many-body systems. The proposed algorithm allows quantum systems to be directly analyzed on a quantum computer without any prior knowledge about its phases. Lastly, I consider two reinforcement learning applications for quantum control. In the first example, I use Q-learning to maximize the entanglement in discrete-time quantum walks. In the final study, I introduce a novel approach for controlling quantum many-body systems by leveraging matrix product states as a trainable machine learning ansatz for the reinforcement learning agent. This framework enables us to reach far larger system sizes than conventional neural network-based approaches.", "subitem_description_language": "en", "subitem_description_type": "Other"}]}, "item_10006_dissertation_number_12": {"attribute_name": "Degree Referral Number", "attribute_value_mlt": [{"subitem_dissertationnumber": "甲第118号"}]}, "item_10006_identifier_registration": {"attribute_name": "ID登録", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.15102/1394.00002632", "subitem_identifier_reg_type": "JaLC"}]}, "item_10006_rights_13": {"attribute_name": "Copyright Information", "attribute_value_mlt": [{"subitem_rights": "© 2023 The Author."}]}, "item_10006_text_24": {"attribute_name": "Exam Date", "attribute_value_mlt": [{"subitem_text_value": "2023-01-11"}]}, "item_10006_version_type_18": {"attribute_name": "Version Format", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2023-03-23"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "MetzFinalExamAbstract.pdf", "filesize": [{"value": "42.9 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 42900.0, "url": {"label": "MetzFinalExamAbstract", "objectType": "abstract", "url": "https://oist.repo.nii.ac.jp/record/2911/files/MetzFinalExamAbstract.pdf"}, "version_id": "2df3ae09-4b7b-4a55-abe8-4fb2eeac4953"}, {"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2023-03-23"}], "displaytype": "detail", "download_preview_message": "", "file_order": 1, "filename": "MetzFullText.pdf", "filesize": [{"value": "40.2 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 40200000.0, "url": {"label": "MetzFullText", "objectType": "fulltext", "url": "https://oist.repo.nii.ac.jp/record/2911/files/MetzFullText.pdf"}, "version_id": "a1ab0c6e-0d68-4ea6-81da-e13a3d78c42d"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "doctoral thesis", "resourceuri": "http://purl.org/coar/resource_type/c_db06"}]}, "item_title": "量子系とその制御における機械学習の応用", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "量子系とその制御における機械学習の応用", "subitem_title_language": "ja"}, {"subitem_title": "Machine Learning Applications for the Study and Control of Quantum Systems", "subitem_title_language": "en"}]}, "item_type_id": "10006", "owner": "22", "path": ["241"], "permalink_uri": "https://doi.org/10.15102/1394.00002632", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-03-23"}, "publish_date": "2023-03-23", "publish_status": "0", "recid": "2911", "relation": {}, "relation_version_is_last": true, "title": ["量子系とその制御における機械学習の応用"], "weko_shared_id": -1}
  1. 博士論文
  2. 2023年

量子系とその制御における機械学習の応用

https://doi.org/10.15102/1394.00002632
https://doi.org/10.15102/1394.00002632
04160507-81d6-4d07-9536-5fad85b0c87f
名前 / ファイル ライセンス アクション
MetzFinalExamAbstract.pdf MetzFinalExamAbstract (42.9 kB)
MetzFullText.pdf MetzFullText (40.2 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2023-03-23
タイトル
言語 ja
タイトル 量子系とその制御における機械学習の応用
タイトル
言語 en
タイトル Machine Learning Applications for the Study and Control of Quantum Systems
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_db06
資源タイプ doctoral thesis
ID登録
ID登録 10.15102/1394.00002632
ID登録タイプ JaLC
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 (英) Metz, Friederike

× Metz, Friederike

en Metz, Friederike

Search repository
抄録
内容記述タイプ Other
内容記述 In this thesis, I consider the three main paradigms of machine learning – supervised, unsupervised, and reinforcement learning – and explore how each can be employed as a tool to study or control quantum systems. To this end, I adopt classical machine learning methods, but also illustrate how present-day quantum devices and concepts from condensed matter physics can be harnessed to adapt the machine learning models to the physical system being studied. In the first project, I use supervised learning techniques from classical object detection to locate quantum vortices in rotating BoseEinstein condensates. The machine learning model achieves high accuracies even in the presence of noise, which makes it especially suitable for experimental settings. I then move on to the field of unsupervised learning and introduce a quantum anomaly detection framework based on parameterized quantum circuits to map out phase diagrams of quantum many-body systems. The proposed algorithm allows quantum systems to be directly analyzed on a quantum computer without any prior knowledge about its phases. Lastly, I consider two reinforcement learning applications for quantum control. In the first example, I use Q-learning to maximize the entanglement in discrete-time quantum walks. In the final study, I introduce a novel approach for controlling quantum many-body systems by leveraging matrix product states as a trainable machine learning ansatz for the reinforcement learning agent. This framework enables us to reach far larger system sizes than conventional neural network-based approaches.
言語 en
口頭試問日
2023-01-11
学位授与年月日
学位授与年月日 2023-02-28
学位名
学位名 Doctor of Philosophy
学位授与番号
学位授与番号 甲第118号
学位授与機関
学位授与機関識別子Scheme kakenhi
学位授与機関識別子 38005
学位授与機関名 Okinawa Institute of Science and Technology Graduate University
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
権利
権利情報 © 2023 The Author.
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-26 11:21:34.442591
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3